Preconception and prenatal maternal stress are associated with broad autism phenotype in young adults: Project Ice Storm

Xinyuan Li1,2, David P. Laplante3, Guillaume Elgbei2 and Suzanne King2,4

1Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; 2Douglas Mental Health University Institute, Montreal, QC, Canada; 3Centre for Child Development and Mental Health, Lady Davis Institute–Jewish General Hospital, Montreal, QC, Canada and 4Department of Psychiatry, McGill University, Montreal, QC, Canada

Abstract

Studies show associations between prenatal maternal stress (PNMS) and child autism, with little attention paid to PNMS and autism in young adulthood. The broad autism phenotype (BAP), encompassing sub-clinical levels of autism, includes aloof personality, pragmatic language impairment and rigid personality. It remains unclear whether different aspects of PNMS explain variance in different BAP domains in young adult offspring. We recruited women who were pregnant during, or within 3 months of, the 1998 Quebec ice storm crisis, and assessed three aspects of their stress (i.e., objective hardship, subjective distress and cognitive appraisal). At age 19, the young adult offspring (n = 33, 22F / 11M) completed a BAP self-report. Linear and logistic regressions were implemented to examine associations between PNMS and BAP traits. Up to 21.4% of the variance in BAP total score and in BAP three domains tended to be explained by at least one aspect of maternal stress. For example, 16.8% of the variance in aloof personality tended to be explained by maternal objective hardship; 15.1% of the variance in pragmatic language impairment tended to be explained by maternal subjective distress; 20.0% of the variance in rigid personality tended to be explained by maternal objective hardship and 14.3% by maternal cognitive appraisal. Given the small sample size, the results should be interpreted with caution. In conclusion, this small prospective study suggests that different aspects of maternal stress could have differential effects on different components of BAP traits in young adults.

Introduction

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by social and communication deficits and restricted, repetitive behaviors.1 The broad autism phenotype (BAP)2 describes three core domains associated with autistic-like behaviors: aloof personality, pragmatic language impairment and rigid personality.3 The BAP domains are milder but qualitatively similar to the three defining ASD domains (i.e., social and communication deficits and restricted, repetitive behaviors).4,5

Prenatal maternal stress (PNMS) is an established risk factor for neurodevelopmental disorders.6 Research has shown associations between in-utero exposure to maternal depression,7-10 anxiety,11 stressful life events12-16 and natural disasters17 and child autism7-10,13-17 and autistic-like traits.11,12 While PNMS has been specifically linked to communication deficits in autistic children,4,5 it’s ability to relate to subclinical levels of social deficits and restricted, repetitive behaviors has yet to be examined.

Evidence from animals and humans has shown that maternal stress during the preconception period affects offspring neurodevelopment.18 In addition, preconception stress typically persists into pregnancy.19 For example, depressive and anxious symptoms in the preconception phase are closely associated with those during pregnancy, with the symptom profiles remaining largely unchanged from preconception into pregnancy,19,20 warranting the need to examine the effect of stress across preconception and pregnancy periods.

The study of sudden-onset natural disasters can complement other PNMS research. Disaster-related PNMS can determine whether associations between PNMS and autistic-like traits are due more to a pregnant woman’s objective degree of exposure, her level of subjective distress (i.e., post-traumatic stress symptoms), or her cognitive appraisal of the event.

In January 1998, three separate weather systems in southern Quebec produced five continuous days of freezing rain and left up to 100 mm of ice on the region. The weight of the ice toppled electrical poles, high-tension power lines and pylons, leaving more than 1.5 million households without power for as long as 45 days. In June 1998, we launched the world’s first prospective longitudinal disaster-related PNMS cohort: Project Ice Storm. This project recruited women who were pregnant during the crisis or became pregnant within 3 months following the crisis.
It remains unclear whether effects of PNMS on autistic-like traits extend beyond those observed in childhood. The present study explored long-lasting effects of disaster-related PNMS on the severity of autistic-like traits by assessing BAP traits in Project Ice Storm young adults. The comprehensive assessment of three aspects of PNMS (i.e., objective hardship, subjective distress, and cognitive appraisal) allowed us to determine the active ingredient in pregnant women’s stress associated with BAP traits. We hypothesized that higher levels of maternal objective hardship, subjective distress, and/or negative cognitive appraisal of the disaster, would be associated with more severe BAP traits and greater risk for clinically significant traits (caseness) in the young adult offspring. We anticipated that different aspects of PNMS would explain variance in the severity of different domains of BAP traits and caseness.

Methods

Ethical approval

This study was approved by the Douglas Institute Research Centre Ethics Board. We obtained written informed consent from all participants at each time point.

Participants

Following the ice storm in January 1998, we contacted physicians who delivered babies in the four regional hospitals of the Montérégie, an area southeast of Montreal that was most affected by the crisis and asked for their help in contacting eligible women. On June 1, 1998, we mailed 1144 postal surveys to eligible women who were pregnant on January 9, 1998, or who became pregnant within the following three months. The surveys assessed their levels of PNMS (i.e., objective hardship, subjective distress and cognitive appraisal). Among the 1144 surveys, 224 women responded of whom 176 agreed to further contact. At age 19 (18.74 ± 0.37 years, range = 18.10–19.62 years), 33 young adult offspring (22 females/11 males) self-reported their BAP levels.

Outcome variables

The Broad Autism Phenotype Questionnaire (BAPQ)2 was designed to assess BAP in non-clinical populations and was validated against direct clinical assessment of BAP.4 The self-report BAPQ includes 36 questions assessing three subscales of 12 questions each: aloof personality, pragmatic language impairment and rigid personality. Aloof personality is defined as a lack of interest in, or enjoyment of, social interaction (corresponding to social deficits of autism). Pragmatic language impairment refers to deficits in social aspects of language, resulting in difficulties communicating effectively or in holding a fluid, reciprocal conversation (corresponding to communication deficits of autism). Rigid personality is defined as little interest in change or difficulty adjusting to change (corresponding to restricted, repetitive behaviors of autism).5 Questions are rated using a 6-point Likert scale ranging from “very rarely” (1) to “very often” (6), and mean ratings are calculated for each score. The following scores are used as clinical cutoffs for the total score (female: 3.25; male: 3.35), aloof personality (female: 3.00; male: 3.25), pragmatic language impairment (female: 2.70; male: 2.95) and rigid personality (female: 3.25; male: 3.65).3 A clinical composite diagnosis of BAP is defined as the presence of two or three BAP domains above the cutoffs.

Predictor variables

Objective hardship

In June 1998, the severity of maternal objective hardship was assessed using four domains of exposure: Threat (e.g., injuries), Loss (e.g., loss of personal income), Scope (e.g., days without electricity), and Change (e.g., temporary shelter).22 Items were scored so that a maximum of 8 points was attributed to each domain, which were then summed to create the total score: Storm32. The detailed scoring of Storm32 is presented elsewhere.23

Subjective distress

In June 1998, maternal subjective distress was assessed using a validated French version24 of the 22-item Impact of Event Scale – Revised (IES-R).25 This scale provides a total score and three domain scores: Intrusive Thoughts (8 items), Hyperarousal (6 items), and Avoidance (8 items). Each item is rated on a 5-point scale from 0 to 4. The log-transformed values of the total score were used in the current study due to a skewed distribution.

Cognitive appraisal

In June 1998, maternal cognitive appraisal of the ice storm was assessed using a single question: “Overall, what were the consequences of the ice storm on you and your family?” Response options were coded into three levels: “negative” (“−1”), “neutral” (“0”), and “positive” (“1”).

Timing of exposure

In June 1998, timing of in-utero ice storm exposure was defined as the number of days between the estimated date of conception (the woman’s due date minus 280 days) and January 9, 1998, the date at which the ice storm peaked. Negative values indicate preconception exposure.

Control variables

The following maternal and offspring variables were considered as potential confounders as they have been reported to relate to both PNMS and autism.

Maternal variables: Socioeconomic status (SES) at child’s birth was assessed using the higher of the two parental scores on the Hollingshead Scale26 that included educational attainment and occupational prestige; lower scores correspond to higher SES. Maternal psychological problems, including anxiety (e.g., Have you felt constantly under strain?), depression (e.g., Have you felt that life is not worth living?), somatic complaints (e.g., Have you felt that you are ill?) and dysfunction (e.g., Have you been taking longer over things you do?), were assessed using the General Health Questionnaire–28.28 Each of its 28 items was scored on a 4-point Likert scale for how much the women had experienced it in the preceding 2 weeks. The number of life events (e.g., death, illness or serious injury, major financial change), other than the ice storm, that occurred to the mothers during pregnancy was assessed with the Life Experience Survey29 short form. The total number of obstetric complications (e.g., hypertension, preeclampsia, cold or flu) experienced by the mothers that were rated as moderate to severe using the McNeil-Sjöström Scale for Obstetric Complications30 was used in the current study. Information on smoking and alcohol habits during pregnancy was collected from
mothers who were asked to indicate the number of cigarettes smoked per day and the number of drinks consumed per week.

Offspring variables: Mothers reported on gestational age at birth and birth weight. Current full-scale intelligence quotient was assessed with the Wechsler Adult Intelligence Scale–Third Edition short form. Age at BAP assessment was also calculated.

Comparisons between age 19 and the recruitment sample

We compared the predictor and control variables between the present sample (i.e., responder) and those who were included in the recruitment sample but who failed to participate in 19-year-old BAP assessment (i.e., non-responder). Results are shown in Supplementary Table S1. The two samples did not differ in any covariate or PNMS variables except that non-responders had lower SES levels and more severe maternal psychological problems at recruitment than the 19-year-old responders.

Statistical analysis

All analyses were conducted using IBM SPSS version 26. First, boxplots were used to detect univariate outliers (above Q3 + 3*IQR or below Q1 – 3*IQR). Second, descriptive analyses including mean, standard deviation (SD) and range were computed for all variables, and Pearson correlation analyses were conducted among all variables.

All analyses were conducted for BAP total score and each of the three domain scores. Given that PNMS may influence offspring autism in a sex-specific manner, and given sex-specific prevalence in autism, we controlled for child sex in all analyses. To examine the association between PNMS and the severity of BAP traits, hierarchical linear regressions were conducted: child sex entered in the first step, the control variables that were significantly correlated with BAP traits entered in the second step, followed by objective hardship. The same regression model was rerun for subjective hardship. The same regression model was rerun for subjective hardship, the bootstrapping analysis of 10,000 resamplings was applied to the hierarchical linear regression models.

Results

Descriptive information

We did not identify any univariate or multivariate outliers. There were, however, two participants whose objective hardship scores were 2–3 SD above the mean even though they did not meet the predefined criteria as outliers. Nonetheless, readers are cautioned that some results may be overestimated. To verify the estimation of associations between maternal objective hardship and the severity of BAP traits, the bootstrapping analysis of 10,000 resamplings was applied to the hierarchical linear regression models.

Descriptive results are presented in Table 1. Among the 33 families, 27.3% (9/33) were middle class; 48.5% (16/33) were upper middle class; and 24.2% (8/33) were upper class. When the ice storm peaked on January 9, 1998, 24.2% (8/33) were within 3-month of conception; 27.3% (9/33) were in the 1st trimester of pregnancy; 27.3% (9/33) were in the 2nd trimester; and 21.2% (7/33) were in the 3rd trimester.

At 19 years of age, 15.2% (5/33, 4 females; 1 male) of the young adolescents met BAP total score cutoffs; 42.4% (14/33, 10 females; 4 males) met aloof personality cutoffs; 21.2% (7/33, 6 females; 1 male) met pragmatic language impairment cutoffs; and 48.5% (16/33, 14 females; 2 males) met rigid personality cutoffs. There was a significantly higher proportion of females (63.6%, 14/22) meeting rigid personality cutoffs than males (18.2%, 2/11) (p = 0.026). Finally, 36.4% (12/33) presented two or three BAP domains thus meeting criteria for a composite diagnosis of BAP.

Associations between PNMS and the severity of BAP traits controlling for child sex

As shown in Table 2, each of the four BAP traits variables was significantly (p < 0.05) associated with at least one PNMS variable, although these associations fell to the trend level (q < 0.10) after FDR correction as explained below.

Total score: The greater the mothers’ objective hardship, the higher the young adolescents’ BAP total score (B = 0.078, 95%CI [0.022, 0.134], β = 0.467, ΔR² = 0.214, p = 0.008). The bootstrapping result showed that there was no change to the significance of the association between objective hardship and BAP total score (bootstrap 95%CI [0.010, 0.128]). However, this association fell to the trend level after FDR correction (q = 0.060). Although no association was observed between maternal subjective distress and BAP total score, there was a negative trend-level association for cognitive appraisal (B = −0.269, 95%CI [−0.565, 0.028], β = −0.333, ΔR² = 0.102, p = 0.074), such that the more negative the cognitive appraisal, the greater the BAP total score, but it failed to approach significance after FDR correction (q = 0.127). Comparing the standardized coefficients (β), the effect of objective hardship on BAP total score was about 30% greater than that of cognitive appraisal, and more than twice the effect of subjective distress.

Aloof personality: The greater the mothers’ objective hardship, the more severe the young adolescents’ aloof personality (B = 0.097, 95% CI [0.017, 0.178], β = 0.413, ΔR² = 0.168, p = 0.020). The bootstrapping result showed that there was no change to the significance of the association between objective hardship and
Table 1. Descriptive information for 33 mother-young adult dyads and Pearson correlation coefficients among all variables

Variable	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	mean	SD	Range				
1 - Objective exposure	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
2 - Subjective distress*	0.223	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
3 - Cognitive appraisal	-0.396*	-0.201	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
4 - Timing of exposure (days)	-0.098	0.168	0.074	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
5 - SES**	-0.130	0.317	0.140	-0.011	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
6 - Maternal age (years) at birth	0.048	-0.069	0.009	0.210	-0.195	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
7 - Smoking per day	0.076	0.240	-0.019	-0.385**	0.264	-0.162	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
8 - Alcohol per week	-0.058	-0.176	0.067	-0.031	0.081	0.154	-0.003	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
9 - Obstetric complications	-0.191	-0.115	-0.019	-0.125	0.013	0.108	0.194	-0.024	-	-	-	-	-	-	-	-	-	-	-	-	-					
10 - Life events	0.355*	0.477**	-0.070	0.260	-0.197	0.174	0.210	-0.162	-0.117	-	-	-	-	-	-	-	-	-	-	-	-					
11 - Psychological symptoms	0.118	0.322	-0.288	0.169	-0.041	0.144	0.306	-0.016	0.162	0.271	-	-	-	-	-	-	-	-	-	-	-					
12 - Gestational age (weeks) at birth	0.191	0.133	-0.144	-0.013	-0.063	0.342	-0.036	-0.066	-0.418*	0.123	0.043	-	-	-	-	-	-	-	-	-	-					
13 - Birth weight (grams)	0.039	0.135	0.002	-0.002	-0.065	0.164	-0.086	0.062	-0.380*	-0.053	-0.024	0.611**	-	-	-	-	-	-	-	-	-					
14 - Age (years) at BAP assessment	-0.008	0.143	0.077	0.733**	-0.029	0.038	-0.105	-0.002	-0.305	0.263	0.259	-0.051	-0.065	-	-	-	-	-	-	-	-	-				
15 - IQ*	-0.230	-0.289	0.003	-0.122	-0.381*	0.035	-0.269	-0.230	0.007	0.025	-0.209	-0.058	-0.116	-0.114	-	-	-	-	-	-	-	-	-			
16 - BAP total score	0.457**	0.197	-0.312	-0.113	0.085	-0.025	0.067	-0.260	0.027	0.198	-0.161	0.095	-0.137	-0.074	0.070	-	-	-	-	-	-	-	-			
17 - Aloof personality	0.416*	0.101	-0.225	-0.040	-0.045	-0.041	-0.125	-0.224	0.103	0.199	-0.186	0.007	-0.158	-0.047	0.143	0.914**	-	-	-	-	-	-	-	-		
18 - Pragmatic language impairment	0.320	0.386*	-0.175	0.025	0.349**	0.006	0.070	-0.203	-0.263	0.084	-0.268	0.260	0.124	0.071	-0.068	0.775**	0.576**	-	-	-	-	-	-	-	-	
19 - Rigid personality	0.426*	0.060	-0.401*	-0.275	-0.027	-0.018	0.276	-0.235	0.172	0.211	0.037	0.017	-0.282	-0.201	0.064	0.847**	0.682**	0.466**	-	-	-	-	-	-	-	-

BAP, Broad Autism Phenotype; IQ, Intelligence quotient; SD, standard deviation; SES, socioeconomic status; -, not applicable.
*Log-transformed values of IES-R total score
**Lower SES scores correspond to higher SES.
*
*p < 0.05
**p < 0.01

*p < 0.05
**p < 0.01

Published online by Cambridge University Press
Table 2. Summary of hierarchical linear regression analyses for the association between PNMS and the severity of BAP traits in young adults when controlling for child sex

<table>
<thead>
<tr>
<th></th>
<th>Values in final model</th>
<th>Values after entry of each variable</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE of B</td>
<td>β</td>
<td>p value</td>
<td>q value</td>
<td>R²</td>
<td>ΔR²</td>
<td>F</td>
</tr>
<tr>
<td>(1) Total score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.764</td>
<td>0.534</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>0.111</td>
<td>0.235</td>
<td>0.077</td>
<td>0.642</td>
<td>3.15E-04</td>
<td>0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective hardship</td>
<td>0.078</td>
<td>0.027</td>
<td>0.467</td>
<td>0.008**</td>
<td>0.060</td>
<td>0.214</td>
<td>0.214</td>
<td>4.095</td>
</tr>
<tr>
<td>Constant</td>
<td>2.466</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>0.060</td>
<td>0.260</td>
<td>0.041</td>
<td>0.820</td>
<td>3.15E-04</td>
<td>0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjective distress</td>
<td>0.126</td>
<td>0.112</td>
<td>0.202</td>
<td>0.272</td>
<td>0.363</td>
<td>0.040</td>
<td>0.040</td>
<td>0.631</td>
</tr>
<tr>
<td>Constant</td>
<td>3.556</td>
<td>0.609</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>−0.109</td>
<td>0.260</td>
<td>−0.075</td>
<td>0.679</td>
<td>3.15E-04</td>
<td>0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive appraisal</td>
<td>−0.269</td>
<td>0.145</td>
<td>−0.333</td>
<td>0.074</td>
<td>0.127</td>
<td>0.103</td>
<td>0.102</td>
<td>1.718</td>
</tr>
<tr>
<td>(2) Aloof personality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.942</td>
<td>0.773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>−0.040</td>
<td>0.341</td>
<td>−0.019</td>
<td>0.908</td>
<td>0.005</td>
<td>0.160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective hardship</td>
<td>0.097</td>
<td>0.039</td>
<td>0.413</td>
<td>0.020*</td>
<td>0.074</td>
<td>0.173</td>
<td>0.168</td>
<td>3.138</td>
</tr>
<tr>
<td>Constant</td>
<td>2.995</td>
<td>0.743</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>−0.123</td>
<td>0.372</td>
<td>−0.061</td>
<td>0.742</td>
<td>0.005</td>
<td>0.160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjective distress</td>
<td>0.082</td>
<td>0.161</td>
<td>0.094</td>
<td>0.612</td>
<td>0.668</td>
<td>0.014</td>
<td>0.009</td>
<td>0.210</td>
</tr>
<tr>
<td>Constant</td>
<td>4.081</td>
<td>0.874</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>−0.297</td>
<td>0.373</td>
<td>−0.146</td>
<td>0.433</td>
<td>0.005</td>
<td>0.160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive appraisal</td>
<td>−0.302</td>
<td>0.208</td>
<td>−0.266</td>
<td>0.158</td>
<td>0.237</td>
<td>0.070</td>
<td>0.065</td>
<td>1.132</td>
</tr>
<tr>
<td>(3) Pragmatic language impairment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.618</td>
<td>0.566</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>0.055</td>
<td>0.249</td>
<td>0.038</td>
<td>0.827</td>
<td>7.00E-06</td>
<td>2.17E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective hardship</td>
<td>0.054</td>
<td>0.029</td>
<td>0.325</td>
<td>0.072</td>
<td>0.127</td>
<td>0.104</td>
<td>0.104</td>
<td>1.737</td>
</tr>
<tr>
<td>Constant</td>
<td>1.737</td>
<td>0.484</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>0.062</td>
<td>0.242</td>
<td>0.043</td>
<td>0.800</td>
<td>7.00E-06</td>
<td>2.17E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjective distress</td>
<td>0.242</td>
<td>0.105</td>
<td>0.391</td>
<td>0.028*</td>
<td>0.074</td>
<td>0.151</td>
<td>0.151</td>
<td>2.668</td>
</tr>
<tr>
<td>Constant</td>
<td>2.756</td>
<td>0.626</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>−0.080</td>
<td>0.267</td>
<td>−0.056</td>
<td>0.767</td>
<td>7.00E-06</td>
<td>2.17E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive appraisal</td>
<td>−0.152</td>
<td>0.149</td>
<td>−0.191</td>
<td>0.316</td>
<td>0.379</td>
<td>0.033</td>
<td>0.033</td>
<td>0.520</td>
</tr>
<tr>
<td>(4) Rigid personality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.723</td>
<td>0.596</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>0.312</td>
<td>0.263</td>
<td>0.193</td>
<td>0.245</td>
<td>0.019</td>
<td>0.584</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective hardship</td>
<td>0.084</td>
<td>0.030</td>
<td>0.451</td>
<td>0.010**</td>
<td>0.060</td>
<td>0.218</td>
<td>0.200</td>
<td>4.194</td>
</tr>
<tr>
<td>Constant</td>
<td>2.676</td>
<td>0.586</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>0.234</td>
<td>0.293</td>
<td>0.145</td>
<td>0.431</td>
<td>0.019</td>
<td>0.584</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjective distress</td>
<td>0.054</td>
<td>0.127</td>
<td>0.077</td>
<td>0.674</td>
<td>0.674</td>
<td>0.024</td>
<td>0.006</td>
<td>0.375</td>
</tr>
<tr>
<td>Constant</td>
<td>3.853</td>
<td>0.659</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child sex</td>
<td>0.042</td>
<td>0.281</td>
<td>0.026</td>
<td>0.882</td>
<td>0.019</td>
<td>0.584</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive appraisal</td>
<td>−0.355</td>
<td>0.157</td>
<td>−0.394</td>
<td>0.031*</td>
<td>0.074</td>
<td>0.162</td>
<td>0.143</td>
<td>2.891</td>
</tr>
</tbody>
</table>

BAP, Broad Autism Phenotype; PNMS, prenatal maternal stress; SE, standard error. q value represents corrected p values. **p < 0.01
aloof personality score (bootstrap 95%CI [0.008, 0.159]). This significant effect fell to the trend level after correction ($q = 0.074$). No associations were observed for maternal subjective distress or cognitive appraisal.

Pragmatic language impairment: The greater the mothers’ subjective distress, the more severe the young adults’ pragmatic language impairment ($B = 0.242$, 95%CI [0.028, 0.456], $\beta = 0.391$, $\Delta R^2 = 0.151$, $p = 0.028$), with the significant effect falling to a trend after correction ($q = 0.074$). There was a positive trend-level association for maternal objective hardship ($B = 0.054$, 95%CI $[-0.005, 0.113]$, $\beta = 0.325$, $\Delta R^2 = 0.104$, $p = 0.072$), with the bootstrap 95%CI of $[-0.024, 0.112]$; this trend failed to survive correction ($q = 0.127$). No association was observed for maternal cognitive appraisal.

Rigid personality: The greater the mothers’ objective hardship, the more severe the young adults’ rigid personality ($B = 0.084$, 95% CI [0.022, 0.146], $\beta = 0.451$, $\Delta R^2 = 0.200$, $p = 0.010$). The bootstrapping result showed that there was no change to the significance of the association between objective hardship and rigid personality score (bootstrap 95%CI [0.035, 0.130]). The effect fell to the trend level after correction ($q = 0.060$). In addition, the more negative the mothers’ cognitive appraisal, the more severe the young adults’ rigid personality ($B = -0.355$, 95%CI $[-0.676, -0.035]$, $\beta = -0.394$, $\Delta R^2 = 0.143$, $p = 0.031$), although this also fell to the trend level after correction ($q = 0.074$). No association with rigid personality was observed for maternal cognitive appraisal.

Association between PNMS and BAP clinical cutoffs controlling for child sex

The results of logistic regressions, showing associations between PNMS and BAP caseness, are presented in Supplementary Table S3. Despite significant initial results, none of the associations approached significance following FDR correction as described below.

Total score caseness: Maternal objective hardship was associated with BAP total score caseness (OR = 1.294, 95%CI [1.007, 1.663], $p = 0.044$), which failed to survive FDR correction ($q = 0.220$). Hosmer–Lemeshow test of goodness of fit indicated that the model adequately fit the data ($\chi^2 = 9.675$, $p = 0.289$). No associations were observed for maternal subjective distress or cognitive appraisal.

Aloof personality caseness: The severity of PNMS was not associated with aloof personality caseness.

Pragmatic language impairment caseness: Maternal subjective distress was associated with pragmatic language impairment caseness (OR = 4.826, 95%CI [1.252, 18.599], $p = 0.022$), which failed to survive FDR correction ($q = 0.218$). Hosmer–Lemeshow test of goodness of fit indicated that the model adequately fit the data ($\chi^2 = 3.462$, $p = 0.902$). No associations were observed for maternal objective hardship or cognitive appraisal.

Rigid personality caseness: Maternal objective hardship was associated with rigid personality caseness (OR = 1.290, 95%CI [1.026, 1.622], $p = 0.029$); however, this association did not survive FDR correction ($q = 0.218$). Hosmer–Lemeshow test of goodness of fit indicated that the model adequately fit the data ($\chi^2 = 5.814$, $p = 0.668$). No association was observed for maternal subjective distress. For maternal cognitive appraisal, a more negative cognitive appraisal by the mother was associated with an increased risk of rigid personality caseness (OR = 0.408, 95%CI [0.168, 0.995], $p = 0.049$) although this association became non-significant (OR = 0.478, 95%CI [0.184, 1.246], $p = 0.131$) after controlling for child sex. In addition, females were more likely to meet caseness for BAP clinical rigid personality than males regardless of three PNMS levels, however, this sex difference did not survive FDR correction regardless of levels of maternal objective hardship ($q = 0.113$), subjective distress ($q = 0.113$) or cognitive appraisal ($q = 0.235$).

Composite diagnosis of BAP caseness: The severity of PNMS was not associated with a composite diagnosis of BAP.

Sensitivity analysis

After omitting the young adults in the preconception group (i.e., using the pregnancy sample only), there were no substantial changes to the hierarchical linear regression (Supplementary Table S4) or logistic regression results (Supplementary Table S5).

Discussion

The goal of this study was to determine the extent to which objective, subjective and cognitive aspects of preconception and PNMS explain variance in different components of BAP traits in young adults using a prospective, natural experiment. Our findings support the preconception and prenatal developmental origins of BAP traits. Overall, greater maternal objective hardship tended to be associated with higher BAP total score. Regarding the three BAP domains, we found that distinct aspects of PNMS tended to explain between 14.3% and 20.0% of the variance in BAP traits, with maternal objective hardship and cognitive appraisal associated with personality difficulties, and maternal subjective distress associated with language impairments. These results extend our earlier findings at age 6%, suggesting that exposure to disaster-related PNMS may influence autistic-like traits at least into young adulthood.

Despite the strengths inherent in this quasi-experimental study, the interpretations of the results that we present here must be taken with caution given the small sample size; the results summarized above were significant ($p < 0.05$) at uncorrected levels but fell to trend levels ($q < 0.10$) after FDR correction. Despite the lack of statistical univariate outliers, the small sample size also led to two high values of objective hardship scores that were somewhat beyond the rest. The two cases do not meet criteria for multivariate outliers and lie in the general trajectory of the swarm; as legitimate members of the population under study, these may be clinically-relevant examples of the effects of high exposure to early life stress. The results of bootstrapping analyses suggest that the confidence intervals are not unduly biased by the two high values of objective hardship scores. However, these results must still be considered preliminary, potentially informing hypotheses to be tested in larger samples.

We found that higher maternal objective hardship to the 1998 ice storm tended to be associated with more severe aloof personality which parallels the social deficits of autism. Social functioning deficits, including a lack of social responsiveness, difficulty recognizing others’ emotions and intentions and inability to form friendships in a reciprocal manner, have been considered as the most universal and principal feature of autism. Our results echo animal research showing the effect of prenatal restraint stress on social behavior deficits in adult rats. Emerging results from
neuroimaging research have also partially explained the neuro-
logical mechanisms: social impairments may be partly attributed to
the vulnerability of the amygdala, hippocampus and prefrontal
cortex involved in social information processing.37,38

We also observed a tendency for higher maternal objective
hardship and more negative maternal cognitive appraisal to be
associated with more severe rigid personality. This trait parallels
the restricted, repetitive behaviors of autism. To the best of our
knowledge, this study is the first to investigate the predictive role of
disaster-related PNMS on the severity of restricted, repetitive
behaviors. In addition, despite failing to survive FDR correction, a
female-biased prevalence was observed in rigid personality, and
females in our sample were more likely to display these behaviors
than males regardless of PNMS exposure levels. This seems
somewhat unexpected given that males typically exhibit restricted,
repetitive behaviors more often than females.39 A possible
explanation is that restricted, repetitive behaviors encompass
two subdomains: repetitive sensory motor behaviors and insistence
on sameness,37,39 and rigid personality refers mainly to a desire for
sameness.34,39 Studies have shown a high percentage of internalizing
symptoms and executive functioning deficits in girls with autism,40,41
which may increase sameness behaviors in those affected girls.
Furthermore, a recent study supports our female bias
finding by showing that girls have greater insistence on sameness
than boys.39 Previous studies have proposed several neural
correlates of insistence on sameness in adults with autism: low
levels of the protein transporter for serotonin in the thalamus,42
and increased prefrontal and caudate nucleus volumes.43 Future
research is needed to identify the probable neurological mediators
between PNMS and offspring repetitive behaviors.

In contrast to the effects of objective hardship (and to a lesser
extent cognitive appraisal) on aloof and rigid personalities, we
found a trend suggesting that greater maternal subjective distress
was associated with more severe pragmatic language impairment.
This trait parallels the communicative deficits of autism. A
previous study reported that prenatal stressful life events were
associated with deficits in language and communication in children
with autism.16 Our finding extends the previous research by
specifying that it may be the subjective distress, and the genetic
propensity to experiencing symptoms of post-traumatic stress
disorder 5–6 months following a life event, rather than the
objective degree of the exposure, that is predictive of offspring
communication deficits.

Our findings raise a question about why distinct aspects of
PNMS seem to be associated with distinct BAP traits. While there
is no consensus on an explanation, it has been established that
offspring neurodevelopment and behaviors vary according to
different aspects of PNMS.44 For example, prenatal depression7
and prenatal exposure to natural disasters36 are both associated
with child autism, whereas other studies found that child autism
was not associated with prenatal exposure to life events such as
deaths, accidents, serious illness or intimate partner abuse.45,46
Moreover, our previous Project Ice Storm findings have
demonstrated distinct pathways of the transgenerational trans-
mision of the three aspects of PNMS to offspring development
and behaviors. For example, greater maternal subjective distress
was associated with more externalizing behaviors at 11½ years via
larger amygdala volume47 while maternal objective hardship48
and cognitive appraisal49 were associated with body mass index scores
and central adiposity at 13½ years via DNA methylation. However,
further investigation is needed to identify the specific mediators via
which each of the three aspects of PNMS differentially affects
distinct BAP traits.

The results of our sensitivity analyses suggest that associations
between disaster-related stress and the severity of BAP traits are
similar in young adults whether exposed in the preconception or
prenatal periods. These findings are similar to those reported by
Beijers et al.50 indicating that war exposure during the precon-
ception period was associated with increased internalizing and
externalizing problems in young children. However, Class et al.14
reported that while increased levels of preconception bereavement
were associated with marginally higher rates of adult bipolar
disorder and schizophrenia, no associations were found for
childhood ASD or ADHD. Our finding provides additional
support for extending the developmental origins of disease to three
months preconception. Research has shown that preconception
stress is associated with prenatal and postnatal maternal distress,19
poor birth outcomes20 and infant emotional reactivity.51 Therefore,
early screening of maternal mental health problems in women
attempts to conceive may be a valuable tool to prevent severe
child outcomes. Future studies are needed to determine the long-
lasting detrimental influences of preconception stress on offspring
behaviors.

There were several limitations. First, our sample is small due to
loss to follow-up during the 19-year period, although no
meaningful differences in the three aspects of PNMS levels were
found between the sample included in this study and the original
recruitment sample. Future studies with larger sample sizes are
needed to replicate our findings. Second, the SES of the families in
this study is higher than the median of the population in the region
from which they were recruited in 1998, such that the current
results may not generalize to lower class populations.

There were several strengths of this current study. First, our
study took advantage of a sudden-onset natural disaster, which was
independent of parental characteristics (e.g., SES and psychopa-
thology), as the source of prenatal stress and which, thus, lends
itself more easily to interpretations between objective hardship
from the disaster and BAP traits. As well, this study was
prospective in nature with most mothers reporting on their ice
storm experiences while they were still pregnant. Our approach to
studying PNMS, by assessing objective hardship, subjective
distress, and cognitive appraisal, adds important nuances to the
field that are difficult to accomplish in other naturalistic contexts.
Finally, we assessed BAP traits through self-report, extending our
understanding of BAP from studies of first-degree relatives of ASD
patients, to a non-clinical population without a family history of
ASD.

In conclusion, our results demonstrate the relevance of
assessing not only maternal distress in pregnancy but also the
objective severity of exposure to an independent life event, and of
assessing the cognitive appraisal of those events, when explaining
variance in distinct aspects of BAP traits in young adults.

Supplementary materials. For supplementary material for this article, please visit https://doi.org/10.1017/S20401744230000156

Data availability statement. Data are available upon request.

Acknowledgements. We would like to thank all Project Ice Storm participants.
Financial support. This work was supported by the Canadian Institutes of Health Research (grant numbers MOP-57849, MOP-111177, MOP125892) and by the McGill University Stairs Memorial Fund.

Conflicts of interest. None.

References

26. Hollingshead AB. Four Factor Index of Social Status, 1975, New Haven, CT.
31. IBM Corp. IBM SPSS Statistics for Windows, 2019, Armonk, N.Y., USA.

https://doi.org/10.1017/S2040174423000156 Published online by Cambridge University Press

