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Abstract

Dietary intake of linoleic acid (LA) has increased dramatically during the twentieth century and is associated with a greater prevalence of

obesity. Vegetable oils are recognised as suitable alternatives to fish oil (FO) in feed for Atlantic salmon (Salmo salar L.) but introduce high

amounts of LA in the salmon fillet. The effect on fish consumers of such a replacement remains to be elucidated. Here, we investigate the

effect of excessive dietary LA from soyabean oil (SO) on endocannabinoid levels in Atlantic salmon and mice, and study the metabolic

effects in mice when SO replaces FO in feed for Atlantic salmon. Atlantic salmon were fed FO and SO for 6 months, and the salmon

fillet was used to produce feed for mice. Male C57BL/6J mice were fed diets of 35 % of energy as fat based on FO- and SO-enriched

salmon for 16 weeks. We found that replacing FO with SO in feed for Atlantic salmon increased LA, arachidonic acid (AA), decreased

EPA and DHA, elevated the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA), and increased TAG accumulation

in the salmon liver. In mice, the SO salmon diet increased LA and AA and decreased EPA and DHA in the liver and erythrocyte phospho-

lipids, and elevated 2-AG and AEA associated with increased feed efficiency, weight gain and adipose tissue inflammation compared with

mice fed the FO salmon diet. In conclusion, excessive dietary LA elevates endocannabinoids in the liver of salmon and mice, and increases

weight gain and counteracts the anti-inflammatory properties of EPA and DHA in mice.
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Dietary advice to replace saturated fat with PUFA to reduce the

incidence of CVD(1,2), and increasing use of vegetable oils,

have led to a dramatic increase in the human consumption

of linoleic acid (LA, 18 : 2n-6) during the twentieth century(3).

The estimated per capita consumption of soyabean oil, one of

the major dietary sources of LA in the USA, has increased more

than 1000-fold from 1909 to 1999, increasing the availability of

LA from 2·8 to 7·2 % of energy (en%)(3). Dietary intakes of n-3

and n-6 fatty acids are critical determinants of tissue pro-

portions of bioactive 20- and 22-carbon n-3 and n-6 highly

unsaturated fatty acids. The tissue fatty acid composition

reflects dietary PUFA intake since 18-carbon n-3 and n-6

fatty acids cannot be synthesised de novo (4). The endocanna-

binoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA)

are endogenous lipid mediators formed from the pool of

arachidonic acid (AA) in membrane phospholipids (AA-PL).

Hence, endocannabinoid activity can be altered by dietary

fatty acids that in turn affect endocannabinoid precursor

levels after a short term(5,6) or prolonged feeding(7–10). Dietary

LA(10) and AA(5,7,11) increased, whereas dietary n-3

PUFA(5,6,10,12–15), decreased 2-AG and AEA. The activation of

the cannabinoid receptor 1 by endocannabinoids or exogen-

ous agonists, centrally and peripherally, favours metabolic

processes that stimulate appetite, increase food intake, acti-

vate fat storage pathways and down-regulate catabolism

resulting in adipose accumulation(8,10,16).

The type of fat, specifically the imbalance in n-6 to n-3

PUFA, is emerging as a risk factor for developing

obesity(17–20,7). Dietary LA have been shown to have adipo-

genic properties in both humans(21) and rodents(18,19,22–25).
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Fish oils rich in EPA and DHA limit diet-induced obesity in

rodents(26,27) and are associated with weight reduction in

humans(28–30). We have previously shown a robust positive

correlation between the consumption of soyabean oil, the

major contributor to dietary LA, and obesity in human sub-

jects(10). When investigating these human dietary changes

over the last century in an animal model, we have demon-

strated that it is the n-3 and n-6 fat composition of the diets,

rather than the total amount of fat, that determined the obeso-

genic properties of a diet(10). High-fat diets (60 en%) com-

monly used to induce obesity typically utilise soyabean oil

and contain high levels of LA. Such diets elevate endocanna-

binoid levels in tissues involved in energy homeostasis contri-

buting to diet-induced obesity in mice after long-term

feeding(7,8). We have recently reversed the obesogenic effect

of high-fat isoenergetic diets by decreasing dietary LA from 8

to 1 en% and attenuated the AA-dependent excessive endo-

cannabinoid activity(10). Furthermore, we have demonstrated

that reducing the AA-PL precursor pool by adding 1 en%

EPA and DHA to 8 en% LA diets reversed both the stimulation

of endocannabinoid activity and the obesogenic effect of high-

fat diets(10). Reducing excessive endocannabinoid system

activity is actively being pursued to reduce obesity(8). The

pharmacological blockade of the cannabinoid receptor 1 is

effective in treating obesity and related metabolic derange-

ments(31,32). However, serious psychiatric side effects caused

the withdrawal of rimonabant, a selective cannabinoid recep-

tor 1 antagonist(33,34). Thus, there is a definite need for a diet-

ary approach to reduce substrate availability for

endocannabinoid synthesis.

The high degree of conservation of endocannabinoid

system components(35) and the presence of the cannabinergic

system in most animal systems(36–40) point out the importance

of the endocannabinoid system in the regulation of basic

physiological responses such as energy homeostasis and feed-

ing behaviour(36–38,41,42). Farmed Atlantic salmon have tra-

ditionally been fed diets based on fish oil and fishmeal, thus

being recognised as a rich source of the marine n-3 fatty

acids EPA and DHA. The steady increase in aquaculture pro-

duction volume of 8–10 % per year(43) has resulted in the

increased use of alternative proteins and oils in aqua feeds.

Vegetable oils are recognised as suitable alternatives to fish

oils(44,45), although they are devoid of EPA and DHA, with

high levels of LA and monounsaturates, thereby reducing

EPA and DHA and increasing LA content of fish fillet(44–46).

The current fish oil replacement levels in aqua feeds are

approximately 50 %, resulting in approximately 2 g

EPA þ DHA/100 g salmon flesh (www.nifes.no). This fish oil

replacement level is expected to increase in future aquaculture

feeds as Atlantic salmon production volumes increase(43)

whereas global availability of fish oil remains constant

(www.iffo.net). However, there is a lack of documentation

of the health consequences of replacing fish oil with vegetable

oil in feed for Atlantic salmon in fish consumers. We here posit

that excessive dietary LA elevates endocannabinoid activity in

salmon and mice, with a concomitant increase in adiposity in

mice fed LA-enriched salmon.

Methods

Feeding experiment in Atlantic salmon

Ethical statement. The experiments complied with the guide-

lines of the Norwegian Regulation on Animal Experimentation

and EC Directive 86/609/EEC. The protocol was approved by

local authorities at the Institute of Marine Research (Bergen,

Norway) and the National Animal Research Authority.

Animals. Atlantic salmon (initial weight 340 (SEM 17) g (n

55)) were randomly distributed to six fibreglass tanks

(1·5 £ 1·5 £ 0·9 m, water depth 0·6 m) provided with a continu-

ous flow of seawater maintaining an average salinity of 35‰, an

average temperature 88C and a 12 h light–dark cycle. Mortality

was recorded daily. The feeding trial was carried out at the

Matre Aquaculture Research Station (Matredal, Norway;

608520N, 058350E) from 28 April 2008 to 6 October 2008.

Diets. Experimental diets (EWOS Innovation) provided as

pellets were fed ad libitum to triplicate tanks per dietary treat-

ment for 6 months. The diets contained the same 6 mm base

pellet and were supplemented with either cleaned fish oil

(FO; FF Skagen) or refined soyabean oil (SO; Mills) (Table 1)

to ensure negligible amounts of contaminants such as persist-

ent organic pollutants and polyaromatic hydrocarbons.

Sampling. Fish were feed-deprived 24 h before killing.

From each tank, six fish were randomly sampled and killed

Table 1. Nutrient composition of mice and salmon diets

Mice diets
Salmon

diets

FO SO FO SO

Dietary oils (g/kg)
Fish oil – – 250 –
Soyabean oil – – – 250
Cocoa 84 38
Safflower oil – 7
Olive oil 13 18
Flaxseed oil 2 2
Fat from salmon fillet 66 101
Total oil added 99 65 250 250

Energy (en%) derived from
Fat 35 32 51 51
Carbohydrate 44 47 11 12
Protein 21 21 36 35

Energy (kJ) 19 19 24 24
Dietary fatty acid profile (en%)

Sum SFA 17 14 11 7
Sum MUFA 10 9 20 12
18 : 2n-6 1 8 1·5 21
20 : 4n-6 0·06 0·07 0·3 –
Sum n-6 1 9 2 21
18 : 3n-3 0·4 1 1 3
20 : 5n-3 1·0 0·5 3·5 0·5
22 : 6n-3 1·7 1·3 3·8 0·9
Sum n-3 4 3 11 4
Total n-6:n-3 ratio 0·3 3 0·2 5

Estimated n-6 HUFA* (%) 8 33 13 51
Estimated omega-3 index† 26 18 24 12

FO, fish oil; SO soyabean oil; en%, percentage of energy; HUFA, highly
unsaturated fatty acids.

* Calculated from the Lands equation(4): (20 :3n-6 þ 20 :4n-6 þ 22 :5n-6)/
(20 :3n-6 þ 20 :4n-6 þ 22 :5n-6 þ 20 :5n-3 þ 22 :5n-3 þ 22 :6n-3) £ 100.

† Calculated from (n-3 HUFA £ 0·32) 2 3·5 based on Harris & von
Schacky(69) and Lands(70).
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with a sharp blow to the head to ensure no contamination of

anaesthetics in the fish fillet. Body weight and length were

measured, blood was collected and liver was quickly snap-

frozen in liquid N2 and stored at 2808C until further analysis.

The fillets were collected for use in mice feed.

Lipid extraction and fatty acid analysis. Total lipid was

extracted from the Atlantic salmon diets, liver and fillets by

homogenisation in chloroform–methanol (2:1, v/v) with

19 : 0 methyl ester as the internal standard. Fatty acid methyl

esters (FAME) were prepared from total lipid by BF3 following

saponification, as described previously(47,48). Lipid classes of

salmon liver were determined essentially as described by

Jordal et al.(49) based on Bell et al.(50).

Feeding experiment in C57BL/6J mice

Ethical statement. The mouse experiment was approved by

the National Animal Health Authorities (Norwegian approval

identification 1973). Care and handling were in accordance

with local institutional recommendations and rules, and no

adverse events were observed. Mice were anaesthetised with

isoflurane to minimise suffering before decapitation.

Animals. Male mice, 6 weeks of age (C57BL/6J, Taconic)

were randomly assigned to the experimental diets (Table 1)

and housed individually. Mice were maintained on a 12 h

light–dark cycle at 28 ^ 18C.

Diets. Feed provided as pellets were available ad libitum

for 16 weeks. The diets contained the same amount (g/kg) of

sucrose 50, cellulose 50, maize starch 100, mineral mix

(American Institute of Nutrition (AIN) 93M MX) 47, vitamin

mix (AIN 93 VX) 13, L-cysteine 3, choline bitartrate 2·5, and

ethoxyquin 0·06. Salmon fillets were freeze-dried, ground

and mixed with the other ingredients to make pellets. The

salmon fillets were the sole protein source and provided

20 en% proteins, and 40 and 60 en% fat for FO- and SO-

enriched salmon, respectively, due to higher fat content in

the SO salmon fillets (Table 1). The fat contents of the

salmon fillets were 26 g/100 g FO fillet and 33 g/100 g SO

fillet. Additional vegetable oils were added to obtain a total

lipid content of 35 en%. A mix of oils was used to preserve

the fatty acid profile of the salmon fillets (FO and SO) regard-

ing LA, a-linolenic acid (18 : 3n-3) and MUFA with reciprocal

changes in SFA (Table 1). The full fatty acid profile of the

salmon fillets and vegetable oils is given in Table S1 (available

online). Feed intake was measured daily by weighing each

food cup and spillage and subtracting the previously collected

weight. Body weight was recorded once per week for all mice.

Endocannabinoids. Brain and liver were quickly snap-

frozen in liquid N2. AEA and 2-AG were extracted and ana-

lysed by GC–MS/MS as described previously by Alvheim

et al.(10) in the mouse liver and cerebral cortex, and the

salmon liver.

Phospholipid fatty acid profile. Liver, erythrocyte and adi-

pose tissue lipids were extracted with chloroform–methanol

(2:1, v/v) and PL were separated from neutral lipids by

solid-phase extraction. Liver and epididymal white adipose

tissue (eWAT) lipids were evaporated to dryness and recov-

ered in chloroform to a concentration of 50 mg/ml lipids. An

aliquot of 200ml (10 mg lipids) was applied to a solid-phase

extraction column (Isolute; Biotage). Erythrocyte lipids were

evaporated to dryness and recovered with three washings of

100 ml chloroform and deposited to the solid-phase extraction

column. Neutral lipids were eluted with 10 ml chloroform–

methanol (98:2, v/v) and polar lipids were eluted with

20 ml methanol. The fatty acid composition in the phospho-

lipid fraction of liver and erythrocytes, and the neutral frac-

tion of adipose tissue were analysed by GC as described

previously(47,48).

Blood chemistry. Blood was collected at the time of killing

and separated into erythrocytes and plasma. Plasma hormone

levels were determined using commercially available ELISA

kits in accordance with the manufacturer’s instructions for

insulin (Ultrasensitive ELISA, mouse; DRG Instruments

GmbH), leptin (Leptin (Mouse/Rat) ELISA; ALPCO Immunoas-

says) and adiponectin (Adiponectin (Mouse) Total, HMW

ELISA; ALPCO Immunoassays).

Histology. Sections of eWAT and inguinal white adipose

tissue (iWAT) were fixed in 4 % formaldehyde in 0·1 M-phos-

phate buffer for 24 h, washed in phosphate buffer, dehydrated

in ethanol, and embedded in paraffin after clearing with

xylene. Then, 5mm-thick sections of the embedded tissue

were stained with eosin and haematoxylin. The sections

were visually examined using an Olympus BX 51 binocular

microscope (Olympus) fitted with a Nikon DS-Fi1 camera

(Digital Sight DS-Fi1; Nikon). Adipocyte size was measured

using the interactive measurement module of an image anal-

ysis system equipped with an Olympus microscope (Olym-

pus), a Nikon camera and NIS-elements software (Nikon).

Thereafter, 200 adipocytes per tissue were randomly selected
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Fig. 1. Levels of the n-6 fatty acids (a) linoleic acid (LA) and (b) arachidonic acid (AA), and the endocannabinoids (c) 2-arachidonoylglycerol (AG) and (d) ananda-

mide (AEA) in the liver of Atlantic salmon fed soyabean oil (SO, ) and fish oil (FO, ). Values are means, with their standard errors represented by vertical bars.

* Mean values were significantly different from those of SO-fed salmon (P,0·05).
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and measured by drawing a horizontal line between the cell

membranes.

Immunohistochemistry. To distinguish macrophages from

other cell types in the adipose tissue, the presence of F4/80,

a transmembrane protein specific for macrophages, was visu-

alised by immunohistochemistry. Samples were processed as

described previously. In brief, 5mm sections were deparafi-

nised, rehydrated and endogenous peroxide was inactivated

(3 % H2O2). To reduce non-specific staining, the sections

were incubated in heat-inactivated normal goat serum (10 %,

10 min). The sections were then incubated overnight at 48C

with rat anti-mouse F4/80 (1:500; Serotec), subsequently

washed in Tris-buffered saline (three times, 10 min) and incu-

bated with horseradish peroxidase-conjugated rat anti-goat

IgG (1:250; Serotec) for 2 h. After washing in Tris-buffered

saline (three times, 10 min), specific binding of the antibody

to macrophages was visualised using diaminobenzidine. The

relative abundance of macrophages compared with fat cells

was assessed by a scientist unaware of the experimental

protocol.

Statistics. All data were analysed using STATISTICA (data

analysis software system), version 9.0 (StatSoft, Inc.). Levene’s

test was used to test for homogeneity of variance. Data were

analysed with Student’s independent t test with a significance

level of P,0·05. Weekly body weight was measured by

repeated-measures ANOVA and a statistical trend was set at

P,0·08. Data are presented as means with their standard

errors. Samples of the liver and fillet of salmon were

pooled – three to nine fish per tank in each of the three

tanks to provide three fish from pooled samples. Mouse

samples represent nine individual animals.

Results

Effect of the experimental diets in Atlantic salmon

Replacing dietary FO with SO resulted in a 19-fold increase in

LA, significantly higher AA levels and nearly doubled the con-

centration of 2-AG (Fig. 1) in the salmon liver. There was no

difference in final body weight, mean visceral somatic index

((visceral adipose tissue þ internal organ)/body weight) or

whole-fish proximate composition after 6 months of feeding

(Table 2). However, fish fed the SO diet had significantly

higher amounts of TAG and total lipid in the liver than fish

fed the FO diet, with no difference in PL (Table 2). Feeding

SO to Atlantic salmon increased fillet LA (530 %) and reduced

EPA (71 %) and DHA (56 %) compared with fillets from Atlantic

salmon fed FO (Table 3).

Effect of the experimental diets in mice

Mice fed the SO salmon diet had higher amounts of LA and AA

in the liver PL (Fig. 2(a) and (b)), erythrocyte-PL and neutral

lipids of eWAT than mice fed the FO salmon diet

(Table 4). Increasing dietary LA by replacing FO with SO in

feed for Atlantic salmon significantly elevated liver 2-AG, elev-

ated brain 2-AG and AEA, and significantly increased weight

gain, feed efficiency and caused higher body weight

(P,0·08) in mice (Fig. 2). Mice fed the SO salmon diet had

higher body weight than mice fed the FO salmon diet from

week 6, but the trend was only significant from week 9

(P¼0·05–P,0·07) with a significant difference in week 15

(P¼0·03). Energy intake and plasma concentrations of

Table 2. Physical parameters in Atlantic salmon fed fish oil (FO) or
soyabean oil (SO)

(Mean values with their standard errors, n 3 from pooled samples)

FO SO

Parameters Mean SEM Mean SEM

Initial body weight (g) 340 17 340 17
Final body weight (g) 1165 38 1033 48
Minimum–maximum body weight† 862–1639 820–1624
Final body length (cm) 44 0 43 1
WAT þ inner organs‡§ (g) 104 4 82 4
Visceral somatic index† (%) 8·9 0·2 7·9 0·2
Total fish lipid (%) 15·2 0·1 13·9 0·0
Total fish protein (%) 17·3 0·6 17·0 0·3
Water (%) 68 1 69 1
Hepatosomatic index‡k(%) 1·5 0·0 1·4 0·0
Liver TAG (mg/g) 4·7* 1·3 12·5 2·1
Liver PL (mg/g) 50 1 52 1
Liver total lipids (mg/g) 61* 2 72 3

WAT, white adipose tissue; PL, phospholipids.
Mean value was significantly different from that of SO-fed salmon: *P,0·04

(Student’s independent t test).
† Pooled samples; nine fish per tank, three tanks.
‡ Pooled samples; six fish per tank, three tanks.
§ Includes intestine, stomach and spleen.
kHepatosomatic index: (liver weight (g)/body weight (g)) £ 100.

Table 3. n-6 and n-3 profile in total lipids of fillet and liver of Atlantic salmon fed fish oil (FO) and soyabean oil (SO)

(Mean values with their standard errors, n 3 from pooled samples)

LA AA Sum n-6 EPA DHA Sum n-3 n-6 HUFA†

Tissue Diet Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Fillet‡ (mg/g) FO 3·9* 0·3 0·5* 0·0 5·2* 0·4 6·5* 0·2 11·2* 0·8 24·1* 1·3 5* 0
SO 24·6 5·0 0·3 0·0 27·7 5·7 1·9 0·1 4·9 0·4 11·3 0·9 23 4

Liver§ (mg/g) FO 0·5** 0·0 0·9** 0·0 1·6* 0·0 3·4** 0·2 9·2* 0·1 14·0** 0·2 7* 0
SO 9·5 1·4 1·7 0·1 14·5 0·0 1·4 0·0 5·8 0·1 8·6 0·2 39 1

LA, linoleic acid; AA, arachidonic acid; HUFA, highly unsaturated fatty acids.
Mean values were significantly different from those of SO-fed salmon: *P,0·04, **P,0·01.
† n-6 HUFA is calculated from the Lands equation(4): (20 : 3n-6 þ 20 : 4n-6 þ 22 : 5n-6)/(20 : 3n-6 þ 20 : 4n-6 þ 22 : 5n-6 þ 20 : 5n-3 þ 22 : 5n-3 þ 22 : 6n-3) £ 100.
‡ Pooled samples; three fish from three tanks.
§ Pooled samples; six fish from three tanks; n 3.
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leptin, adiponectin and insulin did not differ between the diet-

ary treatments (Table 5).

Replacing FO with SO in feed for Atlantic salmon signifi-

cantly lowered EPA and DHA in mice liver-PL, erythrocyte-

PL and total lipids of eWAT, thereby decreasing the omega-3

index from 23 to 16 and increasing n-6 highly unsaturated

fatty acids from 19 to 39 % (Table 4).

Adipose tissue accumulation and the adiposity index did

not differ between mice fed the SO and FO salmon diets

(Table 5). Staining eWAT and iWAT for the macrophage
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marker F4/80 showed considerably more F4/80-positive

macrophages forming crown-like structures around adipo-

cytes in mice fed the SO salmon diet than mice fed the FO

salmon diet (Fig. 3). The SO salmon diet containing 8 en%

LA resulted in larger adipocyte size in iWAT, but not in

eWAT, than the FO salmon diet containing 1 en% LA (Fig. 3).

Discussion

Human consumption of soyabean oil has increased from 2·2 to

7·3 en% at the same time as the intake of EPA and DHA

declined in the USA during the twentieth century(3). Increasing

intake of LA has been linked to obesity in both

humans(10,19,21,51) and rodents(7,10,18,19,23,52–54). In the present

study, we found that mice fed the SO salmon diet with a high

level of LA (8 en%) had higher liver concentrations of AA-PL

and 2-AG. The elevated endocannabinoid activity in mice

fed the SO salmon diet was associated with increased feed

efficiency, higher weight gain and body weight (P,0·8) com-

pared with mice fed the FO salmon diet. We have previously

shown that elevating dietary LA from 1 to 8 en% increases

endocannabinoid production and induces obesity in mice fed

high-fat diets, an effect that was reduced by adding 1 en% EPA

and DHA to 8 en% LA diets(10). The present and our previous

findings are consistent with several reports that show how

dietary fat alters endocannabinoid levels(5,6,11–14,20,55).

The findings of lower weight gain and body weight in mice

fed the FO salmon diet compared with mice fed the SO

salmon diet are in line with the general notion that fish oil

rich in EPA and DHA limits high-fat diet-induced obesity in

rodents(26,27), an effect that is associated with reduced tissue

levels of AA-PL(22). The diet based on SO-enriched salmon

resulted in larger adipocyte size in iWAT and more macro-

phage infiltration in eWAT than the FO-fed salmon diet.

Diets enriched with n-3 PUFA have been demonstrated to

reduce adipose tissue inflammation in diet-induced obes-

ity(56–58). The mechanism by which EPA and DHA reduce

macrophage-induced adipose tissue inflammation has recently

been demonstrated to be mediated by the stimulation of the

fatty acid receptor GPR120(59). EPA and DHA can be converted

to metabolic products such as resolvins and protectins

with anti-inflammatory actions independent of the state of

obesity(60). Although both salmon diets contained relatively

high amounts of EPA and DHA, the present data suggest

that dietary LA of 8 en% decrease the anti-inflammatory prop-

erties of EPA and DHA. In keeping with the recent finding that

sucrose counteracts the anti-inflammatory effect of fish oil in

adipose tissue(61), these data demonstrate that the background

diet influences the anti-inflammatory properties of EPA and

DHA.

Traditionally, farmed Atlantic salmon have consumed diets

high in EPA and DHA and low in LA and a-linolenic acid.

Introducing vegetable oils in farmed fish feed has altered the

dietary fatty acid profile and fillet fatty acid composition(45).

Consistent with prior reports(44–46), replacing fish oil with

soyabean oil in feed for Atlantic salmon increased dietary LA

from 1·5 to 21 en% in feed, and altered the fatty acid profile

of salmon fillet and liver by increasing LA and decreasing

EPA and DHA after 6 months of feeding. To our knowledge,

we are the first to show that dietary LA from soyabean oil elev-

ated 2-AG in the salmon liver. Consistent with previous reports

Table 4. n-6 and n-3 profile of erythrocyte and liver phospholipids, and neutral lipids of epididymal white adipose tissue (eWAT) in mice fed fish oil
(FO) and soyabean oil (SO) salmon

(Mean values with their standard errors, n 9)

LA AA Sum n-6 EPA DHA Sum n-3 n-6 HUFA†

Tissue Diet Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Erythrocytes (mg/mg) FO 136*** 6 100*** 4 264*** 9 189*** 8 304* 12 550*** 19 19*** 0
SO 297 9 177 8 563 19 99 2 270 7 413 10 39 1

Liver (mg/g) FO 1·1*** 0·1 0·8*** 0·0 2·2*** 0·1 1·5*** 0·0 4·5*** 0·2 6·3*** 0·3 14*** 0
SO 2·3 0·1 1·5 0·1 4·3 0·1 0·8 0·1 2·7 0·1 3·7 0·2 37 2

eWAT (mg/g) FO 68*** 2 1·3 0·1 72*** 2 4·5** 0·8 14** 2 38* 4 12*** 1
SO 208 3 1·3 0·1 217 3 1·8 0·3 6 1 23 3 44 0

LA, linoleic acid; AA, arachidonic acid; HUFA, highly unsaturated fatty acids.
Mean values were significantly different from those of SO salmon-fed mice: *P,0·03, **P,0·01, ***P,0·0001.
† n-6 HUFA is calculated from the Lands equation(4): (20 : 3n-6 þ 20 : 4n-6 þ 22 : 5n-6)/(20 : 3n-6 þ 20 : 4n-6 þ 22 : 5n-6 þ 20 : 5n-3 þ 22 : 5n-3 þ 22 : 6n-3) £ 100.

Table 5. Physical and biochemical parameters in mice fed fish oil (FO)
or soyabean oil (SO) salmon†‡

(Mean values with their standard errors)

FO SO

Parameters Mean SEM Mean SEM

Total food intake (g/112 d) 330 10 347 13
Initial body weight (g) 25·7 0·8 25·8 0·5
Final body weight (g) 43·1 1·6 47·1 1·3
Liver weight (g) 1·7* 0·2 2·3 0·2
iWAT (g) 0·7 0·1 0·9 0·1
eWAT (g) 1·9 1·9 1·8 0·1
rWAT (g) 0·8 0·1 0·9 0·1
Adiposity index§ (%) 9·7 0·6 10·0 0·6
Leptin 17·0 2·0 19·0 2·1
Adiponectin 2·9 0·3 3·1 0·2
Insulin 8·8 0·7 9·0 0·2

iWAT, inguinal white adipose tissue; eWAT, epididymal white adipose tissue;
rWAT, retroperitoneal white adipose tissue.

* Mean value was significantly different from that of SO salmon-fed mice (P,0·04).
† n 9 for food and energy intake, feed efficiency and body weight; n 6–7 for hor-

mone levels.
‡ Feed efficiency: (body weight gain (g)/energy (MJ) intake).
§ Adiposity index: ((epididymal fat þ inguinal fat þ retroperitoneal fat)/eviscerated

body weight) £ 100.
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replacing fish oil with soyabean oil(62) or a blend of vegetable

oils(63–65), we found that Atlantic salmon fed soyabean oil

accumulated significantly more TAG and total lipids in the

liver than salmon fed fish oil. Liver is the main source of

de novo fatty acid synthesis, and the activation of liver canna-

binoid receptor 1 stimulates de novo fatty acid synthesis in

mice by increasing the activity of the transcription factor

sterol regulatory element binding protein-1c (SREBP-1c), and

its target enzymes fatty acid synthase and acetyl-CoA carboxy-

lase(8). Recent studies have demonstrated that replacing fish

oil with vegetable oil in Atlantic salmon up-regulated the

expression of SREBP-1c and fatty acid synthase in the

salmon liver(66), affecting pathways of cholesterol and

lipoprotein metabolism(65). It is therefore likely that an

elevated endocannabinoid tone in the liver of salmon fed

soyabean oil may have stimulated the hepatic de novo syn-

thesis of fatty acids. In Atlantic salmon, replacing fishmeal

and fish oil with high levels of plant protein (80 %) and a veg-

etable oil blend (70 %) of rapeseed, palm and linseed oil

increased whole-body lipids, the visceral somatic index and

liver lipid stores after 12 months of feeding(63) concomitant

with a significant lower body weight(67). In another study,

replacing fish oil with a vegetable oil blend (rapeseed, palm

and linseed oil) increased body weight in Atlantic salmon

receiving vegetable oil compared with fish oil possibly due

to the long-term effects increasing nutrient utilisation(44). We

did not find any effect on body weight or the visceral somatic

index in salmon when soyabean oil replaced fish oil for

6 months, indicating interacting effects between oil source

and protein source, or length of feeding required to affect

body weights or visceral fat stores in Atlantic salmon(44,63).

There have been increasing concerns about the decreasing

content of EPA and DHA in farmed Atlantic salmon. Norwe-

gian surveillance data(68) report a moderate increase in LA

levels in the fillets of farmed Atlantic salmon from

1·1 g/100 g in 2005 to 1·6 g/100 g in 2010 and a decrease in

EPA þ DHA from 2·7 g/100 g to 2·1 g/100 g in the same

period. In the present study, Atlantic salmon was fed soyabean

oil, a major dietary source of LA, resulting in 2·5 g LA and 0·7 g

EPA þ DHA/100 g fillet, representing an extreme model where

vegetable oils replace fish oil in feed for Atlantic salmon.

Although recognised as suitable alternatives to fish oil in

feed for Atlantic salmon, the present findings of elevated

liver endocannabinoid and lipid accumulation in salmon fed

soyabean oil suggest that future fish oil replacement in

farmed Atlantic salmon should pay attention to the choice of

vegetable oils with regard to LA content. However, although

lower than the FO salmon diet, mice fed the SO salmon diet

for 16 weeks had a high omega-3 index and low n-6 highly

unsaturated fatty acids (16 and 39 %, respectively), indicating

that farmed Atlantic salmon fed vegetable oil remain a signifi-

cant dietary source of EPA and DHA.

In summary, replacing fish oil with soyabean oil in feed for

Atlantic salmon introduces high dietary levels of LA in Atlantic

salmon and elevates AA, endocannabinoid activity and TAG

accumulation in the salmon liver. Mice consuming Atlantic

salmon fed soyabean oil have higher liver levels of AA-PL

and 2-AG, higher feed efficiency, higher weight gain and

more adipose tissue inflammation than mice fed the FO

salmon diet. Thus, lower dietary levels of LA may improve

metabolic functions associated with obesity.

Supplementary material

To view supplementary material for this article, please visit
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