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0. Introduction

In each metric space (X,d) there is defined the space Lip.Y of complex-valued,
bounded, and uniformly Lipschitzian functions. In the algebra Lip X, it is natural to ask
for ideals closed in various notions of convergence, and also to identify the invertible
elements. In particular, are the invertible elements exactly those with no zero in XI
Wiener's Tauberian Theorem in Fourier analysis is the first and most remarkable
example of this harmonious state of affairs. A moment's reflection confirms that, for the
algebra Lip X, this is true only for compact metric spaces X, the trivial examples in our
investigation. We therefore introduce a type of convergence weaker than convergence in
norm; it has already proved useful in some problems in descriptive set theory and
reflects in a subtle way the metric properties of X. A sequence (/„) in Lip X converges
strongly to g, written s — lim/n=g, if | | / n | |^C in the Banach space LipX and
\imfn(x)=g(x) for each element x of X. In Section 3 we explain how this is really a type
of convergence in the dual space of a certain Banach space L%. This brings us to the
edge of some recondite questions about iterated (or even transfinite) limits, and we have
adhered to the notion of strong limits to avoid these questions. To illustrate the
differences between these two approaches, we mention this problem: which maximal
ideals of Lip X are closed with respect to strong convergence of sequences? This is not
the problem studied in Section 1.

In Section 2 we investigate a representation of LipX as operators in the space lu and
some applications to set theory. These applications explain our interest in Lipschitz
spaces over Polish spaces.

1. A Tauberian property of Lip X

An element / of LipX is called total if there is a sequence (gj in LipX such that
s — \\mfgn= 1. Two obvious problems are presented:

(1) Identify the total elements / of LipX.
(2) Characterize the metric spaces with the property that each element / of LipX,

such that | / | > 0 everywhere in X, is total. Borrowing from Fourier analysis, we
say then that Lip X is Tauberian.
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Theorem 1. For each element f of Lip X, f is total if and only if: (t) there is a <5>0 so
that on each open ball B(x, 8) in X, \f\ has a positive infimum.

Theorem 1 is obtained by solving a more general problem: for each / in LipX, we
identify the set of strong limits g = s —lira hmf. This has no interest unless inf|/ |=0, so
that each set ^ s f j / l ^ r " 1 ) is non-empty. We then define

u(x)=\imrd(x,Ar),

so that 0^u(x)g +oo.

Theorem 1'. An element g of LipX is a strong limit s — limhmf if and only if
\g(x)\ < Cu(x) for some C < + oo.

Proof. The necessity is easily verified. Indeed, suppose that gm = hmf satisfies
\gm(x)-gm(y)\^Cd(x,y) and \hm\^am< + oo. When ye A,, then |gm(x)|g|gm(}0| +
Cd(x, y)<Lamr~l + Cd(x,y). Therefore \gm{x)\^amr~l+ Cd{x,Ar). Taking the limit as
r-> + co, we get \gm(x)\ < Cu{x), and so |g(x)| = lim|gm(x)|^Cu(x).

For the sufficiency we define a set Br by the inequality |g(x)|:S2Cd(x, Ar), so that
Bt £ B2 £ . . . and (jBr = X. We define gm on Am u Bm by the formulas

gm=g on Bm, gm=0 on Am for m= 1,2,3.

Now |gm|^|g| everywhere and \gm(x)-gJty)\^C'd(x,y) for all x,y in ArKjBr. We can
extend [7, p. 63] gm to all of X so that the extension g* satisfies Ifml̂ HgHoo and
\gZ(x)-gZ{y)\^2C'd(x,y). Then s-lim gl=g, and for each m, g* = hmf for a certain hm

in LipX; to define hm we specify that /im = 0 o n / " 1 ^ ) . This completes the proof of
Theorem 1'.

To deduce Theorem 1, we apply Theorem 1' with g—l. If u(x)^Ci, then for some
r ^ l , the ball B{x,2-lC~l) misses An so that \f\>r~l on ^ (x^- 'C" 1 ) . If \f\^r~l on
B(x, 8) then u(x) ̂  d(x, ̂ r

As for problem (2), the nature of spaces X for which Lip X is Tauberian, the key idea
is the modulus of local compactness: p(x) = sup {r ̂ 0 : B(x, r) is compact}. (Here S(x,r) is
the closed ball of radius r, centred at x).

Theorem 2. Lip X is Tauberian if and only if

(C) each sequence (xn) in X, such that p(xn)->0, admits a convergent subsequence.

The initial (C) stands for "coercive" and follows a suggestion of Horacio Porta, who
observed the analogy with the "Palais-Smale condition" in nonlinear analysis.

Proof. The sufficiency of (C) is a consequence of Theorem 1. Indeed, suppose that
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feLipX, | / | > 0 everywhere, but / fails ((). Then there exists a sequence (xn) such that
| / | has infimum 0 on each ball B(xm l/n). Since | / | > 0 on X, we have necessarily
p(xn)^n~l, and since feLipX, f(xn)=0(n~l). But then the sequence (*„) has no
convergent subsequence, contradicting (C).

The proof that (C) is necessary is somewhat more involved. We first observe that if
LipX is Tauberian, then X must be complete. Indeed, let ( x j " be a Cauchy sequence in
X and let /(x^infln^'+arctandfox,,),nS^l}. Then / eL ipX and / certainly fails
condition (t) to be total. But / > 0 everywhere in X unless the sequence (xB) converges in
X.

We suppose, therefore, that X is complete, but that (C) is violated. Then there is a
sequence (xn), such that p(xn)->0 and d(xn,xm)^.8>0(\^n<m). Passing to a subse-
quence, we can suppose that p(xn)^(n + 3)~x<5 for « ^ 1 . Again using the completeness,
we can find, for each n, a sequence (xnk)£°=1 such that d{xmx^<{n + 2)~1d for each k,
but d(xnk, xnl) ^ 8n > 0, for / # k. The double sequence, of all points xnk, forms a set which
is closed in X, without accumulation points. We now define

u(x) = inf {k ~1 + arc tan d(x, xnk): k ̂  1, n ̂  1}.

In view of the discreteness mentioned above, w>0 everywhere, and clearly ueLipX.
Since lim*u(xnk) = 0 for each n, and d{x,xnk)-^(n + 2)~l8,u fails condition (t), and the
proof of Theorem 2 is complete. (The function w will be used later to illustrate another
property of complete spaces without the coercive property.)

Example. Let emn be a double sequence of orthonormal vectors in a Hilbert space,
and let amn = m~1emi+m~lemn + l. Then X is the set {a m n ,m^l ,n^ l} u {0}, and then
P(fl

m,n) = \/2'n~1, p(0) = 0. The space X is coercive, but not locally compact.
Let as{f)—the strong spectrum of /—be the set of complex numbers A, such that

f—X is not total. When X is coercive, or more generally, when the completion of X is
coercive, the relation <rs(/+g)£o's(/) + 0's(g) is always true, and (incidentally) <x(/+g)s
(j(f) + a(g) is valid for the spectrum in a commutative Banach algebra; these assertions
are proved by entirely different methods, but are analogous in spirit.

Theorem 3. Let X be complete but not coercive. Then the relation aj^j+g)ZoJ(f) +
as(f) fails for a certain pair of elements of Xip X.

Proof. This uses the example u constructed in the proof of Theorem 2. Let t; be any
real function in LipX such that v(xnk) = cn (n^l , /c^l) , with a sequence of distinct real
numbers; and finally, let f = u + iv, g = u — iv. We saw that u is not total, so that 0
belongs to oj^f+g). We shall prove that no purely imaginary number i\i can belong to
as(/). Indeed, let B be a subset of X, of diameter <2~6<5, such that in is in the closure
of f{B). (We suppose <5<1). Since w(x) ̂  inf arc tan d(x, xnk), there must be an x in B, and
some xnk, such that tand(x,xn)[)<2~6<5.The first index n is therefore determined by the
set B, and n = cn. Once n is determined, it is clear that the diameter of B is at least the
smaller of 8 and 8^ Therefore ajif) and a^g) are contained in the interior of the right
half-plane, whence 0$<t>J(f) + aJ(g).
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2. A special representation of Lip X

A representation of LipX means a homomorphism of LipX into the algebra of
bounded operators in some Banach space E. We write the operation as f-y ( / e
Lip X, yeE) and write oe(f) for the point spectrum of the bounded linear operator
yh-*f • y. (No confusidn is caused by these simplifications).

Theorem 4. Let X be a complete, separable metric space. Then there is a represen-
tation of hip X by operators in the space I1, such that

o-e( / )=/W for each f in LipX.

Similar results are obtained in [2], [3], [4]. In [2], the same result is obtained, with a
rather elusive space depending on X. In [4] the space c0 occurs, but the algebras are
different and ae is determined more subtly. In [3], there is a representation of Lip X, X
being a certain compact metric space (homeomorphic to an interval) which leads to
spectra ae that are not Borel sets.

In proving Theorem 4, we use the notion of a strongly continuous representation: for
each sequence (/„) in LipZ, such that s—lim/n = 0, we have lim/n>> = 0 for every y in
E.

Lemma 1. For every strongly continuous representation of Lip X,

This is a lemma of [2]; we emphasize that X is a Polish space.
We proceed to construct a tree T whose elements are certain finite sequences

(x1,x2,---,xk) in X. This is the main improvement over [2] and allows us to construct
representations of LipX in I1. Let Xo be a countable dense subset of X, and let T
consist of all sequences (xi , . . . ,xj from Xo, such that (for fe^2), d(x,,x2)S2~2,
d(x2,x3)^2~3, We form a vector space V of countable dimension, attaching to each
element (xl,...,xk) of T a vector [xx, . . . , x j , and making a basis of these elements. We
define the operation of Lip X over V as follows:

/ " Oi ] =/ (* i ) ' [*i] for each xt in Xo,

The basis elements are now turned into a basis for I1, with a variant of the usual
norm: \\lx^\\ = l, | | [x1 ,xj | | = l/2,. . . , | | [x1, . . . ,xj | | = 21-*. Therefore | | / - [ * „ . . . , x j | | *
21~*||/||oo + 2 | / (**)- / (**-i) | - Since d(xk^uxk)^2~k, the representation of Lip* in V
can be extended by continuity to all of I1, and is easily seen to be strongly continuous.
By Lemma 1, oJ(f)^f(X). To obtain the reverse inclusion let x be any element of X,
and let xk in Xo be chosen so that d(xfox)^2"*"2. Therefore d(xk_1,xk)^2~k and the
sequence
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converges absolutely to a limit different from 0, such that fy=f(x)y for every / in
LipX. Therefore oe{f)~^f(X) and Theorem 4 is proved.

Let Jf be the space of sequences of sequences of positive integers n=(«ls n2,..., nk,...)
with <f(n,n') = 2~\ k being the least integer at which nk^n'k. For each Polish space X of
finite diameter, there is a Lipschitz mapping of Jf onto X.

In the following two corollaries ae refers to the representation in Theorem 4.

Corollary 1. For each bounded analytic {or Sousliri) set S in the plane, there is an
element f of Lip Jf, such that <xe(/) =f(Jf) = S.

Proof. It is a classical fact that S=g(Jf), g being a continuous map of Jf onto S.
Denoting by F the graph of g, a closed bounded subset of Jf x R2, we have a Lipschitz
mapping / j of Jf onto F; to obtain / we follow this with the projection of F into U2.
(We learned of this construction after writing [2]).

The next result requires no new ideas about operators but is more striking from the
viewpoint of set theory. When £ is a closed subspace of I1, invariant under the
representation, we write ae(f\E) for the point spectrum of/, as an operator in E.

Corollary 2. Let S be a bounded analytic set in the plane. Then there is an element g

of Lip Jf such that

(i) g(Jf) = S

(ii) for each analytic set Si^S, there is an invariant subspace E, such that ae(g\E) = Sl.

The first tool in the proof of Corollary 2 is the notion of a universal analytic set £ :
this means (for the moment) an analytic set £ in IR ~2 x [0,1] such that the various
sections £ , exhaust all the analytic sets in S. Let 0 be a Lipschitz mapping of Jf onto
£, written in the form (u(x) + iv(x), w(x)), and let g = u + iv. Defining X, = {teX: w(x) = t}
we obtain g(Ar,) = ̂ ,, with the advantage that X, is closed. For the existence of the set
£ , see [5] and [6, pp. 252-255].

We shall define a closed subspace £„ such that oe(f\E,)=f(Xt) identically, and in
particular ae(g\E,) = £,. The sets £ , exhaust all the analytic sets in S, and the corollary
follows from this. Now £, is the subspace of elements y such that Fy = 0 for every F
that vanishes on X,. Clearly E, is a closed, invariant subspace of Z1. Suppose that
f-y = 0, with y in £, and y^O. Let F^O be a function in Lip AT whose zero-set is
exactly X,, for example arc tan d(x, Xt). Then (|/|2 + F)>'=0, whence | / |2 + F must have
a zero in X, and therefore a zero in X,. This shows that ere(/|£() cf(X,). We saw before,
in the proof of Theorem 4, that to each x in X, there is an element y#0 in /', such that
f-y=f{x)y for all / in LipX. Thus o{f\E,)=>f(X,), and finally <xe(/|£,) =f(X,). As a
special case we obtain ae(g\E,)=g{Xt) = Y^,.

3. Conclusion

In conclusion we explain how the Tauberian concept is related to the Krein-Smulian
Theorem ([1,V5]). Until now the norm in LipX has not been specified precisely; we
define it as the larger of the quantities \\f\\a, and sup{|/(x)— f(y)\/d(x,y):x^y}. Let e(x)
be the evaluation at x, construed as an element of the dual space L* of Lip X. Then (by
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definition) ||e(x)||^l for every x and |je(x)—e(^)||^</(x, y). Denoting by Lg the closed
linear span of the elements e(x) in L*, we see that L$ determines the norm in LipX
exactly, and in fact Lip.Y is isometrically the dual of L%. Moreover, X is separable
exactly when LJ is separable, and in that case, the s-convergent sequences in LipX are
exactly the w*-convergent sequences, i.e. LJ-convergent sequences. By the Krein-
Smulian Theorem it follows that a convex set in LipZ is closed under the operation of
s-limits precisely when it is w*-closed. This makes it a natural question, to discover
when the set of strong limit points of any ideal / of LipX coincides with the largest
ideal with the same zero-set as /. We do not answer this in great detail, but merely
mention a part of the answer with interesting connections to metric spaces.

Let F be a closed subset of X and u(x) = arc tan d(x, F). We define two properties of
X, modulo F.

X is coercive modF if each sequence xme.Y\F, such that p(xm)^m~1u(xm)
(m = 1,2,3,...) contains a subsequence converging to a point in X\F.

Lip X is Tauberian mod F if for each / in Lip X, such that | / | > 0 on X\F, and each g
in LipX, such that g = 0 on F, there is a sequence hm in Lip-Y such that g=s—lim hmf.

The equivalence of these two concepts (with no assumption of separability) is proved
by an elaboration of the arguments in Section 1.

Example. We modify the example in Section 1, defining bmn = m~1eml + m~2e
= {bmn,m^ 1,«^ l}u{0}. Then X is coercive, but not coercive modulo F = {0}. mn
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