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THE UNIQUENESS PROBLEM OF MEROMORPHIC MAPS
INTO THE COMPLEX PROJECTIVE SPACE

HIROTAKA FUJIMOTO

§ 1. Introduction.

In 1921, G. Pélya showed that non-constant meromorphic functions
¢ and { of finite genera on the complex plane C are necessarily equal
if there are distinct five values a;, (1 <7 < 5) such that ¢(2) — @, and
J(2) — a; have the same zeros of the same multiplicities for each 7 ([8]).
Afterwards, R. Nevanlinna obtained the same conclusion for arbitrary
¢ and  satisfying ¢~ '(a;) = "(a;) (1 < ¢ < 5) regardless of multiplicities.
And, some other results relating to this were given by H. Cartan ([2],
[3]), E. M. Schmid ([9]) and others. The purpose of this paper is to
give some types of generalizations of these results to the case of mero-
morphic maps into the N-dimensional complex projective space Py(C).

We consider ¢ hyperplanes H; in P,(C) located in general position
and two non-constant meromorphic maps f and g of C* into P,(C) with
f(CY & H;y, 9g(C") ¢ H; such that u(f,H;) = v(g, H;) for any ¢, where
v(f,H;) and v(g,H;) denote the pull-back of the divisors (H;) on P,(C)
by f and g respectively (¢, f., Definition 3.1).

The first main result is the following

THEOREM 1. If q=3N 4+ 1, there is a projective linear transfor-
mation L of Py(C) such that L-f = g.

And, we shall prove also

THEOREM II. If ¢ =8N + 2 and either f or g is non-degenerate,
1.e., the tmage does not included in any hyperplane in Py(C), then f = g.

Moreover, we shall give some other results on the uniqueness problem
in the case ¢ = 3N 4 1 under suitable assumptions. From this we shall
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show that, if N = 2, Theorem II remains valid under weaker assumption
that ¢ =7 (= 3N 4+ 1). For the case N =3, the author does not know
if the number of given hyperplanes in Theorem II can be replaced by
an integer smaller than 3N + 2. It is a very interesting problem to
seek the smallest integer q(IN) for each N such that Theorem II holds
for arbitrarily given q(N) hyperplanes in general position.

These results will be proved by the use of the classical theorem of
E. Borel ([1]) and some combinatorial lemmas given in §2.

For a domain B and a thin analytic subset S of B we shall study
also meromorphic maps defined on B — S which have essential singular-
ities of special type along S (c.f., Definition 5.5) and give some theorems
similar to the above Theorems I and II. Moreover, meromorphic maps
f and ¢ into P,(C) will be studied more precisely in the last section.

§2. Combinatorial lemmas.

Let G be a torsion free abelian group and consider a ¢-tuple A =
(2, @y, - -+, 0,) of elements a; in G. For the subgroup A of G generated
by a,a,, ---,a, we can take a basis {b,d,,---,b;} of A, because A
is a free abelian group. Then, each a;, (1 <7=<¢q) can be uniquely
represented as

(21) a; = bi’nbém e bfn
with suitable integers 4;..

(2.2) For integers 4;, 1<i<q, 1<t t), it is possible to choose in-
tegers vy, Dy, - -+, D, Satisfying the condition that, for integers

byt = Ly + 30y + -+ + Ly, l=si=29,
if 6, = +4;, then
(giu giz’ R git) = i(gju gjzy tt %y ﬂjt) .

This is shown by induction on ¢. The case ¢ = 1 is trivial. Assume
that there exist p,, ---,p;_, with the property that

(Zz‘v Ziz; ) éit—l) = i(gjl; gjz, ct 0y gjt—l)

if ¢ = +¢F for integers ¢f: = ¢yp, + -+ + ¢;_0:.,. Then, it is easy
to show that there are only finitely many integers p, such that p, p,,
««.,p, do not satisfy the desired condition.
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DEFINITION 2.3. We shall call integers p,, p,, - - -, p, with the property
(2.2) to be generic with respect to ¢;, and the integers ¢, = >, 4;.p. to
be representations of a; 1 <1< 9).

We have
2.4) If amam --- af = afaT - a7, it holds that
Mmls, + Myby, + -+ + My, = mily, + mib;, + -+ + mdy, .
In fact, substituting the identity (2.1) into both sides, we see
bubm ... b1 = bMbE ... b

for integers n.: = >, m/4;,, and n.: = >, m.d;. Since b, b, , b,

are linearly independent in G, n, = n, for any r (1 <z < t). Therefore,

Z::l mxg’i,, = :=1 f‘:l m/cgi,rpr
= Z:=1 nrpz'
= Dl WD,
= Zif—l miél: .
Now, we give

DEFINITION 2.5. Let q=r>s>=1. We shall call a g-tuple A =
(@), a,, - - -,0a,) of elements a; in G to have the property (P,,) if any
chosen 7 elements a,uy, @, ** +5 @, in A satisfy the condition that, for
any given 4,,%,, ---,%, 1 <4, < -+ <1, <7), there exist some other 7, 7,,
ey ds =G5, <o <G 1, {iy 4y, - - -, 0 # {1, J0 - -+ 75 such that

Qrinein *** Qo = Qg Qegge * 0 Ay

Let us study relations among a; for a ¢-tuple A = (a,, a,,
the property (P, ).
Qyy gy *+

-+, 0, With
To this end, we take representations ¢, 4,, ---, ¢, of
-,a, for suitably chosen basis and generic integers.

Changing
indices ¢ of a; if necessary, we assume

L6, 24,
LEMMA 2.6. In the above situation, it holds that
by = by, = -+ = s,y
and so
Qs = Qs = 00 = lgyq
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for u:=q—1r+ 1.

Proof. Assume that

L Sl =l = =4, < lyinin =+ 0 ézq
for some v with v <u (=q—7r +1). Among a; (1 =<1 =q), we choose
r elements
Aoy = Oy * 0y Q) = gy Qpsp1y = Usppy Qpsez) = Aspugry ** s Uy = g

By the assumption, considering the case 2, =1, 4,=2,...,%, =s in
Definition 2.4, we can take some j;,f, -+, /s A=<5,< -+ <y <7, {i1 Jos
<o 0 #{1,2, -+ -, 8}) such that

Qg0 Qi) **° Qg = Oy« =+ Gs
Then, by (2.4), we have

bgo + bego + -0 by — Ui+ b+ -0 + 4)
=gy — 4 + Wiy — &) + -+ + gy — £5)
=0.

On the other hand, we see easily « =1, < «j) and so ¢, — 4. =0 for
any £ (1 £k <s). This implies that

4 = g:(h)’ 4, = e:(jw syl = Z:(h) .

By the assumption, ¢; < ¢,;, for any 4,7 if 1<i<sand s+1<j<r.
We have necessarily j, = ¢ (1 < £ < s). This is a contradiction. We con-
clude thus v = u. The proof of Lemma 2.6 is completed.

For the case r = 2s, we can give more precise conclusion.

LEMMA 2.7. In the same situation as in Lemma 2.6, if r = 2s
(s>2), a, =1 (= the unit element of G) for any © with s<i{<q— s+
1, Qs_y F 1, Qg sz F 1 and Qq_s2 F Qgosyizs then Qs _1Qg_s42 = 1.

Proof. By Lemma 2.6,

UL o Sl Sl <y = -
=Ly 51 =0< 4 40 < Yy 4= 0 =4y

Considering the case (1) =1, .- ,ls+ 1) =s+1, «(s+2)=q9—s+ 2,
28 =qand 4, =1, 5, =2,---,%_, =8 — 1 and %, = s + 2 in Defini-
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tion 2.5, we can take indices 7,y -+ A7 <00 <4y <28, {77
. ‘,j.v} +*= {1,2, tee, 8 — 1,3 -+ 2}) such that

Qi Qeiiay *** Cegy = Cey@eqy * *° os—1yFi(seny »
whence
(2.3) b b+ - Flgo=b+ b+ o+ b+ bgsin
by (2.4). We define the number % by the condition that
7)) <edy) < oov < elFro) <= () < - < elFo)
and put
{ml) Myy -« '9ms-k} = {1’2’ e, 8 — 1} - {l(jl)"(jz)y . ’,‘(jk—l)} .
Here, s > k. In fact, if not, «(j) =1, .--,d¢,_,) =8 — 1 and so0 4;_;,, =
4,y Which contradicts the assumption. Canceling 4,;, 1<s<k—1)
from the both sides of (2.8), we obtain
bigo T ligrin + o F by = by by + o A by gsia
If «(j;) = g — s + 2, then we get inequalities
0 = Zl(jk) + gl(fk-l-l) + -0+ gi(js—l)
= Zml + Z’mn + e + gms—k + (gq-'-?+2 - gl(is))
égmx'}' ng+ c +€m,_k<0,

which is a contradiction. Therefore, j, < s + 1. Then, we have neces-
sarily «(j,_) = s and ¢«(j)) = s + 1. By the relation (2.8), we conclude
by + Y4_sir = 0, whence h,_,h,_s,, = 1. This completes the proof.

§3. Two meromorphic maps with the same inverse images of hyperplanes.

Let f be a meromorphic map of a domain D in C* into Py(C). For
arbitrarily fixed homogeneous coordinates w,: w,: .- :wy,, on Py(C),
we can write

J@ = fi@): flR): - fyn(?)

on a neighborhood U of every point a in D with holomorphic functions
fi® A<i<N+1) on U, where they can be chosen so as to satisfy
the condition

COdim {fl(z) — fz(z) = cse = fN+1(Z) 3 0} g 2 .
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In the following, such a representation of f is referred to as an admis-
sible representation of f on U. If D is a Cousin-II domain, then f has
an admissible representation on the totality of D.
Let us take a hyperplane
H:adw, + ¢*w, + -+ + a"'wy,, =0

in Py(C) with f(D) ¢ H. For any a = (a,,q,, - - -@,) € D, taking an admis-
sible representation f = f,:f,:---:fy.; Oon a neighborhood U of a, we
define a holomorphic function

F = aflfl + &*fy + -0+ alNHfNH
on U and expand it as a compactly convergent series
Flu, + ay %, + 05) = 2o Py Uy - -+, 1)

around a, where P, is either identically zero or a homogeneous poly-
nomial of degree m.

DEFINITION 3.1. We define
v(f, H)(@) = min {m: P,(u) # 0},

which is obviously determined independently of any choice of homogeneous
coordinates and admissible representations.

Now, let us consider two non-constant meromorphic maps f and ¢
of D into Py(C) and q (= 2N + 2) hyperplanes H;, (1 <i < q) in Py(C)
located in general position. Suppose that f(D™) & H;, g(D*) ¢ H; and
v(f,H;) = v(g,H;) for any 7. Let H; be given as

3.2) H;; 0w, + aw, + -+ + o 'wy,, =0.

For an arbitrarily given Cousin-II subdomain U of D, we take admis-
sible representations f = fi: fy: - - fyq and g = ¢,: 0,2 -1 gy, on U.
We define holomorphic functions

Fl=afi+aifs+ - + a0 Sy,

and

F{ =g + aig, + -+ + a9y,
on U and put
3.3) e =1 a<igyg

F{(2)

https://doi.org/10.1017/50027763000016676 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016676

UNIQUENESS PROBLEM OF MEROMORPHIC MAPS 7

By the assumption, each k; is a nowhere zero holomorphic function on
U. As is easily seen, the ratios h;:h; are uniquely determined inde-
pendently of any choices of homogeneous coordinates, representations
(8.2) and admissible representations. Therefore, we can consider the
well-defined holomorphic map

3.4) h=hhy: - :hy

of D into P,_,(C). If D itself is a Cousin-II domain, 2 has an admis-
sible representation on the totality of D with functions %;(z) on D
defined by (8.3).

We shall study the case ¢ = 2N 4+ 2. By # we denote the set of
all combinations I = (4,,%, - +,ty,) A=, < o0 <ty < 2N + 2) of in-
dices 1,2,--.,2N + 2. For a point % = %, Uy: -+ : Upy,s € Poy,(C) and
I=C(yt, - iy.) e f, we put u; = uuy, - -+ Uy, and consider the map
@ of P,y,,(C) into P, _,(C) defined as

Ou) = (u;:Ie f)e Py_,(C) ,

where M = (2N + 2).
N+ 1

PROPOSITION 8.5. In the above situation, non-zero constants A; (I € #)
can be chosen independently of each f and g such that, for the maps h
defined by (3.4),

O-mMD)C H*: ={uePy_(C): X e Ayu; = 0} .

Proof. Without loss of generality, we may assume that D is a
Cousin-II domain. For, by the theorem of identity, Proposition 3.5 is
true if it is shown that @.n(U) C H* for some non-empty open subset
Uof D. Let H; (1 <7=<2N + 2) be given by (3.2). By the assumption,
any minor of degree N + 1 of the matrix (a;}2i2}y}) does not vanish.
Taking admissible representations f = fi:f,: -« fys and g = g,:¢,:
«. vl 0ns, We rewrite the definition (8.3) of h; 1 <1< 2N + 2) as

(3.6) aif, + aify + - + ol fy = hi(@ig, + alg, + - + al gy, -

From these 2N + 2 identities eliminating 2N + 2 functions f,, fo, -+ +, fys1s
91592 -y Ins1y WE get

B.7) U:=det(a ---,a¥*, athy, -, 0 Ry 1 <i<2N +2)=0.

https://doi.org/10.1017/5S0027763000016676 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016676

8 HIROTAKA FUJIMOTO

For any combination I = (¢,%, - - +,ix,)€F, we take J = (§,,7s + »Ine)EF
such that

{7:1)7:2: ° e "iN+1,j1’j2» ° ',jN-l-l} = {1,2, o ,2N + 2} .
And, put
A; = (=1Wowenzritetive det (af, ; 1575510 det (af, ; 155570
Then, by the Laplace expansion formula,

V= Zm---mmef A(ir--izv+1)hixh‘ia the km“ .

Since A; #+ 0 for any I € # by the assumption, this gives Proposition 3.5.

§4. Some consequences of E. Borel’s theorem.

In the following, we shall study mainly functions and maps defined
on D: = C" or a domain D which is given as D: =B — S for a sub-
domain B of C" and its irreducible analytic subset S. We denote by s#*
the set of all nowhere zero holomorphic functions on D and by % the
set of all constant functions for the case D = C” and of all holomorphic
functions on D which can be meromorphically continuable to the totality
of B for the case D = B — S. Moreover, we put €* = ¢ N s#*. Then,
as is easily seen, the multiplicative group G = #*/%* is a torsion free
abelian group. For two elements 2 and A* in %, we mean by the
notation

h ~ n*

that h/h* e €*.
Now, we recall the following theorem of E. Borel ([1]).

THEOREM 4.1. If functions hy, h,, - -+, h, in H#* satisfy the condition
that h; £ h; for any 4,5 (), then they are linearly independent over ¥,
i.e., a relation

a'h, + a*h, + -+ + aPh, =0
(0 e €) implies always a' = a* = ... = a? = 0.

For the proof, see [5], Theorem 3.5 and Theorem 4.1.
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COROLLARY 4.2. If a'hy + @*h, + --- + aPh, = 0 for functions h; € #*
and afe ¥, then there exists a partition of indices

{1’2""'p}=11U12U UIk
a,nlil, =@, I, + ) such that

Dier @hy =0
for any ¢ and h, ~ h; for any i,jel,.

Remark. In Corollary 4.2, if a*=+0 for any 4, each I, contains
obviously at least two indices. This shows that, for any &,, there exists
some h; (¢ 7) with h, ~ hy.

Proof of Corollary 4.2. Consider the partition {1,2,...,p} =1, U
.-+ Ul such that ¢ and j are in the same class if and only if &; ~ h;.
Then, we can write

Zfﬂ aihi = Zf=1 Zieu aihi = Zf=1 clhiz =0

for some c¢‘c % and any fixed i,e I,, By Theorem 4.1, ¢! = 0 for any ¢,
which yields Corollary 4.2.

After these preliminaries, we give

PROPOSITION 4.3. Let D be a domain given as the above and as-
sume that it is a Cousin-II domain. If meromorphic maps f and g of
D into Py(C) satisfy the condition that f(D*) & H;, g(D") ¢ H; and
v(f, H;) = v(g,H;) for q(=2N + 2) hyperplanes H;, 1 <1 < q) in general
position, then the q-tuple of the canonical images of the fumctions h,
defined by (3.3) into G = H#*|€* has the property (Puy..n.) (c.f.,
Definition 2.5).

Proof. We choose 2N + 2 functions, say h, hy, -+ -, Ryy,,, among hy.
With each combination I = (4,%,, - -+, %y,,) of indices 1,2,...,2N + 2 as-
sociate the nowhere zero holomorphic functions h; = hy by, -+ b on
D. By Proposition 3.5, they satisfy the identity

ZI AIhI =0

iN+1

for non-zero constants A;. Then, by Remark to Corollary 4.2, we have
easily Proposition 4.3.

Since any one of h; may be assumed to be the constant 1 by a suit-
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able change of admissible representations, Lemma 2.6 and Lemma 2.7
imply immediately

COROLLARY 4.4. Under the same assumption of Proposition 4.3,
q — 2N functions hy, by, -+ -y hg,_,, con be chosen such that hy, ~1
A<<m<q—2N). And, furthermare, if h; #1 for any other i, then
there exist some ©,7 with 1+ § and t,7 # k, A <m < q — 2N) such that
hy ~ hy or hhy ~ 1.

Remark. Theorem 4.1 remains valid under the weaker assumption
that each h; can be written as h; = f¢ with a not identically zero holo-
morphic function f; on D such that, for any 4,7 (), fi/f; = const, in
the case D = C™ and f;/f; has essential singularities along S in the case
D=B—-Sif d>plp—2) (c.f., [6], Remark 3.7, (ii)). By the same
argument as the above, we can prove Proposition 4.3 under the as-
sumption

v(f, H;) = v(g,Hy) (mod d)

for a sufficiently large d depending only on N instead of the assumption
v(f,H;) = v(g,H;). And, many of the results in the following sections
remain valid under these weaker conditions. We omit here the details
in this direction.

We shall give now another application of E. Borel’s theorem.

PROPOSITION 4.5. Let P(X,,X,, ---,X;) be a polynomial of t vari-
ables with coefficients in €. If

P(hvh27 "'9ht) =0

for some hy, hy, -+, hy in H#* such that hihy --- bt e €* for any integers
(VUV?J M '9”5) +* (0,07 . '70)’

PX, X, --,X)=0.
Namely, all coefficients of P are equal to zero.
Proof. We write
PX,, -, X)) = Dm0 e X0 X532 o0 Xt
(@,,,....,, € €) and assume that a,,,...,, # 0 for some 9,3, ---,»!. Since

anz,'“,ut Q hﬂ;xh;z vt h;l =0

Vv e vy
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and hyhy - .- e #*, we can conclude by Remark to Corollary 4.2 that
there exist some 2, 13, -+ -, 10 with (8,05, -+, 09 # (2, 18, - - -, 1) such that

nARE - o~ BhgS .. Rt

and so Riepi-# ... pi-vie @*, This contradicts the assumption. We
have Proposition 4.5.

§ 5. Uniqueness theorems of meromorphic maps.

As in the previous sections, we consider two meromorphic maps f
and g of D into P,(C) and ¢ (= 2N + 2) hyperplanes H; in Py(C) located
in general position such that f(D) ¢ H;, g(D) ¢ H; and v(f, H;) = v(g, H;)
1<i<9). We study first the case D = C~.

THEOREM 5.1. If ¢=3N + 1, then it is possible to choose homo-
geneous coordinates w,: w,: ---: Wy,, on Py(C) such that

(5-2) 9= lel; 9, = czfz’ Ivy = cN+1fN+1

for suitable admissible representations f = fi:fo: i fy ond g =9g;:
Jo: o+ 9ns1y Where c; are some non-zero constants.

Proof. As in §3, we define by (3.3) a nowhere zero holomorphic
function #; for each H;. According to Corollary 4.4, we may assume
that N + 1 (= (8N + 1) — 2N) functions among them, which we say c;:
=Ny, +++,Cx1t = hy,,, are of constants. Since the ratios 7,: h,: « -« ¢ hayyy
are determined independently of a choice of homogeneous coordinates,
each H; 1 <7< N + 1) may be assumed to be given as

H;:w;=0.
We have then Theorem 5.1 by the definition (3.3) of &,.

Proof of Theorem I. Theorem I stated in §1 is an immediate con-
sequence of Theorem 5.1. In fact, it suffices to take a linear transfor-
mation

L: v, = c;w; 1<i<N+1
for constants ¢; in Theorem 5.1.

Proof of Theorem II. 1In this case, ¢;: =h; A <1< N + 2) may be
assumed to be of constants and each H; (1 <i< N + 2) may be given as
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Hi:wi=0 1§’£§N+1
and
Hy,,:w,+w, + -+ +w,,, =0.

For admissible representations f = fi:fo: -+ :fys and g =9,:9,:---:
JIn+1» We have the relation (5.2) and

G+t &t ot ova=cyu(h+t+ o+ S
Therefore,
(v —eydfi + (¢ — ey dfe + -+ + ey — Cyidfwn = 0.
Since f may be assumed to be non-degenerate, we conclude
€, =1C,= +++ = Cy.1 = Cyys -
This shows that f = g.

Here, we cannot conclude f = g without the assumption of non-
degeneracy of f or g in Theorem 5.1 even if any large number of
hyperplanes H; in general position with u(f,H;) = v(g9,H;) are given.
We give an example. For an arbitrarily given ¢ (= 6), take a matrix

11 1...1
M=|1 a a;--- a
1 b, bg--- b,

such that any minor of M does not vanish and

a(a; — 1) aya; — 1|

(5.3 = 6=i=9
by(b; — 1) by(b, — 1)
and consider hyperplanes
H,; H wi —_ 0 1 é i § 3

H:w + w,+ w,=0
H;:w, + a;w, + byw, =0 5<i7<q.

As is easily seen by (5.3), we can choose non-zero constants c,, ¢, ¢c;, d;
(5 <7< ¢q) such that ¢, #1 and

1—¢ _ ¢ —¢ _ ¢ —C

= b=i=q.
1-— di ai(cl — d»t) bi(cz - di)
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If we take meromorphic maps f=f:f,:f, on C" into P,(C) with
J(CY ¢ H, 1<%=<q and

A—c)fi+ (e —c)fs +(c;—¢c)fs =0

and g = fi:¢.f.: ¢, f5 then we see easily f+# g and v(f, H;) = v(g, H;) for
any ¢ 1 =1=< 9.

Consider next the case D = B — S, where B is a domain in C* and S
is an irreducible analytic subset of B. Let f be a meromorphic map
of D into Py(C). Using inhomogeneous coordinates u;: = w;/wy,,
(1 £ 1< N) for homogeneous coordinates w,: w,: «-.: wy,, with f(D) &
{wy,, = 0}, we can write

f = (90{!90{’ ° :§01{7) ’
where ¢/ are meromorphic functions on D.

THEOREM 5.4. Let f,9 be meromorphic maps of D into Py(C) such
that f(D) ¢ H;, g(D) ¢ H; and v(f,H,) = v(g,H;) for 3N + 1 hyperplanes
H;, A <t1<3N 4+ 1) in general position. Then, it is possible to choose
inhomogeneous coordinates u,,u,, ---,uy Such that, for representations
JS= (Q{’SD{, . ,Sozj\;) and g = (goi’,gog, . '9§0gv)’ .

of = ol 0f = apf, -+ -, 0% = anok ,
where a; are meromorphic functions on the totality of B.

Proof. Take a regular point « in S arbitrarily. We can choose a

neighborhood U of z such that
U= {lzll < l’lzz’ <1-- ,Iznl < 1}
and

U*=UND={0<|a<La <1, |z <1},

for suitably chosen local coordinates z,z, ---,2, with z = (0,0, -.-,0).
Since U* is a Cousin-II domain, we can apply Corollary 4.4. By the
same argument as in the proof of Theorem 5.1, for functions h; on U*
defined by (3.3), we may assume that A, h,, ---, hy,, have meromorphic
continuations to U. And, we can find easily inhomogeneous coordinates
on Py(C) such that «;: = ¢f/¢{ (1 <1< N) are meromorphically continu-
able to U for representations f = (¢f, -+, ¢%) and g = (¢f, - - -, ¢%). Then,
by the classical E. E. Levi’s theorem, «; are meromorphic on the totality
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of B. This completes the proof.
We want to get an analogy to Theorem II. To this end, we give

DEFINITION 5.5. We shall call a meromorphic map f = (¢f,¢{,- - -,0d)
of D(= B — S) into P,(C) to have essential singularities of type (E) along

S if a’of + ol + - -+ + oo} is not meromorphically continuable to S for
any meromorphic functions «; (1 <7< N) on B except the case o' = o’ =
c=a¥"=0.

THEOREM 5.6. Let f,g9 be meromorphic maps satisfying the same
conditions as in Theorem 5.3 for 3N + 2 hyperplanes H,; in general
position. If f or g has essential singularities of type () along S, then
S=9.

Proof. For a regular point =z of S, as in the proof of Theorem
5.4, taking a neighborhood U of x#, we may assume that #; A <i< N
+ 2) are well-defined and meromorphic on U. Moreover, choosing suit-
able homogeneous coordinates and an admissible representation f = f:
for oSy on U¥=UND, we have by the similar manner as in the
proof of Theorem II

(h1 - hN+2)f1 + (h'z - hN+2)f2 + -+ (h/N+1 - hN+z)fN+1 =0.
Therefore,
(0, — Dol + (0, — D + -+ + (ay — Dok + (ay, — 1) =0

for well-defined meromorphic functions ¢f: = fi/fy.,, A L1 < N) and «;:
= hj/hy,, A <7< N+ 1) which are also meromorphic on B by E. E.
Levi’s theorem. By the assumption,

== =0y, =1.

This completes the proof.

§ 6. The case that 3N + 1 hyperplanes are given.

Let f,g be meromorphic maps of a domain D stated in §4 into
Py(C) and assume that, for 8N + 1 hyperplanes H, (1 <i{<3N + 1),
fD) ¢ H;,, 9(D)Z H; and »(f, H;) = v(g, H;). Under these assumption,
we shall give more precise informations in the previous section.

THEOREM 6.1. (i) In the case D = C™, if f or g is non-degenerate,

https://doi.org/10.1017/50027763000016676 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016676

UNIQUENESS PROBLEM OF MEROMORPHIC MAPS 15

then each c; of Theorem 5.1 can be chosen to be +1 or —1, and, more-
over, if N =2, it is impossible that exactly one c¢; is equal to 1.

(i) In the case D =B — S, if f or g has essential singularities of
the type (E) along S, then each «; in Theorem 5.4 can be chosen to be
of constant +1 or —1 and, moreover, if N =2, it is impossible that
a,=—1 forany it A<i< N +1).

Proof. For the proof of the case D = B — S, it may be assumed
that B = {jz,|<1,---,[2,] <1} and S = {2, =0} N B as in the proof of
Theorem 5.4. In the following, we mean D =C” or D =B — S for
the above B and S and by #*,%,%* and h; the ones defined as in §4
for such a domain D. By Corollary 4.4, we may assume that at least
N +1 ks are in ©* and, moreover, h; ¢ €* for the other h; because,
if h; e €* for mutually distinet N 4 2 7’s, f = g by the same reason as
in the proof of Theorem II. For convenience’ sake, assume h;¢ %*
(AZ?<2N) and a;: =h;e®* CN+1<j7j<3N+1). Let each H,
1=<i{=<3N +1) be given as (3.2). We may assume here aiy,; = 9
1=147=<N +1) by a suitable change of homogeneous coordinates. Then,
any minor of the matrix

(ai o 1SISN+1
j o 1sjs2N

does not vanish. Take now functions », 7, - -+, 7, in #* whose canonical
images into G = #*/%* constitute a basis of the subgroup A of G
generated by the canonical images of hy, h,, - -+, Asy,, into G. Then, we
can write uniquely as

(6.2) hi = agiigie - - pfe A1<38N+1)

for some «; ¢ €* and integers ¢;.. Choose here integers p,, p,, - - -, p, which
are generic with respect to 4;, and put 4;: = >}'., 4.p. A < i< 3N + 1).

Now, let us take a combination I = (¢,,%,, - -+, toy.) A 06, < -+ < yyye
< 8N + 1) arbitrarily. As in the proof of Proposition 3.5, considering
admissible representations f = fi:fy: -+ fy and g = 9g,: 0, -+ 1 Gxn

related as (8.6), we obtain
(6'3) det (a}w tt a/f;V“’ a%hi, Sty a’f:v“h'i; ’L = il’ ’52, Ct i2N+2) =0.
Substitute the identities (6.2) into (6.3). Then, we can rewrite (6.3) as

PI(771’7]2, ""77t) =0 ’
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where P,(X,, X,, ---,X,) is a polynomial of { variables with coefficients
in €. And, by Proposition 4.5, we have

(6.4 P/(X,X,, ---,X)=0.
Consider a rational function
QI(C) = P(Cm, Cpa, cety Cm)

of ¢, which is identically zero because of (6.4). On the other hand, Q;()
is also obtained by substituting h; = «,£* into (6.3). We have thus

(6-5) QI(C) = det (0,%, tt ai‘v+1’ aiC“U%, . ”aicuaév-‘—l; 1= 7:1’ Tty i2N+z) =0.

Particularly, for a combination I, = (1,2, .-.,2N 4 2), we observe the
coefficients of terms of Q; () of the highest degree and of the lowest
degree. To this end, we may assume by Lemma 2.6

4

fIA

4 = "'§5N<52N+1= "'=£3N+1:O<‘€N+l—§"' < by -

Then, we have easily

0 A, A, 0
det{4, 0 |=4det|0 A, =0,
A, Af A, AF
where
A = (@5 EEYD ., Ay = (0 FEiLy
10 0...0
A, =
01 0..--0
and

A;“ — <a2N+1:0’0, <0+, 0 )
0,5 42,0, -++,0

By the Laplace expansion formula, we conclude

“2N+1D1 - 052N+2D2 =y Dy — oy, D=0,

A A A A
D, = det( 1) det( 2) and D, = det( 1) det( Z)
e e, e, e

where
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for ¢, = (1,0,0,---,0) and e, =(0,1,0,--.,0). Since H; are in general
position, we know D, # 0 and D,+# 0. Hence, aiy,; = aiy..- The same
arguments are available for the other «;,’s among a,y.;, * -+, @x.;- Thus,
we can conclude a; = +1 N + 1 <1< 3N + 1), because we may assume
i = 1.

To complete the proof, assume that exactly one among «; 2N + 1
<t<3N +1) is equal to —1, e.g., ayy, =y, = +-+ =azy =1 and
oy = —1. We shall prove first that there are at most N — 1 indices
1 (1 £t £2N) such that a; 1. Suppose that «; # 1 for some mutually
distinet 7,7, -+, iy A < Jjn <2N). Here, changing 7, if necessary, we
may assume that «;,,, =1 for some jy,, with jy,, # 7, 1 <m < N) and
1< jy..<2N. Putting jy,,=2N+1,.---,7%n5,, = 3N + 1, we consider
the identity (6.5) for a combination I, = (5,7, + -+, Jons2). Particularly,
substituting ¢ =1, we get

det (a},, « -+, 0¥ @00,  ya,00 5 1 <m < 2N + 2)

B, B¥

= det | B, 0
€N 41 —26N+1 B

= +2a;, — 1) -+ (a;, — 1) det (B, det( ' >

N+1
=0,
where
B, = (@ 5%, BF = (@, — Dab,; 555"

B —_— (ai « 1SISN+1
2 — Jm? N+12ZmS2N +1

and ey,, = (0,0, -..,0,1). This is a contradiction, because

B
det (B,) = 0 and det( 1)¢0

6N+1

by the assumption. Therefore, we can choose N 4+ 1(=2N — (N — 1))
indices 4,4, -, iy, (1 < 1y < 2N) with o, = 1.
Take now an index g such that

Iéi‘ul = max (‘611’ Zig’ ] giN.H) .
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Then, |4;,| = [4:,] for some ' (# p). In fact, if not, substitutean ¢, -th
primitive root of unity into the identity (6.5) for a combination I,: =
Bty ++ 5ty 2N +1,---,8N +1). We have then a contradiction by
the same argument as the above. The fact |{;,| = |4; | means that h,,
= h% for m = +1. For admissible representations f = fi:f;: - fyn
and g = ¢,:9:% -+ Gy Weknow g, = f; 1 =7 < N)and gy = —fyire
We may assume here o, =1 (1 <7< N + 1) by a change of homogene-
ous coordinates and put b*: = ag-#,. Then,

(fl +fz + o +fN+1)-m(b1f1 + bzfz + e+ bN+lfN+1)
= (fl + fz + - +fN ~fN+1)_m(blf1 + bzfz + .-+ beN - bNHfNH) ’

whence
@Y — mb)fi + OV —mb)f, + - + OV —mbV)fy =0.
Since f may be assumed to be non-degenerate,
bV — mb! = bV —mbt = .. =0V —mbV =0.

Then, b* = b7 for some 4,7 (=) in the case N =2, which is a contra-
diction. This completes the proof of Theorem 6.1.

COROLLARY 6.6. Under the same assumption of Theorem 6.1, if
N =2, then, f =g9.

Proof. For the case D = C", Theorem 6.1 implies that ¢, = ¢, = ¢;
=1lore¢ =c¢=c¢=—1. In any case, we have f = ¢g. Similarly, for
the case D = B — S too, we conclude also f = g.

THEOREM 6.7. Let f,g be meromorphic maps of C* into Py(C) such
that f(C™ ¢ H;, g(C" ¢ H; and v(f,H;) =v(g9,H;) for 3N + 1 hyper-
planes H; (1 <1< 3N + 1) in general position. If the image of f is not
included in any subvariety of Pn(C) which is defined as the zero set of
a homogeneous polynomial of degree < 2, then f = g.

Proof. Let H; be given as (3.2). By Theorem 6.1, we may put g; =
¢.f: <1< N + 1) for admissible representations f = fi:/f;: - fysr
where ¢;: = h; = +1. Moreover, by Corollary 4.4, if f+ g, we may
assume that Ay, hy,; ~1 or hy,, ~ Ay, i.€., hy,.,=dhE,, for m = +1
and de %*. As in the proof of Theorem 6.1,
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(a/;N+1f1 + e+ a'grv::rllfzv+1)—m(a%1v+2f1 + e+ a%vtlszn)
- d(a/éN+lclfl + 0+ azlz\;\;r-pllcN+1fN+1)—m(a§N+2clf1 + o+ a§v+1»12c1f1v+1) =0.

By the assumption, the left hand side vanishes identically as a polyno-

mial of N + 1 indeterminates f,, f,, ---, fy,;. By simple calculations, we
can conclude f = g.

§ 7. Meromorphic maps into P,(C).

Let us consider in this section two meromorphic maps f and g of
C™ into P,(C) such that f(C™") ¢ H;, g(C™) ¢ H,; and »(f, H,) = (g9, H;) for
six hyperplanes H, (1 <7<6) in general position. We shall study
relations between the functions i, defined by (8.3). By the equivalence
relation h; ~ h;, i.e., h;/h; = const., we classify the set {h,h,, ---, e
into the subclasses J,,J,, ---,J;. By M we denote the maximum of the
numbers of elements in J, 1< £ k).

We study first the case M = 2. To this end, take functions 7,7,
.++,7, in #* whose canonical images to G = #*/%¥* constitute a basis
of the subgroup of G generated by the canonical images of h; 1 <1< 6)
into G. Writing each h; as

2
hi ~ 7]11177?2 e 77515 s

we choose integers p,, p,, - - -, »; Which are generic with respect to ¢, and
put 4;: = >3, 4,p.. By Lemma 2.6 and Proposition 4.3, it may be as-
sumed that

g1§52<53=54:-0<55§56

after a suitable change of indices. Let us assume 4, < 4, and 4, < ¥4,
Then, by Corollary 4.4, we see — ¥, = ¢,. Moreover, exchanging each 7,
by 7:* if necessary, we may assume /4, + ¢, = 0. By Proposition 4.3, we
can take indices ¢,j,k A=:i<j<k<6, {i,5,k} + {1,5,6}) such that
hihshy ~ hihghg. Then, 4, + &; + £, = 4, + 45 + & by (2.4). Let !, + [, > 0.
If £k <5, we have a contradiction that

gi-l-gj"{—Zk§63+g4+€5:g5<g1+€5+66.

Therefore, k=6, 1 =2, j<4, and so hh; = h;h; for some 4,7 2
1<j<4). In conclusion, there are two possible cases (i) hh; ~1 and
(ii) hhs ~ h,. For the case (i), changing notations, we have the type
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( I ) (hu hz’ Tty hﬂ) = (clh*‘l9 czh_l, 1: Csy h’ h*) ’
where h, h* ¢ #* with h £ 1, h* £ 1, h X h* and hh* X1 and ¢, e C*.

For the case (ii), if we put k: = h;, then h, ~ 2. Observe the types
of functions h,hh, (r <s<t,{r,s,t} +{1,2,6}) such that h,hh, ~ hhh,
Using the assumption ¢; < ¢;,, we can easily conclude 7, ~ 1’ for 4 = 2,
3 or 4. The case ¢ =2 can be reduced to the type (I). For the case
¢ = 3, we have the type

(II) (hn hz» Ct Yy he) = (clh—Z, czh—ly 1’ Csy h’ C4h3) ’
where h 4 1.

On the other hand, we can prove that the case ¢ = 4 is impossible.
In fact, suppose that

(7-1) (hu hfz» tt 0y hs) = (clh_z’ czh~1: 1’ Csy h’ CJL‘)

for some he#* with h ~1 and ¢, ¢ ¢*. For fixed admissible represe-
tations of f and ¢g we consider the identity (3.7) as in the proof of
Proposition 8.5. Substituting (7.1) into them, we have a relation

P(h) =0,

where P(X) is polynomial of degree <8 with constant coefficients.
According to Proposition 4.4, the coefficients of P(h) are all zeros. Thus,
we get nine relations among unknowns ¢, and o} A1 <¢<3, 1<7=<6).
By elementary computations, it is possible to conclude that all solutions
contradicts the assumption that H, are in general position.

Consider next the case M =2 and ¢, = 4,. If ¢, = 4, then we get
the type

(III) (hu hzy Tty hs) = (h’ clh, 1’ Csy h'*, C3h*) ’
where h X1, h* ¥ 1 and h x h*.

Suppose that ¢, < ¢;. In this case, by Lemma 2.7, we see hh; ~ h,h;
~ 1. Observe the possible types of functions h;h;h, G<j <k, {7,k +
{1,2, 6}) such that h;h;h, ~ h,h,h,. Putting h: = h,;, we have easily h; ~
h™ for m = 2 or 3. Therefore, we have one of the types

(IV) (h'u hz: R h'e) = (clh_l, Czh—la 19 Csy h’, CLhz)
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(V) (hly hzy Tty hﬁ) = (C1h_l’ czh‘ly 1: Csy h7 64]’2,3) ’
where h »< 1.

For the case M = 2 and 4, = ¢;,, we have also one of the types (III),
(IV) and (V), because this case can be reduced to the above by exchang-
ing each 7. by ;' A £ £ 9).

Now, let us study the case M = 3. Without loss of generality, we
may assume h, ~ h, ~ h, ~1. Observe all possible types of functions
hih;hy, such that hhjh, ~ hihyh,, where ¢ <j<k and {i,7,k} #+{1,2,3).
There are two possible subcases (a) hh; ~1 4 <7 <j<6) and (b) hhh,
~ 1. We consider first the subcase (a). Changing indices if necessary,
we may write

(72) (hu hZ) ] hﬁ) = (19 Cyy Gy h9 csh_ly h*) ’

where h, h* e #* with h £ 1, h* £ 1 and c, e ¥*. If we substitute (7.2)
into the identity (3.7), we have a relation

(7.3) A RR* + AR+ AshR* + A+ ARY + A =0,

where A, (1 £1<6) are some constants. If & < h*, h? <X h*, R*h* X1
and h ~ h*, then A, =0 for any s because of Proposition 4.5. This
means that (7.3) vanishes identically as a polynomial of #» and k*. By
substituting » = h* =1, we have easily ¢, =1, ¢, =1 or ¢, =1. In any
case, it is not difficult to conclude that (7.3) has no solution. On the
other hand, if A? ~ h*, h*h* ~1 or h ~ h*, by exchanging 7 by k™' and
indices if necessary, we have one of the types

VD (Byy Bgy - -+, Be) = (A, €5 €3, 1, €172, 50D
and

(VID) (hyy by -+ <, he) = @, ¢ €5, By €17, CRD)
where h < 1.

We study next the subcase (b). Put
(hn h2’ ctty hs) = (1, Cys C3h, h'*’ 04(hh'*)—1)

for h,h*co#* with h X1, h* £ 1 and hh* < 1. As the above, by the
use of (3.7), we have a relation

(7.4  B,p*h** + B,W*h* + B;hh** + B,hh* + Bsh + Bh* + B, =0,
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where B; are some constants. If m?h* <1, hh** X1 and h < h*, then
B, = 0 for any ¢ by Proposition 4.5. In this case too, we can show easily
that (7.4) has no solution. On the other hand, if #?42* ~ 1, hh** ~ 1 or
h ~ h*, we can reduce all possible cases to the type

(VIII) (hly hz’ Tty he) = (1, Cs5 C3 h, C4h, C5h’—2) ’
where h % 1.

For the case M = 4, we may assume h, ~ h, ~ h, ~ h,. By the similar
way as above, we have the only cases (@) h; ~ hg ~ 1, (B) hshs ~ 1 (h; % 1),
() hy#1 and kg %1 and () hy ~ by ~1. But, for the case (8), we see
always f(C™) C H,, which contradicts the assumption. Thus, we obtain
one of the following types;

Ix) (Byy By - -+ Be) = (A, €5y Csy Coy By C5H)
(X)) (Byy gy -+ <5 ) = (A, €5y Cyy €4 By C5RTY)
XD (Byy Py <+ <5 Bg) = (1, Cpy Cyy €4y C5y Cg)
where h % 1.

As is easily seen, one of these eleven types cannot be constructed
from the others by changing indices 1,2, -..,6, by multiplying all k; by
a common function in #* or by choosing other generators h,h*. And,
it is not difficult to find concrete examples of meromorphic maps f and
¢ and hyperplanes of these types.

Summalizing them, we give

THEOREM 7.5. Let f,g be meromorphic maps of C™ into P,(C) such
that f(C") & H;, g(C™ ¢ H; and v(f,H;) = v(g,H;) for six hyperplanes
H, in general position. Then, after a suitable change of indices, the
functions h; defined by (3.3) as in §3 are related with one of the above
types (I) ~ (XD).

As a consequences of this, we can prove

COROLLARY 7.6. Uuder the same assumption of Theorem 7.5, it is
possible to choose homogeneous coordinates w;: w,: w, such that, for
suitable admissible representations f = fi: fr: fs and 9 = ¢,: 9,: g5, [ and
g are related with
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9 =f1
7.7 9. = ¢f,
9; = P(fvfz’fs)/Q(fvfz,fs)

where P(w,, w,, w;) and Qw,, w,, w;) are homogeneous polynominals of
degree <3 and < 2 respectively and c¢ is o non-zero constant.

Proof. Let each H,; be given as (3.2). Assume that {h;} is of type
(I). Without loss of generality, we may assume a} = a? =a =1, al = a}
=al=0a=0at =0a2=0. We have then

9s(@rfy + aiesfy + 4395 = filarf + aif, + aify)
by the identities (3.6) for ¢ = 2,3,4,5, and

(alfy + dicsf, + algd(asf, + aic.f, + aigs)
= c(aif, + @if, + aif)(asf, + aify + aify)

by (3.6) for ¢ =1,3,4,6. From these two relations we can conclude
easily the relations of the type (7.7). In the same manner, it is easy to
obtain the desired relations for the other types of {#;}. We have thus
Corollary 7.6.
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