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In this study, the Bragg–Hawthorne equation (BHE) is extended in the context of
a steady, inviscid and compressible fluid, thus leading to an assortment of partial
differential equations that must be solved simultaneously. A solution is pursued by
implementing a Rayleigh–Janzen expansion in the square of the reference Mach
number. The corresponding formulation is subsequently used to derive a compressible
approximation for the Trkalian model of the bidirectional vortex. The approximate
solution is compared to a representative computational fluid dynamics simulation
in order to validate the modelling assumptions under realistic conditions. The latter
is found to exhibit an appreciable steepening of the axial velocity profile, which
is accompanied by an axial dependence in the mantle location that is somewhat
reminiscent of the radial shifting of mantles reported in some experimental trials
and simulations. In this context, flows with a strong swirl intensity do not seem to
be significantly affected by the introduction of compressibility. Rather, as the swirl
intensity is reduced the effects of compressibility become more noticeable, especially
in the axial and radial velocity components. It may also be realized that imparting a
progressively larger swirl component stands to promote the axisymmetric distribution
of flow field properties, and these include an implicit resistance to dilatational effects
in the tangential direction. From a broader perspective, this study provides a viable
approximation to the Trkalian motion associated with cyclonic flows, while serving as
a limited proof of concept for the compressible Bragg–Hawthorne procedure applied
to a steady, axisymmetric and inviscid fluid.

Key words: Navier–Stokes equations, rotating flows, vortex flows

1. Introduction

Swirling flows continue to serve as an appealing topic of research due to their
interesting characteristics and over-arching applications. In meteorological studies,
elements of unconfined vortex dynamics have been used to explain intriguing
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mechanisms associated with natural phenomena observed in hurricanes, cyclones,
twisters, dust devils and typhoons (Penner 1972). Such relations have also been
employed to describe the large-scale formation, pin-wheel motion and helical
expansion of galaxies (Bruce 1961; Königl 1986). In aerodynamics, vortex modelling
plays a key role in both fixed and rotating wing aircraft design. In more direct
industrial settings, centrifugal flow separators, vortex-fired combustors, cyclonic boilers
and spiral-flow vacuum cleaners are merely a few of the devices that incorporate swirl
at the basis of their operation (Leibovich 1978, 1984; Escudier 1988).

In what pertains to confined vortex research, an extensive body of literature exists,
with a primary concentration on the experimental testing discipline in the context
of cyclone separators. Early experiments, such as those by ter Linden (1949), were
concerned with improving the efficiency of flow separators. Additional investigations
by Kelsall (1952) and Smith (1962a,b) provided vital insights into the qualitative
features of confined vortex motions, noting the ubiquitous presence of a forced core
near the vortex centre of rotation. This distinct characteristic was absent in most
external, naturally occurring swirling patterns that were routinely modelled as free,
irrotational vortices with tangential velocities that decayed with the inverse distance
from their epicentre.

Along with the tremendous leap in computational capabilities, research trends
followed suit by shifting away from experimentation in favour of numerical simulation.
In this vein, a variety of computational studies emerged and these sought to cover a
broad band of confined vortex applications. For example, turbulence effects in cyclone
separators were investigated by Hoekstra, Derksen & van den Akker (1999), Derksen
& van den Akker (2000), Derksen (2005) and Shalaby et al. (2005). These employed
variants of k–ε, Reynolds-stress model (RSM), and large eddy simulations (LES)
using both in-house and commercial solvers. Further studies by Hu et al. (2005)
focused on the behaviour of the flow in different sections of a volute separator using
an improved RSM equation. Along similar lines, Cortes & Gil (2007) and Molina
et al. (2008) considered multiphase flow effects in cyclonic chambers, whereas Zhu,
Na & Lu (2008) focused on the characterization of the pressure drop in cyclones at
high chamber pressures. In connection with the present study, Murray et al. (2004)
and Rom, Anderson & Chiaverini (2004) computationally examined the effects
of swirl in gelled propellant combustors whereas Majdalani & Chiaverini (2017)
simulated the oxygen–hydrogen reactive field in a bidirectional vortex chamber.
When compared to the available experimental and numerical literature, theoretical
models of confined vortex flows, especially those in multiple dimensions, stood by
far as the least available and well advanced, and this could be attributed in part to the
multiple layers of complexities that affected their development. An often cited study
by Bloor & Ingham (1987) considered a form of the Bragg–Hawthorne equation
in spherical coordinates to construct a theoretical model for their conical separator.
Their approximation was revisited by Barber & Majdalani (2009) who turned it
into an exact solution to Euler’s equations. Apart from these studies, much of the
theoretical work encountered in the literature relied on semi-empirical techniques,
with parameters originating almost exclusively from experimental data (see the survey
by Cortes & Gil (2007), and the reference therein).

Prompted by this relative dearth of analytical models, Vyas & Majdalani (2006)
initiated the development of an inviscid model of the bidirectional vortex in the
context of a propulsive application (Chiaverini et al. 2002). Over time, their model
was refined to include increasingly more realistic effects. For example, a treatment
of the viscous core was first added by Majdalani & Chiaverini (2009), following
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Compressible Trkalian vortex flow field 757

a characterization of multidirectionality and possible formation of multiple mantles
by Vyas, Majdalani & Chiaverini (2003). The sidewall boundary layers were also
examined by Majdalani & Chiaverini (2009), while a compressible analogue with
a viscous core was conceived by Maicke & Majdalani (2008). At the heart of
these approaches stood the vorticity–streamfunction approach, an extended form of
the classical technique that related the vorticity to the streamfunction by way of
the vorticity transport equation. The resulting framework facilitated the effort to
retrieve both exact and approximate solutions using judicious assumptions and a
well-conceived assortment of realistic boundary conditions.

In the interest of achieving a more comprehensive confined vortex formulation,
Majdalani (2012) and, similarly, Barber & Majdalani (2009) revisited the Bragg–
Hawthorne equation in cylindrical and spherical coordinates, respectively. Their
approach utilized the streamfunction approach, but rather than relying on the vorticity
transport equation for closure, theirs leveraged the conserved forms of the stagnation
pressure head and angular momentum. The precise forms of the pressure head and
angular momentum were chosen in such a way to best reproduce the flow field under
consideration, by expressing them in terms of the streamfunction. This resulted in
a single equation for the streamfunction that could be solved either analytically
or numerically. The freedom to specify the forms of angular momentum and
pressure head opened up a wide range of possibilities, thus justifying the continued
development of the Bragg–Hawthorne approach.

By seeking to extend the incompressible Trkalian models of Majdalani (2012),
the present work focuses on the development of a compressible bidirectional vortex.
This particular model is used to describe the bulk gaseous motion in the vortex
combustion cold-wall chamber (VCCWC) depicted in figure 1. In this configuration,
fluid is injected tangentially to the inner circumference, just upstream of the nozzle
base; it then spirals along the outer portion of the chamber, thus forming what
is known as the outer vortex. After reaching the headwall, the flow reverses axial
direction and swirls back through the inner region until it exits the chamber across
its partially open base. Using this helical flow path helps to insulate the sidewalls of
the combustion chamber against the high-temperature combustion products. These are
generally confined to the core, outflow region.

In this work, the general form of the compressible Bragg–Hawthorne equation
is derived and applied to a wall-bounded cyclonic vortex. Naturally, the present
model exhibits features that mirror those used by Majdalani (2012), especially in
what concerns the fundamental flow assumptions and the overall selection of angular
momentum and stagnation enthalpy terms. The expanded compressible equations is
then solved using the Rayleigh–Janzen technique, which has been shown by Tollmien
(1941) and Kaplan (1946) to remain surprisingly robust up to and including the
transonic regime. This procedure has been extended to multiple dimensions and
refined by Majdalani (2007a) and Maicke & Majdalani (2008) in both axisymmetric
and planar configurations, respectively. Accordingly, both leading and first-order
equations may be perturbed in the reference Mach number squared before undergoing
a systematic procedure aimed at extracting a compressible correction to the Trkalian
class of bidirectional vortex motions. The resulting approximation is subsequently
compared to a numerical simulation of a cyclonic chamber at a representative Mach
number. Following this comparison, the analytical model is used to pinpoint the
effects of increasing injection Mach numbers, ratios of specific heats and inflow swirl
parameters on the bidirectional vortex motion.
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FIGURE 1. Schematic of the Vortex Combustion Cold-Wall Chamber (VCCWC) depicting
both inner and outer vortex regions.

2. Compressible Bragg–Hawthorne formulation
2.1. Normalization

Before deriving the compressible relations, the governing equations may be conven-
iently converted to a dimensionless form. Using overbars to designate dimensional
quantities, we take

r=
r̄
a
; z=

z̄
a
; ∇= a∇̄; β =

b
a
; (2.1a−d)

u=
ū
U
; v =

v̄

U
; w=

w̄
U
; Ω =

aΩ̄

U
; ψ =

ψ̄

ρ0Ua2
; H =

H̄
U2
; (2.2a−f )

p=
p̄
p0
; ρ =

ρ̄

ρ0
; Qi =

Q̄i

Ua2
=

Ai

a2
; Qo =

Q̄o

Ua2
; ṁi =

˙̄mi

ρ0Ua2
; ṁo =

˙̄mo

ρ0Ua2
,

(2.3a−f )
where (r, z) represent the two primary spatial coordinates and b, the chamber exit
radius. In (2.2), (u, v, w) denote the radial, tangential and axial components of the
velocity, whereas Ω , ψ and H stand for the vorticity, streamfunction and stagnation
enthalpy, respectively. As usual, p and ρ refer to the pressure and density, while Q
and ṁ refer to the volumetric and mass flow rates, respectively. In (2.1), all spatial
parameters are normalized by the chamber radius, a. Similarly, the wall-tangential
injection velocity, U, is used to non-dimensionalize the aforementioned velocities and
other related variables as needed. Based on this choice of normalized quantities, the
equations of motion become

∇ · (ρu)= 0 (conservation of mass); (2.4)
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Compressible Trkalian vortex flow field 759

∇ · (ρHu)= 0 (conservation of energy); (2.5)

u · ∇u=−
∇p
γM2

0ρ
(conservation of momentum); (2.6)

H =
1
2

u · u+
1

M2
0(γ − 1)

p
ρ

(stagnation enthalpy), (2.7)

where M0 =U/c0, with c0 representing the reference speed of sound in the chamber.
For convenience, we define the axisymmetric Stokes operator D2 and the compressible
streamfunction–velocity relations as

D2
≡
∂2

∂r2
−

1
r
∂

∂r
+
∂2

∂z2
; u=−

1
ρr
∂ψ

∂z
; w=

1
ρr
∂ψ

∂r
. (2.8a−c)

2.2. Density–streamfunction formulation
For the compressible Bragg–Hawthorne framework, it is useful to recast the stagnation
enthalpy and tangential angular momentum in terms of ψ . By substituting the
conservation of mass equation into the energy conservation equation, one may write

∇H · u= 0. (2.9)

Equation (2.9) suggests that H can only vary along directions that are orthogonal to
the velocity field. Hence, H =H(ψ) remains constant along streamlines.

With the stagnation enthalpy in hand, the expanded tangential component of the
momentum conservation expression in (2.6) may be revisited. Given the underlying
assumption of axisymmetry, the θ -momentum equation may be reduced to

u
∂v

∂r
+w

∂v

∂z
+

uv
r
= 0. (2.10)

Equation (2.10) can be further multiplied by r to the extent of reproducing the
material derivative of B≡ rv, where B represents the tangential angular momentum

ru
∂v

∂r
+ rw

∂v

∂z
+ uv =

d(rv)
dt
=

dB
dt
= 0. (2.11)

A vanishing material derivative confirms that B = B(ψ) must remain invariant along
streamlines. Having H and B in streamfunction form proves helpful in simplifying the
momentum equation. In fact, this step is facilitated when paired with the isentropic
flow relation, namely, p=Kργ , where K denotes a general constant.

At this juncture, one may recognize that the momentum relation given by (2.6)
incorporates a pressure gradient divided by the density, and so an equivalent form may
be realized by manipulating the isentropic relation to recover

γ

γ − 1
∇

(
p
ρ

)
=
∇p
ρ
. (2.12)

This expression may be inserted on the right-hand side of (2.6). Then using the vector
identity, u · ∇u= (1/2)∇u2

− u×∇× u, we extract

∇(u · u)
2

+
1

M2
0(γ − 1)

∇

(
p
ρ

)
− u×Ω = 0. (2.13)
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By inspection of (2.7), it may be recognized that the first two terms in the above
correspond to the spatial gradient of the total enthalpy. We hence arrive at

∇H = u×Ω. (2.14)

As with the vorticity–streamfunction, the axial component of (2.14) may be segregated
after imposing the axisymmetry condition. To eliminate the vorticity, the right-hand
side of (2.14) may be expanded in terms of the velocity, viz.

∂H
∂z
=−u

(
∂w
∂r
−
∂u
∂z

)
+ v

∂v

∂z
. (2.15)

Next, the velocities may be eliminated in favour of the streamfunction and the angular
momentum is factored out to obtain

∂H
∂z
=

1
ρ2r2

∂ψ

∂z

(
∂2ψ

∂z2
−

1
ρ

∂ψ

∂z
∂ρ

∂z
+
∂2ψ

∂r2
−

1
ρ

∂ψ

∂r
∂ρ

∂r
−

1
r
∂ψ

∂r

)
+

B
r2

∂B
∂z
. (2.16)

Recognizing that ∂H/∂z = (dH/dψ)(∂ψ/∂z) and ∂B/∂z = (dB/dψ)(∂ψ/∂z) and
simplifying leads to

r2 dH
dψ
− B

dB
dψ
=

1
ρ2

(
∂2ψ

∂z2
−

1
ρ

∂ψ

∂z
∂ρ

∂z
+
∂2ψ

∂r2
−

1
ρ

∂ψ

∂r
∂ρ

∂r
−

1
r
∂ψ

∂r

)
. (2.17)

At length, taking advantage of vector notations and using the D2 operator defined in
(2.8), we arrive at the compact and convenient form

D2ψ + ρ2

(
B

dB
dψ
− r2 dH

dψ

)
=

1
ρ
∇ρ · ∇ψ. (2.18)

In the above, conservation of mass (2.4) and energy (2.5) have been combined into
(2.9), namely, to show that the stagnation enthalpy, H, must be necessarily a function
of ψ . In a similar manner, the tangential component of (2.6) may be considered in the
context of axisymmetric motion to ascertain the exclusive dependence of the tangential
angular momentum, B, on the streamfunction. In fact, the use of axisymmetry leads to
the decoupling of the axial component of the momentum equation from its radial and
tangential counterparts in (2.14). Furthermore, the isentropic relation (2.12) enables
us to express the outcome in terms of the stagnation enthalpy, vorticity and velocity.
These, in turn, can be written as a function of ψ , namely, after introducing the latter
and taking into account the properties of B and H, thus leading to the compressible
Bragg–Hawthorne equation (2.18). Therefore, given the general dependence of these
quantities on ψ , physically suitable forms of H and B may be specified analogously to
the manner by which velocity components and streamfunctions are often posited while
seeking similarity solutions to the Navier–Stokes equations. It is this flexibility that
sets the Bragg–Hawthorne technique apart, particularly as a versatile and promising
framework that can help to unravel multiple solutions for the same geometry and
physical model.
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2.3. Compressible energy relation
To achieve closure in the compressible Bragg–Hawthorne equation, a density relation
is required. Hence, in the spirit of complementing (2.18), the expression for total
enthalpy may be used. By rewriting (2.7) in terms of ψ and using the isentropic
assumption to eliminate pressure in favour of density, we find

H −
B2

2r2
=

1
2ρ2r2

[(
∂ψ

∂z

)2

+

(
∂ψ

∂r

)2
]
+

1
M2

0(γ − 1)
ργ−1. (2.19)

Equations (2.18) and (2.19) provide the basis for the compressible framework that we
plan to establish for the steady-state analysis of axisymmetric gaseous motions in a
friction-free environment.

3. Asymptotic solution strategy
In seeking analytical approximations to the two coupled density–streamfunction

equations, the Rayleigh–Janzen expansion may be used to linearize the ensuing
system of equations. A similar technique was used by Maicke & Majdalani (2008)
in modelling the compressible Taylor flow in porous channels driven by wall-normal
injection. As done before, the principal variables of interest may be expanded in
terms of M2

0 using:

u= u(0) +M2
0u(1) +O(M4

0); ψ =ψ0 +M2
0ψ1 +O(M4

0);

v = v(0) +M2
0v

(1)
+O(M4

0); B= B0 +M2
0B1 +O(M4

0);

w=w(0)
+M2

0w(1)
+O(M4

0); H =H0 +M2
0H1 +O(M4

0);

ρ = 1+M2
0ρ1 +M4

0ρ2 +O(M6
0); p= 1+M2

0p1 +M4
0p2 +O(M6

0);

T = 1+M2
0T1 +M4

0T2 +O(M6
0).


(3.1)

These expanded variables may be substituted back into the streamfunction and density
expressions to produce a set of relations that may be solved sequentially.

3.1. Rayleigh–Janzen expanded equations
Applying the Rayleigh–Janzen series expansions in (3.1) to the compressible Bragg–
Hawthorne equation and segregating leading and first-order quantities, one gets

O(1) :D2ψ0 + B0
dB0

dψ
− r2 dH0

dψ
= 0; (3.2)

O(M2
0) :D

2ψ1 + B1
dB1

dψ
− r2 dH1

dψ
=
∂ρ1

∂z
∂ψ0

∂z
+
∂ρ1

∂r
∂ψ0

∂r

− ρ1

[
D2ψ0 + 3

(
B0

dB0

dψ
− r2 dH0

dψ

)]
. (3.3)

Consistent with conventional perturbation theory, the leading-order equation reduces
to the traditional incompressible Bragg–Hawthorne equation. The first-order correction,
however, encapsulates the O(M2

0) compressible contribution. At first order, its left-hand
side mirrors the leading-order operator while the terms on the right-hand side give rise
to a non-homogeneous partial differential equation (PDE).
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The same procedure may be straightforwardly applied to the stagnation enthalpy in
(2.19). As usual, by segregating terms of the same order, we recover

O(1) :H0 −
B2

0

2r2
=

1
2r2

[(
∂ψ0

∂r

)2

+

(
∂ψ0

∂z

)2
]
+
γ + 1
γ − 1

ρ1; (3.4)

O(M2
0) : 2ρ1

(
H0 −

B0

2r2

)
+H1 −

B0B1

2r2
=

1
2r2

(
∂ψ0

∂r
∂ψ1

∂r
+
∂ψ0

∂z
∂ψ1

∂z

)
+
γ + 1
γ − 1

(ρ2 + γρ
2
1). (3.5)

When (3.2) is used to solve for ψ0, substitution into (3.4) directly unravels the
density correction, ρ1. With the density in hand, the right-hand side of (3.3) becomes
fully determined and the resulting non-homogeneous PDE may be solved for the first
compressible streamfunction correction. In principle, this sequence may be repeated
until a satisfactory truncation error is reached. Presently, the procedure will enable
us to extract closed-form expressions for the leading- and first-order corrections.
Generally speaking, the complexity of the particular solutions can grow rapidly to the
extent that a compressible approximation at the second order or beyond may require
considerable effort. In most problems, however, the first-order compressible correction
will be sufficiently accurate to convey the bulk compressibility effects, and this may
be largely attributed to the typical values of M2

0 . This provision is especially true for
swirl-dominated flows such as those arising in the context of a bidirectional vortex
engine in which the reference Mach number remains much smaller than unity.

3.2. Specification of B and H
Modelling the bidirectional vortex, or any other motion for that matter, begins with
the selection of suitable forms for B and H in the compressible Bragg–Hawthorne
equations. To facilitate analytical closure, several test functions may be considered,
specifically

B
dB
dψ
= const. B=

√
B0ψ + B1; B

dB
dψ
=ψ B=

√
B0ψ2 + B1; (3.6a,b)

dH
dψ
= const. H =H0ψ +H1;

dH
dψ
=ψ H =H0ψ

2
+H1. (3.7a,b)

Although the number of candidate functions may be limitless, the selections
above lead to linear relations that increase the likelihood of producing analytical
formulations. Higher-order polynomial relations may require a numerical treatment
of the density–streamfunction equations. For example, the (original) incompressible
model of the bidirectional vortex by Vyas & Majdalani (2006) may be recovered by
setting B= 1 and dH/dψ =−C2

nψ , where Cn is a constant. To make further headway
in illustrating this procedure, one may attempt to follow Bloor & Ingham (1987) or
Majdalani (2012) by specifying B and H such that

dH
dψ
= 0; B=

√
C2

0ψ
2 +C2

1;
dB
dψ
=

C2
0ψ√

C2
0ψ

2 +C2
1

. (3.8a−c)
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In addition to being consistent with the axisymmetric system of equations described
in the previous section, the foregoing expressions for H and B may be physically
associated with a homenergic flow field that is capable of satisfying the problem’s
boundary conditions while still leading to a linear Bragg–Hawthorne equation. By
considering a fluid that originates from a pressurized feed system, which may be
viewed as a uniform source of energy, a homenergic expression of dH/dψ = 0 may
be used. The choice of B may be similarly ascribed to the need to consider the
simplest expression that remains compliant with the angular momentum constraints
and corresponding boundary conditions, while still giving rise to a linear problem.

Interestingly, it turns out that, in the compressible case, these declarations prove
insufficient in reproducing a congruent first-order system of equations. The source
of this disparity may be traced back to the right-hand side of (3.3), where third-
order multiples of the streamfunction emerge. As per (3.4), the density correction
contains ψ2

0 terms and these are multiplied by another ψ0 during final book keeping.
To compensate for these additional powers of ψ , a modification of (3.8) is warranted.
This may be accomplished by taking dH/dψ = 0 and writing

B=
√

C2
0ψ

2 +C2
1 +M2

0ψ
2
(
C2

2 +
1
2 C2

3ψ
2
)
;

dB
dψ
=

C2
0ψ +M2

0ψ(C
2
2 +C2

3ψ
2)√

C2
0ψ

2 +C2
1 +M2

0ψ
2
(
C2

2 +
1
2 C2

3ψ
2
) .
 (3.9)

It may be instructive to note that the reference Mach number, M0, remains invariant
under steady-state flow conditions. As such, its inclusion in the fundamental definition
of B does not violate in any way the streamfunction constraint. Furthermore, realizing
that B and dB/dψ appear only as a product in the Bragg–Hawthorne equation, their
combination may be expanded as:

B
dB
dψ
=C2

0ψ +M2
0ψ(C

2
2 +C2

3ψ
2). (3.10)

From an asymptotic standpoint, equation (3.10) does not entail a loss of generality.
It is obtained by expanding the angular momentum and its derivative to the appropriate
truncation order before substituting the outcome into the streamfunction relation. The
next step is to insert the perturbed form of ψ and write:

B
dB
dψ
= C2

0(ψ0 +M2
0ψ1 +M4

0ψ
2)

+M2
0[C

2
2(ψ0 +M2

0ψ1 +M4
0ψ

2)+C2
3(ψ0 +M2

0ψ1 +M4
0ψ

2)3], (3.11)

where the constants C0, C2 and C3 may be determined from the fundamental boundary
conditions, as shown in the following section. Additionally, H may be specified in a
manner to achieve a congruent expansion of the density relation. If we take p0 and
ρ0 to be stagnation properties, we can write H = 1/[(γ − 1)M2

0].

3.3. Compressible Bragg–Hawthorne solution strategy

By gathering O(M2
0) in B dB/dψ , we retrieve

B
dB
dψ
=C2

0ψ0 +M2
0(C

2
0ψ1 +C2

2ψ0 +C2
3ψ

3
0 )+O(M4

0). (3.12)
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Inserting these contributions back into (3.2) and (3.3) gives rise to a congruent set of
linearized Bragg–Hawthorne equations at the first two successive perturbation orders,
namely,

O(1) : D2ψ0 +C2
0ψ0 = 0; (3.13)

O(M2
0) : D2ψ1 +C0ψ1 =

∂ρ1

∂z
∂ψ0

∂z
+
∂ρ1

∂r
∂ψ0

∂r
− ρ1(D2ψ0 + 3C2

0ψ0)−C2
2ψ0 −C2

3ψ
3
0 . (3.14)

Equation (3.14) can be further simplified by realizing that the left-hand side of (3.13)
partially appears on its right-hand side. This permits reducing (3.14) into

D2ψ1 +C0ψ1 =
∂ρ1

∂z
∂ψ0

∂z
+
∂ρ1

∂r
∂ψ0

∂r
− 2ρ1C2

0ψ0 −C2
2ψ0 −C2

3ψ
3
0 . (3.15)

Similar substitutions may be implemented in the density relation to unravel

O(M2
0) : ρ1 =−

1
2r2

[(
∂ψ0

∂r

)2

+

(
∂ψ0

∂z

)2

+ B2
0ψ

2
0

]
; (3.16)

O(M4
0) : ρ2 = −

2+ γ
2

ρ2
1 −

ρ1

r2
[C2

0ψ
2
0 +C2

1]

−
ψ0

2r2
[2C2

0ψ1 +C2
2ψ

2
0 +C2

3ψ
3
0 ] −

1
r2

[
∂ψ0

∂z
∂ψ1

∂z
+
∂ψ0

∂r
∂ψ1

∂r

]
. (3.17)

In seeking a compressible mean flow approximation, our procedure consists of solving
(3.13), (3.14), (3.16) and (3.17) in this staggered sequence. A flowchart describing this
process is posted as figure 2.

4. Problem specification
4.1. Geometric idealization

As alluded to earlier, the motivation for the present study centres on the bidirectional
vortex flow field that is relevant to a number of cyclonic-flow applications, including
the VCCWC engine prototype. In its basic form, the VCCWC may be modelled as
a closed–open cylinder of radius a and height L. When all spatial coordinates are
normalized by the radius, an idealized chamber of unit radius emerges, as depicted
in figure 3. The origin of the coordinate system may be conveniently placed at the
centre of the headwall with the dimensionless radial and axial coordinates being
r and z, respectively. The chamber contains a confined vortex that is dominated
by its swirl velocity, U; the latter may be used to normalize all velocities to the
extent of producing a unit tangential velocity at the inlet (v = 1). In practice, this
average inflow velocity is induced by tangential injectors that are evenly distributed
around the engine base, just upstream of the nozzle. Due to unavoidable collisions
at the boundaries, the fluid develops both axial and radial components of velocity
as it swirls towards the headwall while occupying the outer, annular region. When
the flow reaches the headwall, it reverses axial direction and returns along the
chamber bore until it discharges through the partially open base of radial fraction β.
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Posit
B, H

Leading-order
streamfunction

(3.13)

Leading-order density
(3.16)

First-order
streamfunction

(3.14)

Higher-order equations
Desired
accuracy
achieved?

End

First-order density
(3.17)

No Yes

FIGURE 2. Flowchart for the density–streamfunction formulation needed to obtain a
compressible Bragg–Hawthorne solution.

Outflow

Tangential
injection

FIGURE 3. Dimensionless coordinates and key parameters associated with the
mathematical idealization of the bidirectional vortex chamber.

As usual, a spinning, non-translating mantle separates the two vortex regions. In its
simplest mathematical idealization, two geometric parameters emerge in the analysis,
namely, the aspect ratio l = L/a and the open radial fraction at the base, β = b/a.
The latter is often taken to coincide with the mantle location in such a manner to
allow the outflow diameter to match that of the outlet cross-section. The resulting
arrangement is captured in figure 3 where the broken lines of radius β delineate the
interfacial boundary between the inner, core and outer, annular vortex regions. Such
an optimal configuration mitigates the onset of flow collisions and the establishment
of undesirable recirculation zones.

4.2. Analytical model
In modelling the bidirectional vortex, the following boundary conditions are
customarily adopted: (i) no axial flow at the headwall, (ii) no radial flow across
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the centreline, (iii) no radial flow at the sidewall and (iv) a mass balance between
the inflow and the outflow. As depicted on the graph in dimensionless form, these
conditions translate into

w(r, 0)= 0;
1
ρr
∂ψ

∂r
= 0; (4.1)

u(0, z)= 0; −
1
ρr
∂ψ

∂z
= 0; (4.2)

u(1, z)= 0; −
1
ρr
∂ψ

∂z
= 0 (4.3)

and

ṁi = 2π

∫ β

0
ρu · nr dr. (4.4)

To remain consistent with the Rayleigh–Janzen perturbation technique, we expand the
boundary conditions in terms of the Mach number squared. At leading order, we
collect

w(0)(r, 0)= 0;
1
r
∂ψ0

∂r
= 0; (4.5)

u(0)(0, z)= 0; −
1
r
∂ψ0

∂z
= 0; (4.6)

u(0)(1, z)= 0; −
1
r
∂ψ0

∂z
= 0 (4.7)

and

Qi = 2π

∫ β

0
w(0)r dr= 2π

∫ β

0

∂ψ0

∂r
dr. (4.8)

In the above, the boundary conditions used by Majdalani (2012) to derive the
incompressible Trkalian vortex are restored identically.

In conformance with perturbation theory, the constraints at the first compressible
order must not unduly influence the incompressible motion. To ensure that the solution
remains valid ∀M0, a set of homogeneous boundary conditions may hence be imposed
on all upper-level approximations. Furthermore, implementation of these conditions
will have to be carried out while taking into account the additional terms that are
produced from their higher-order expansions. For the bidirectional vortex, the first-
order counterparts to (4.1)–(4.4) may be expressed as:

w(1)(r, 0)= 0 :
1
r
∂ψ1

∂r
−
ρ1

r
∂ψ0

∂r
= 0 (impermeable headwall); (4.9)

u(1)(0, z)= 0 :
ρ1

r
∂ψ0

∂z
−

1
r
∂ψ1

∂z
= 0 (centreline symmetry); (4.10)

u(1)(1, z)= 0 :
ρ1

r
∂ψ0

∂z
−

1
r
∂ψ1

∂z
= 0 (impermeable sidewall) (4.11)

and

2π

∫ β

0
[ρ1w(0)

+w(1)
]r dr= 0 (mass conservation). (4.12)

These relations represent the first-order constraints for the compressible, bidirectional
flow field. Should higher-order corrections be required, homogeneous constraints that
resemble those at the first order could be generated at O(M4

0), O(M6
0), and so on.
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5. Compressible Bragg–Hawthorne formulation
5.1. Leading-order solution

The leading-order streamfunction must be consistent with the incompressible solution
for the same problem. In this spirit, equation (3.13) may be treated with separation
of variables. Assuming ψ0 = f (r)g(z), equation (3.13) becomes

−
g′′

g
=

1
f

(
f ′′ −

1
r

f ′ +C2
0f
)
= ν2, (5.1)

where ν2 can be positive, negative or zero. Depending on the value chosen for ν2,
three solutions may be conceived, namely,

ψ0 =


r(k1z+ k2)[k3J1(C0r)+ k4Y1(C0r)]; ν2

= 0

r[k1 sin(νz)+ k2 cos(νz)]
[
k3J1(r

√
C2

0 − ν
2)+ k4Y1(r

√
C2

0 − ν
2)
]
; C2

0 > ν
2

r[k1 sinh(νz)+ k2 cosh(νz)]
[
k3J1(r

√
C2

0 + ν
2)+ k4Y1(r

√
C2

0 + ν
2)
]
; C2

0 < ν
2.

(5.2)
In reality, the last two variations prove to be equivalent as one can be reproduced from
the other by simply replacing ν with ±iν. When accounting for the imaginary part, the
hyperbolic functions reduce to their regular trigonometric counterparts as arguments of
the Bessel functions become identical when the imaginary ν2 switches its sign. For
brevity, the remainder of this study will focus on the axially linear case as a vehicle
for developing a compressible approximation.

5.2. Leading-order boundary conditions
To satisfy the centreline boundary conditions for all values of z, we set k4 = 0
everywhere. Furthermore, applying (4.1) leads to

∂ψ0(r, 0)
∂r

= k2k3C0J0(C0r)= 0. (5.3)

Since equating either k3 or C0 to zero results in a trivial outcome, we take k2 = 0.
Substituting the resultant streamfunction back into the sidewall boundary condition
produces

∂ψ0(1, z)
∂z

= k1k3J1(C0). (5.4)

For (5.4) to be true ∀z, C0 must be a root of the Bessel function of the first kind, or

C0 = λn; n= 0, 1, 2, . . . . (5.5)

Increments in n will effectively trigger an increasing number of axial reversals in the
flow, specifically (n+1) reversals. In practice, only an odd number of reversals will be
applicable to the problem at hand and so, to recover the standard bidirectional vortex
model of Majdalani (2012), we restrict our analysis to the n= 0 case.

At this juncture, we are left with the lumped constant k1k3 that must be determined
by matching the inflow and outflow mass fluxes. At the leading order, this may be
written as

2π

∫ β

0
u · nr dr= 2π

∫ β

0
w(0)(r, L)r dr=

1
σ
. (5.6)
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From the mass balance in (5.6) we deduce

k1k3 =
1

2πβσLJ1(λ0β)
=

κ

βJ1(λ0β)
; κ ≡

1
2πLσ

. (5.7)

This converts the streamfunction form into

ψ0 = z
rκJ1(λ0r)
βJ1(λ0β)

. (5.8)

As to be expected from a leading-order approximation, equation (5.8) reproduces the
incompressible Trkalian profiles obtained by Majdalani (2012) in a right-cylindrical
cyclone. With the streamfunction solution being fully determined, the density
may be retrieved from (3.16) following a straightforward substitution. After some
manipulations, the density may be presented as:

ρ1 =−
κ2

2β2J2
1(λ0β)

{J2
1(λ0r)+ z2λ2

0[J
2
0(λ0r)+ J2

1(λ0r)]}. (5.9)

Equation (5.9) is quite illuminating. In fact, it confirms the need for higher powers
of ψ within the fundamental definition of B in (3.9). Clearly, Bessel functions that
are elevated to the second power appear thrice in the density. These, in turn, multiply
a single Bessel function in (2.13), the first-order streamfunction relation. Therefore,
in seeking appropriate candidate functions for the particular solution, terms that may
be expressed in multiples of three Bessel functions must be attempted. This step is
prompted by the requirement to write B in terms of ψ at the basis of the Bragg–
Hawthorne procedure.

5.3. First-order streamfunction solution
The first-order correction follows a similar roadmap, albeit with increased complexity.
Instead of a homogeneous equation, a particular solution must be determined in such
a way to accommodate the terms appearing on the right-hand side of (2.13). For
the axially linear case, suitable substitutions of ψ0 and ρ1 lead to the first-order,
compressible Bragg–Hawthorne equation, namely,

D2ψ1 + λ
2
0ψ1 =

zκ3λ0

β3J3
1(λ0β)

J1(λ0r) (J0(λ0r)J1(λ0r)− 2λ0rJ2
0(λ0r)

+ z2λ2
0{J0(λ0r)J1(λ0r)+ λ0r[J2

0(λ0r)+ J2
1(λ0r)]})

−
rzκ

βJ1(λ0β)
C2

2J1(λ0r)−
r3z3κ3

β3J3
1(λ0β)

C2
3J3

1(λ0r). (5.10)

Rather than a standard separation of variables approach, we employ an ansatz that is
guided by the content of the non-homogeneous terms. Recognizing that both z and z3

appear in (5.10), we let
ψ1 = zRa + z3Rb. (5.11)

By virtue of (5.11), our single PDE gives rise to two ODEs with one-way coupling
through
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z3
: R′′b −

1
r

R′b + λ
2
0Rb = −C2

3
κ3

β3J3
1(λ0β)

r3J3
1(rλ0)+

κ3λ3
0

β3J3
1(λ0β)

×{J0(rλ0)J1(rλ0)+ rλ0[J2
0(rλ0)+ J2

1(rλ0)]}; (5.12)

z : R′′a −
1
r

R′a + λ
2
0Ra + 6Rb =

κ3λ0

β3J3
1(λ0β)

J1(rλ0)[J0(rλ0)J1(rλ0)− 2λ0rJ1(rλ0)]

−C2
2

κ

βJ1(λ0β)
rJ1(rλ0). (5.13)

Our next step is to first solve (5.12), being a sole function of Rb. The ensuing
solution may be then substituted back into (5.13) to extract Ra and, with it, a
complete compressible correction.

In practice, the solution to (5.12) is exacerbated by its dependence on J3
0(x) and

J3
1(x) terms. While Bessel function integrals remain straightforward to evaluate in

closed form, integrals for multiplicative Bessel functions can be elusive. In lieu of
a completely analytical closure, our correction becomes limited to a semi-analytical
formulation that requires the numerical evaluation of a handful of integrals. To
overcome this difficulty, the integrals themselves will be isolated and specified as
functions that may be differentiated or integrated at will, so that the boundary
conditions can still be determined analytically. In essence, these new integrals may
be viewed as special functions that enable us to retain the analytical character of our
formulation. After some effort, the z3 multiplier is found to be

Rb = rJ1(λ0r)
[

πκ3

2β3J3
1(λ0β)

(C2
3I2 − λ

3
0I1)+ k7

]
+ rY1(λ0r)

[
πκ3

2β3J3
1(λ0β)

(λ3
0I3 −C2

3I4)+ k8

]
. (5.14)

Here k7 and k8 represent integration constants while r1 and r2 denote variable
substitutions in the radial integrals; furthermore, In designates the nth integral in the
first-order solution. For the reader’s convenience, these are defined in appendix A.

The z multiplier may be obtained along similar lines. Inserting (5.14) into (5.13)
yields

Ra = rJ1(λ0r)
[

πκ

2βJ1(λ0β)

(
κ2λ0

β2J1(λ0β)
I5 +C2

2I6

)
+ 3πI7 + k5

]
+ rY1(λ0r)

[
πκ

2βJ1(λ0β)

(
κ2λ0

β2J1(λ0β)
λ0I8 −C2

2I9

)
− 3πI10 + k6

]
. (5.15)

By substituting (5.14) and (5.15) back into (5.11), one arrives at the general
compressible correction. To make further headway, an appropriate set of boundary
conditions will be considered and discussed.

5.4. First-order boundary conditions
Compared to the leading order, the boundary conditions at the first order change
slightly. In fact, ensuring that the compressible correction does not unduly influence
the solution warrants the use of homogeneous constraints. Because our boundary
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conditions are written in terms of the velocity, it is useful to revisit the expanded
velocity–streamfunction relationship. At the first order, we recover

u(1) =
ρ1

r
∂ψ0

∂z
−

1
r
∂ψ1

∂z
; w(1)

=
1
r
∂ψ1

∂r
−
ρ1

r
∂ψ0

∂r
. (5.16a,b)

To avoid lengthy streamfunction expressions, we omit the general expansion of (5.16).
Instead, we examine each boundary condition individually. Examining the sidewall
condition on the radial velocity we find

z2
[6k8β

3J3
1(λ0β)Y1(λ0)+ 3πκ3λ3

0Y1(λ0)I3(1)− 3C2
3πκ

3Y1(λ0)I4(1)]
+ [2k6β

3J3
1(λ0β)Y1(λ0)− 6πβ3J3

1(λ0β)Y1(λ0)I10(1)
+πκ3λ0Y1(λ0)I8(1)−C2

2πβ
2κJ2

1(λ0β)Y1(λ0)I9(1)] = 0, (5.17)

which must hold for all z. Additionally, since all In(1) must vanish identically, we
deduce that k6= k8= 0. To find k7, we expand I7 and I10; we then apply the centreline
condition to obtain

6π[k7I10a(0)+ I10b(0)] +
πκ

β3J3
1(λ0β)

[C2
2β

2κJ2
1(λ0β)I9(0)− κ3λ0I8(0)] = 0;

C2
3 = λ

3
0
I3(0)
I4(0)

.

 (5.18)

Along similar lines, we may expand the continuity equation at first order and collect∫ β

0

∂ψ1

∂r
dr= 0. (5.19)

The detailed form of the above expression is long and, as such, of minimal interest
to the reader. However, the remaining integral may be straightforwardly handled
using symbolic programming. The evaluation of (5.19) completes our analysis of the
first-order compressible streamfunction from which all other flow parameters may be
retrieved.

6. Results and discussion
6.1. Comparison to a numerical simulation of a similar cyclonic chamber

Before presenting and discussing our findings, a simple comparison is carried out
using a fully nonlinear Navier–Stokes simulation. To this end, the main chamber in
a right circular cylinder is used to define the computational domain with a length of
L = 508 mm and a diameter 2a of 457.2 mm, thus resulting in a chamber with a
practical aspect ratio L/a of 2.22. In order to realistically approximate the injection
conditions, the purely tangential injection of the analytical model is replaced with a
circular array of eight 38.1 mm injectors, tangentially distributed around the base of
the chamber. The chamber’s outlet diameter is set to 320 mm before transitioning into
a conical nozzle. As shown in figure 4, the mesh that is used consists of 1 078 632
cells, which comprise 2 383 058 faces, 324 966 nodes and 31 partitions.

A robust, finite-volume, computational fluid dynamics (CFD) solver is chosen
to perform the attendant simulation. The inlet boundary condition that specifies the
velocity normal to the injector face is set to a value of 44.8 m s−1, thus corresponding
to an injection Mach number of M0=0.1. At the outlet, a pressure boundary condition
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(a) (b)

(c) (d )

FIGURE 4. The mesh structure and computational domain using (a) isometric, (b) top,
(c) side and (d) bottom views.

is set to 10 kPa. The SIMPLE scheme is employed with a Green–Gauss cell based
discretization for gradients and first-order upwind discretizations for the remaining
terms. Furthermore, convergence is established through an examination of residual
checks, with the lowest being a residual of 10−6 or lower in the energy equation, as
well as a visual inspection of basic flow parameters, such as the pressure and swirl
velocities, to ensure their proper development. Fundamentally, the model assumes
laminar, compressible and ideal gas conditions with standard air as the working fluid.
A strictly inviscid simulation could not be achieved in this swirl-driven configuration,
mainly because of the classic singularity along the centreline, which could not be
handled by the numerical solver without including the effects of viscosity, no matter
how small.

A comparison of the axial, radial, swirl and total velocity profiles is presented
in figure 5. In all four cases, a qualitative agreement may be seen between the
numerically and analytically obtained velocity shapes. In fact, the agreement between
the present formulation and computations appears to improve in the core region of
the cyclonic vortex, while deteriorating in the wall region. The discrepancy near the
sidewall may be attributed to the inability of an inviscid solution to satisfy the no-slip
requirement at the solid boundary.

By moving our attention to the thermodynamic variables, both pressure and density
distributions shown in figure 6 seem to exhibit similar qualitative agreement with the
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FIGURE 5. Comparison between analytical predictions and numerical simulations for the
(a) radial velocity u, (b) tangential velocity v, (c) axial velocity w and (d) total velocity
for a Mach number of 0.1.

simulated data. In both cases, the agreement is seen to improve near the walls, an
artefact that may be attributed to the two solutions being normalized by their peak
pressure and density values. In comparing the density to the pressure curves, the latter
become more tightly grouped near the walls. Despite their inevitable differences, the
overall shapes of the numerically computed pressure and density profiles remain
similar to their analytical counterparts, as both exhibit a sharp drop as the centreline
of the chamber is approached.

Several reasons may be causing the observed disparities. Firstly, the present study
remains limited to an inviscid model, while the numerical simulation incorporates
viscous effects. As alluded to earlier, excluding viscosity in the computational model
leads to an unbounded swirl velocity at the centreline, thus making an accurately
converged solution unattainable. Secondly, the purely circumferential line injection
assumed in the analytical framework can only be approximated in the computational
model using eight finite injectors that are evenly arrayed around the base of the
chamber. While this arrangement leads to a more practical injection method, the
dissimilarities with the analytical model become more appreciable near the wall. In
fact, the effect of using a discrete number of injectors becomes also noticeable near
the aft end of the chamber, where the dimensional axial coordinate approaches L.
Thirdly, the analytical approximation incorporates a single, asymptotically linearized,
compressible correction to serve as a bulk estimate for dilatational effects, unlike
the Navier–Stokes solver, which incorporates all nonlinear interactions. It is therefore
plausible that higher-order corrections may be required to improve the model’s
capabilities. Finally, the configuration used in this work consists of a straight cylinder,
whereas the chamber geometry used by the solver entails a nozzle attachment.
Evidently, differences can be expected in the vicinity of the nozzle, which is needed
in the computational domain to promote convergence.
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FIGURE 6. A comparison between analytical and numerical simulations for the (a)
pressure and (b) density at three axial locations and a Mach number of 0.1.
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FIGURE 7. Axial velocity variation in the exit plane showcasing (a) the actual profile for
κ = 0.3 and (b) the spatial distribution of its compressible correction.

Although the qualitative agreement in figures 5 and 6 is encouraging, it is only
meant to be serve as a simple check that the analytical model exhibits similar features
to those obtained from a simulated chamber, albeit slightly different from the idealized
geometric configuration adopted within the mathematical framework. Clearly, a more
detailed endeavour will be required to fully characterize the bidirectional vortex flow
motion computationally, namely, an effort that falls beyond the scope of this work.

6.2. Compressible velocity steepening
Pursuant to the streamfunction determination, the compressible motion may be
characterized in all three spatial directions. To avoid unnecessary collisions and
potential recirculation sites, the open fraction at the base, β, may be conveniently
equated to the dimensionless mantle radius, with the effect of allowing the outgoing
stream to exit the chamber unobstructed. To illustrate the effects of compressibility,
we examine a range of κ extending from 0.1 to 0.4. To facilitate comparisons relative
to previous studies, the aspect ratio of the chamber is taken to be l = 4/3, while
typical values of γ = {1.2, 1.6} are assigned to the ratio of specific heats. As for the
injection Mach number, we anchor our analysis around M0 = 0.1 and 0.2, being two
commonly used values in propulsive applications.

Thus motivated by the need to characterize the VCCWC bulk flow field, we
begin with the axial velocity, w, which drives engine performance after expansion. In
figure 7(a), we consider the axial profile at the chamber exit, z= l, for reference Mach
numbers of 0.1 and 0.2 with κ=0.3. At M0=0.1, the compressible contribution seems
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FIGURE 8. Radial velocity variation in the exit plane showcasing (a) the actual profile at
κ = 0.3 and (b) the spatial distribution of its compressible correction.

to induce a minor although still visible variation in the velocity profile; however, by
increasing the injection speed to M0 = 0.2, a more appreciable effect is realized. In
comparison to the compressible Taylor–Culick solution by Majdalani (2007a), which
is derived in the context of solid rocket motor internal motion, the first-order velocity
corrections also display a weak dependence on γ . Along similar lines, the axial
velocity exhibits a steepening effect that intensifies with the growth of the injection
Mach number. When this occurs, the polarity transition that accompanies mantle
formation acquires a blunter slope even as w crosses the radial axis vertically. This
finding is consistent with the axial steepening observed in compressible models of
solid rocket motors (e.g. Traineau, Hervat & Kuentamann 1986; Balakrishnan, Liñán
& Williams 1992; Wasistho, Balachandar & Moser 2004; Majdalani 2007a; Maicke
& Majdalani 2008; Akiki & Majdalani 2012, 2016). Contrary to the aforementioned
studies, no net amplification of the axial velocity may be noted here, aside from
a reshaping of the profile itself. As the conservation constraint at the exit must be
identically satisfied at the leading order, the resulting mass exiting the chamber at
the first order must be self-cancelling when integrated over the flow cross-section.
This requirement compels the morphing of the velocity contour without affecting the
overall mass flux. As for the compressible contribution w(1) depicted in figure 7(b),
it is featured for κ = 0.3, a value that has been used in previous studies in the
context of the VCCWC engine simulation. Based on the Bragg–Hawthorne equation
framework, the first-order correction becomes more pronounced at higher values of κ ,
∀M0. Additionally, it can be seen that the compressible contribution vanishes at two
distinct points, namely, at approximately r = 0.2 and 0.75. These sites derive their
locations from the mass balance relation which, when applied to the compressible
correction, gives rise to two polarity nodes in the axial velocity where a zero net flux
may be achieved across the chamber cross-section.

By virtue of continuity and momentum balances, elements of the steepening
mechanism observed in w are transferred to the radial velocity, u, which is illustrated
in figure 8(a). For small deviations from the incompressible case of M0 = 0, the
solution seems to be fairly well guided by the shape of the unperturbed solution.
In the present case, the effect of compression causes a spatial shifting of the peak
magnitude in u towards r= 1. As the Mach number is further increased to M0 = 0.2,
the outward shift in peak amplitudes is accompanied by a more visible increase
‖umax‖ beyond its incompressible value. This particular amplification of ‖u‖ in the
vicinity of the sidewall can be so pronounced that it must be offset by an appropriate
attenuation in the radial velocity within the core region. The corresponding shift in
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FIGURE 9. Tangential velocity variation in the exit plane showcasing (a) the actual profile
at κ = 0.3 and (b) the spatial distribution of its compressible correction.

u that is experienced near the centreline causes the radial velocity profile to switch
polarity while returning to r = 0. Mathematically, because the radial velocity is
written as a z-derivative of the streamfunction, it will be strongly influenced by the
reversing nature imposed by the conservation principle in the exit plane. Here too, the
compressible radial contribution vanishes at r= 0.55 as clearly depicted in figure 8(b).
Even for κ = 0.3, the total radial velocity remains significantly smaller than the axial
or tangential velocities, and this behaviour may be attributed to the sidewalls being
non-injecting. Nonetheless, the compressible correction itself becomes of the same
order in both axial and radial directions, hence leading to a proportionately larger
effect on the radial velocity. The ensuing trend is reversed, however, when κ is
reduced in a manner to mitigate the actual compressible contribution.

The third and most prominent component of the compressible velocity is showcased
in figure 9(a) for the two representative Mach numbers and κ . In comparison to u and
w, the behaviour of the swirl velocity v seems to mimic that of its radial counterpart;
its profile draws closer to the sidewall with each additional growth in M0. Here too,
the maximum swirling speed increases at higher values of the Mach number. Note
that in figure 9(b), only the compressible correction is featured at κ = 0.3. In both
cases, the compressible correction vanishes at r = 0.5. A closer look at v(1) reveals
that its shape resembles that of the radial profile, except for being of opposite sign
so long as 0< r< 1. Mathematically, differences in magnitudes between u and v may
be attributed to the reduced z dependence of the radial velocity; unlike u, the swirl
velocity retains a z3 dependence through the streamfunction expression.

6.3. Compressible sliding of the mantle interface
Another interesting feature of the compressible solution stems from its mantle gaining
an axial dependence that cannot be accounted for by the incompressible model. At
the leading order, the mantle maintains a constant radial position for all values of z
at approximately r = 0.627. In the compressible model, the mantle location gains a
z dependence that is clearly illustrated in figure 10 at several representative values
of the Mach number and κ . Accordingly, the mantle is seen to shift outwardly in
the proximity of the headwall (z = 0), with the shift widening at larger values of
κ as well as the reference Mach number. Then as the fluid travels towards the exit
plane, the mantle continues to slide outwardly, almost linearly in z. Such behaviour
appears to be consistent with the theoretical findings of Maicke & Majdalani (2008),
although the two studies are based on dissimilar compressible flow models. At first
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FIGURE 10. Compressible mantle location for (a) M0 = 0.1 and (b) 0.2 using κ = 0.1,
0.2, 0.3, and 0.4. The vertical line corresponds to the fixed, incompressible mantle site.

glance, the linear character of the mantle translation away from the headwall may be
viewed as somewhat perplexing because of the solution’s explicit dependence on z3.
In the present situation, however, the low aspect ratio of l= 4/3 may be responsible
for the linear behaviour up to the exit plane. In longer chambers, it is quite likely for
the linear behaviour to become superseded by a cubic dependence, especially in the
presence of sufficiently large reference Mach numbers.

In what concerns experimental evidence, Smith (1962a,b) reports two antithetical
cases: one in which the mantle slides inwardly, towards the centreline, as the distance
from the headwall is increased, and one expanding outwardly, towards the sidewall.
Without further scrutiny, it may only be possible to speculate over the factors leading
to mantle variability. For example, it may be conceivable for viscous effects to
compete with compressibility to the extent of one overpowering the other in a given
configuration. It is more likely, however, for the geometric design, along with its
inlet and outlet arrangements, including the presence of a vortex finder, to influence
the stable position of the mantle interface between the inner and outer vortex regions
(Akiki & Majdalani 2010). The presence of a protrusion into the flow, such as the
submerged vortex finder appearing in experiments by Smith (1962a,b), may have an
appreciable bearing on the final mantle location.

6.4. Density and pressure variations
In the compressible Bragg–Hawthorne framework, all thermodynamic quantities
may be restored from the density. In view of the isentropic relation used at the
basis of the density–streamfunction formulation, the pressure and temperature may
be straightforwardly deduced from the density. With this in mind, retrieving and
characterizing the compressible density correction is paramount to the determination
and interpretation of the corresponding pressure and temperature fields. Both p1 and
T1 differ from ρ1 by a constant multiplier, namely,

p1 = γρ1 and T1 = (γ − 1)ρ1. (6.1a,b)

In figure 11, density variations are shown in the exit plane for the two representative
injection Mach numbers of M0 = 0.1 and 0.2, using κ = 0.1, 0.2, 0.3, and 0.4. As it
may be surmised from the graphs, the density appears to be sensitive to both variations
in the Mach number and κ . However, the sensitivity to κ is amplified substantially
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FIGURE 11. Density distribution for injection Mach numbers of (a) M0= 0.1 and (b) 0.2
using z= l and κ = 0.1, 0.2, 0.3 and 0.4.
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FIGURE 12. Pressure distribution for injection Mach numbers of (a) M0= 0.1 and (b) 0.2
using κ = 0.1 and 0.3 at z= l.

when the Mach number is incremented from 0.1 to 0.2. This may be attributed to
the former being closer to the leading-order benchmark than the latter. In both cases,
however, as the Mach number and κ are augmented, the normalized density undergoes
successive decreases throughout the chamber, with the most significant depreciation
occurring along the centreline. It is this particular drop in density that drives, in part,
the variation in the axial velocity correction at the first order through its contribution
to the mass conservation requirement at z= l.

As for the pressure companion, which regains a dependence on γ , similar trends are
depicted in figure 12, where the dimensionless pressure distribution is displayed for
κ = 0.1 and 0.3 as well as γ values of 1.2 and 1.6. Here too, the largest depreciation
in the pressure is realized near the centreline, and this effect is accentuated at
higher values of M0 or γ . In the M0 = 0.2 case, the compressible correction causes
the pressure near the centreline to drop precipitously, thus leading to low suction
conditions that become even more pronounced with successive increases in M0 or γ .
At this point, it may be useful to recall that, for cyclonic motions to be stable, the
upward streaming of the incoming fluid through a siphoning process is necessary to
avoid premature short-circuiting or early spillage, as it were, out of the open base.
It can hence be seen that suction conditions near the centreline can be beneficial to
the proper and stable formation of a bidirectional vortex. In consequence, it may be
ascertained that increasing the injection Mach number or the ratio of specific heats
will enhance the suction level in the core region, a condition that can lead to a more
stable cyclonic-flow field.
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FIGURE 13. Sensitivity of the axial velocity in the exit plane for injection Mach numbers
of (a) M0 = 0.1 and (b) 0.2 using κ = 0.1, 0.2, 0.3 and 0.4 at z= l.

6.5. Sensitivity to the inflow swirl parameter κ

Up to this point, most solutions have been evaluated at values of κ that range from
0.1 to 0.4. This convention has enabled us to amplify the effects of compressibility
to the extent of better isolating and capturing the specific features associated with
each variable of interest. Realistically speaking, it is possible for κ to take on smaller
values, and these will lead to a reduction in the compressible axial and radial speeds
along with their compressible counterparts relative to the tangential velocity. From this
perspective, the sensitivity of the compressible approximation to variations in κ may
be helpful to explore.

To study the κ sensitivity, the axial velocity profile is re-examined at z = l using
both M0= 0.1 and 0.2. This is accomplished over a range of κ extending from 0.1 to
0.4 as depicted in figure 13. It may be safely argued that the remaining dynamic and
thermodynamic quantities will exhibit similar trends by virtue of their sensitivity to the
swirl parameter κ being analogous to that of the axial velocity. As clearly illustrated
in these graphs, decreasing κ leads to a corresponding drop in both compressible and
incompressible parts of the axial velocity. The compressible contributions diminish
even more rapidly, owing to their cubic dependence on κ , to the extent of approaching
the incompressible approximation. Conversely, increasing the injection Mach number
to 0.2 or higher stands to offset the effect of decreasing κ .

At low values of κ , the axial and radial velocities, which can directly absorb the
effects of compression in the absence of restrictions in the r and z directions, become
overwhelmingly dominated by the tangential motion. Their overall magnitudes become
small relative to v. The latter cannot experience compression in the tangential direction
without bypassing the condition of axisymmetry. Its sensitivity to density variations
can only be realized through its spatial dependence on the first-order streamfunction,
and this association proves to be commensurate with the size of both κ and M0.
Naturally, this coupling weakens at decreasing values of κ which, physically, imply
the existence of higher levels of swirl and, therefore, stronger tendency to promote
an axisymmetric distribution of flow field properties. So while higher levels of swirl
increase the resistance to compression in the tangential direction, higher injection
Mach numbers serve to counterbalance this effect, with the overall motion being
controlled almost exclusively by these two contending factors. This behaviour seems
to support the tradition of relying on incompressible models for mean flow Mach
numbers below 0.3 irrespective of the flow detail.
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FIGURE 14. The effect of compressibility on the vorticity in the (a) radial, (b) tangential,
(c) axial direction and (d) vorticity magnitude for κ = 0.1, 0.2 and 0.3.

6.6. Vorticity
Given the helical nature of this motion, it may be instructive to examine the influence
of compressibility on the flow vorticity. In this vein, the radial, tangential and axial
vorticity components, along with their total vorticity magnitude are plotted in figures
14(a)–14(d), respectively. Of the component vorticities, the axial and tangential
contributions appear to be comparable in strength, while the radial component
persistently lags behind by one order of magnitude. The swirl velocity, being the
dominant component, seems to be the primary contributor to the axial vorticity,
by virtue of its strong radial dependence. Similarly, the axial velocity, being the
next largest contributor, forms the bulk of the tangential vorticity component. Since
the swirl velocity exhibits only a weak dependence on the axial coordinate, its
contribution to the radial vorticity is seen to be minimal compared to the other
components.

Upon closer examination of figure 14, it may be inferred that re-introducing
compressibility tends to shift the vorticity in the flow outwardly, towards the walls.
This behaviour seems to be characteristic of all spatial components whose peak
values are shifted towards the wall with successive increases in κ . Interestingly both
radial and tangential vorticity components may be viewed as being anchored at both
the centreline and the wall. The axial vorticity displays no such anchor, but rather
assumes a positive, finite value near the centreline and a negative, finite value near
the wall. Furthermore, when accounting for dilatational effects, the peak vorticity at
the centreline may be seen to diminish as the vorticity redistributes itself near the
sidewall.

To amplify the compressible correction, one may increase either κ or the Mach
number. At κ = 0.1, the Mach number does not seem to have an appreciable bearing
on the tangential, axial or total vorticity profiles. Although it displays a visible effect
on the radial vorticity, the magnitude of this contribution remains much smaller than
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the other components to the extent of producing a negligible impact on the total
vorticity.

However, as the value of κ is increased, the influence of the Mach number becomes
gradually more noticeable. For the κ = 0.2 case, a distinct difference arises in the
M0= 0.2 plot compared to both the incompressible and M0= 0.1 findings. This effect
becomes even more pronounced at κ = 0.3, where deviations become magnified in
comparison to the smaller κ values.

At his juncture, it may be useful to digress and discuss the practical range of κ
based on laboratory experiments. In actuality, most cold-flow studies, such as those by
Rom (2006), seem to rely on modular vortex chambers with values of κ that range
from approximately 0.007–0.04. While it is possible for a design to exhibit values of
κ that are as large as 0.3–0.4, laboratory experiments that employ water or air as the
working fluid will likely operate at smaller values of κ . It may be hence speculated
that compressibility will not likely have an appreciable effect on the vorticity field in
non-reactive flow configurations.

6.7. Compressibility criterion
Before attempting to model a given flow field, it is often desirable to determine
whether or not the extra effort entailed in pursuing a compressible solution will be
warranted. This argument may be made both for analytical models, such as the one
developed here, and for numerical simulations, where the inclusion of dilatational
effects can significantly prolong the ensuing computation. Bearing this concern in
mind, one may conceive of a compressibility criterion that captures the effective
change in velocity due to density variations. Algebraically, this criterion may be
taken as

χ =
u2
+ v2
+w2

u2
0 + v

2
0 +w2

0
, (6.2)

where χ represents the change in the compressible velocity relative to its incompress-
ible form. The resulting comparison of velocity magnitudes provides a single value
that can be used to quantify the effects of fluid compression on the flow field.
For example, one may consider that a ten per cent (or larger) deviation between
compressible and incompressible velocities will justify the use of a fully compressible
model. To illustrate this variability in the case of a bidirectional vortex, the values of
χ in the r–z plane are computed and presented in figure 15. For the case of M0= 0.1
and κ ranging from 0.1–0.4, the compressible ratio may be seen to always fall within
approximately five per cent of the incompressible approximation. Although the shape
of the contours visibly change when κ reaches 0.4, the values of χ still fluctuate
between five per cent below to five per cent above the incompressible prediction.
We conclude that, at this level of the injection Mach number, numerical simulations
could be safely carried out assuming incompressible conditions.

Interestingly, in reference to figures 15(a) and 15(c), it appears that when κ = 0.1,
which corresponds to a tangential velocity that is one order of magnitude larger
than its axial and radial counterparts, a unidirectional velocity modification is realized
across the chamber width, with the compressible velocity mirroring the incompressible
profile near the exit plane, albeit with increasing divergence in the vicinity of the
headwall. When κ is incremented to 0.4, the iso-contour of unity (along which the
compressible and incompressible models coincide), is no longer located near the exit
plane. Instead, it realigns itself almost vertically, thus bisecting the chamber into
two regions: a core region where the compressible solution exhibits a reduction in
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FIGURE 15. Contours of the compressible criterion for M0= 0.1 with (a) κ = 0.1 and (b)
0.4, as well as M0 = 0.2 with (c) κ = 0.1 and (d) 0.4.

kinetic energy, and a larger, outer region extending from approximately one third of
the radius to the wall, where the compressible velocity exceeds its incompressible
counterpart. The existence of two regions with dissimilar kinetic energies may be
traced back to the mass conservation requirement and its enforcement within the
asymptotic analysis. Since mass must be conserved at the leading order, the mass
balance prescribed by (4.4) must also be secured at the first order. This implies that
any velocity augmentation near the open end must be offset by a velocity deficit
in order to maintain a balance between the inflow and the outflow. The clearest
example of this behaviour may be inferred from figure 15(b). In this case, the
compressible motion near the centreline undergoes a reduction in magnitude, while
the flow adjacent to the walls is slightly accelerated. Inside the outflow region, which
is delineated by the mantle interface, i.e. 0 < r < 0.628, the lower velocities that
occur near the centreline must be offset by appropriately higher velocities within the
outer portion of the outflow region. The outcome may be seen in a steepened velocity
profile, where the core velocities are reduced as r→ 0, while the outlying velocities
are increased to preserve mass conservation throughout the exit port.

Naturally, the variability from the incompressible baseline is accentuated with
successive increases in the Mach number. In figure 15(c,d) the magnification effect
that accompanies a larger value of the Mach number may be clearly seen. Overall,
in comparing the iso-lines in figure 15, one can conclude that while the shape of the
contours is prescribed by the strength of κ , the size of the deviation depends on the
value of the injection Mach number. By raising the injection Mach number to 0.2,
the contour shapes remain similar, but the deviations at the extremes are amplified
to approximately twenty five per cent, thus marking an order of magnitude increase
relative to the M0 = 0.1 case. The inclusion of compressibility effects will hence
be essential in bidirectional vortex applications, such as the VCCWC studies, which
entail injection Mach numbers that exceed 0.2.
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7. Conclusion
In this study, we revisit an important although often overlooked framework in fluid

mechanics, namely, a differential technique that is based on the compressible analogue
to the Bragg–Hawthorne or Squire–Long equation. The equation itself proceeds from
a vorticity–streamfunction transformation of Euler’s inviscid equations into a single,
second-order PDE with two principal functions: B, the tangential angular momentum,
and H, the stagnation enthalpy. In previous work, this equation has been explored in a
multitude of physical settings, mainly in the treatment of bathtub-like helical structures
exhibiting strong axisymmetries. However, these studies have been mostly limited in
scope to inviscid and incompressible conditions.

Initially, we have been motivated by a propulsion-related application, namely, by the
need to describe the internal gas dynamics within a self-cooled thrust chamber wherein
the propellant is compelled to follow a cyclonic flow path. By making use of the
isentropic pressure–density relation, the stagnation enthalpy expression was employed
to achieve the desired closure and, as such, establish the foundation for a well-posed
paradigm consisting of two PDEs for the streamfunction and density. This effort gave
rise to a general BHE framework in the form of a density–streamfunction formulation
that offers the freedom to select B and H and, as such, establish the specific boundary
conditions for the problem in question.

Despite the ability to solve the resulting PDEs by computer, we have opted to
linearize them asymptotically for the wide class of problems in which a reference
Mach number could be designated as a primary perturbation parameter. Thus, using
the Rayleigh–Janzen perturbation technique, the compressible Bragg–Hawthorne
equation framework was expanded asymptotically and linearized into several pairs
of coupled PDEs of increasing order in the injection Mach number. In theory, the
expanded equations could be retrieved to any desired order, a process that grants
our approach the ability to achieve an arbitrary level of precision. More importantly,
perhaps, it provides a clear roadmap for producing analytical approximations to a
wide range of fluid motions in which density variations may be appreciable.

In the present study, we have focused on the application of this relatively untested
framework to a specific profile of the confined bidirectional vortex. In this vein,
we have considered the so-called linear Trkalian model of the cyclonic-flow field
arising in the context of ORBITEC’s swirl-driven, VCCWC thrust chamber. This
particular model has been shown to exhibit features that are appropriate of several
experiments and simulations of the VCCWC prototype and of similarly configured
cyclone separators. These include a cold-flow simulation of the VCCWC at a given
Mach number, which is carried out to inspect the overall agreement between theory
and simulations. Albeit of secondary relevance to the present investigation, the
comparison to a commercial solver lends support to the underlying assumptions and
modelling choices.

Interestingly, the foregoing analysis leads to several characteristic features of the
compressible Trkalian motion. In summary, we find that increasing either the injection
Mach number or, to a lesser extent, the ratio of specific heats, will trigger a steepening
effect with respect to the incompressible flow analogue. While a similar steepening
due to compressibility has been noted in solid rocket motor internal ballistics (see
Balakrishnan et al. 1992; Majdalani 2007a; Maicke & Majdalani 2008), the flattening
of the Trkalian core profile remains spatially restricted: it follows a redistribution
that enables the motion to still satisfy the conservation condition imposed at the
inflow–outflow boundary in the exit plane. This steepening mechanism is accompanied
by a sharp density expansion near the axis of rotation along with an outward shifting
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of the mantle interface, which separates the outer and inner vortex regions. In this
process, the annular region through which the incoming stream is funnelled into the
chamber undergoes a constriction in its cross-sectional area. The so-called pinching
of the outer vortex is akin to the behaviour exhibited by the annular region of the
Vortex Injection Hybrid Rocket Engine as a reaction to increasing the burning rate
along its sidewall (Majdalani 2007b). Despite the model’s incompressible character,
augmenting the injection mass flow rate within the outer annulus (by virtue of
distributed mass addition along the sidewall) forces the mantle to slide outwardly.
This outward movement is needed to increase the radius of the inner vortex in such
a way to permit more mass to exit the chamber. In the compressible Trkalian case, a
similar mechanism is observed and this may be attributed to the density stratification
that is induced by fluid compression in conjunction with the presence of strong
radial gradients; these give rise to a higher density fluid in the outer vortex and a
markedly lower density within the chamber core. Clearly, increasing the fluid density
in the annular region is somewhat analogous to increasing the mass flux locally. Both
actions lead to a widening of the outlet section, an outward shifting of the mantle,
and a corresponding redistribution of the velocity profiles. For M0 = 0.2, the mantle
starts with a radius of 0.639 at the headwall, and then shifts progressively to 0.681
in the exit plane.

In addition to the steepening caused by successive increases in the Mach number,
our study shows that higher values of M0 lead to lower pressures in the core region.
These, in turn, can promote a stronger aspiration process through which a more
effective flow streaming towards the headwall is promoted along with a more stable
development of cyclonic motion. These effects, which are accompanied by a shift in
the vorticity towards the sidewall, may be amplified by increasing κ or, to a lesser
extent, the ratio of specific heats.

Our sensitivity analysis reveals an interdependence between the injection Mach
number and the inflow swirl parameter κ . As the injection Mach number and κ

are increased, the effects of compressibility become more appreciable; however, the
resulting excursions manifest themselves in different ways. For example, we find
that changes in κ tend to alter the shape of the velocity profile, while varying M0

results in a scaling variation instead of a fundamental shape change. This behaviour
is particularly noticeable in the compressible criterion where the effect of the inflow
swirl parameter, κ, changes the shape of the contours, whereas changes in the
injection Mach number result in a magnification of the extremes.

In closing, we reaffirm that the study presented here is not meant to be a compre-
hensive investigation of the compressible Bragg–Hawthorne equation. Nonetheless,
the framework seems to be viable for a wide range of problems encompassing both
confined and unconfined vortex flows. In the case of the bidirectional vortex, other
candidate functions for B and H may be chosen to the extent of producing alternate
models for ORBITEC’s VCCWC internal flow field. While the present analysis
focuses on the axially linear solution to the stream function equation, it can be
suitably extended to the axially trigonometric, nonlinear Trkalian case.
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Appendix A

This section describes a set of integrals that are defined as special functions
of the form In(r). These arise in the analysis leading to the compressible first-order
formulation of the linear Trkalian flow field. The specification of the ensuing integrals
in terms of simple functions enables us to reduce the first-order equations to a more
manageable size while implementing the boundary conditions more expeditiously.
These integral functions are specified as follows:

I1(r)=
∫ r

1
J1(λ0x)Y1(λ0x){λ0x[J2

0(λ0x)+ J2
1(λ0x)] + J0(λ0x)J1(λ0x)} dx; (A 1)

I2(r)=
∫ r

1
x3J3

1(λ0x)Y1(λ0x) dx; (A 2)

I3(r)=
∫ r

1
J2

1(λ0x){J0(λ0x)J1(λ0x)+ λ0x[J2
0(λ0x)+ J2

1(λ0x)]} dx; (A 3)

I4(r)=
∫ r

1
x3J4

1(λ0x) dx; (A 4)

I5(r)=
∫ r

1
J1(λ0x)Y1(λ0x){2λ0xJ2

0(λ0x)− J0(λ0x)J1(λ0x)} dx; (A 5)

I6(r)=
∫ r

1
xJ1(λ0x)Y1(λ0x) dx; (A 6)

I7(r)=
∫ r

1
Y1(λ0x)Rb(x) dx; (A 7)

I8(r)=
∫ r

1
J2

1(λ0x){J0(λ0x)J1(λ0x)− 2λ0xJ2
0(λ0x)} dx; (A 8)

I9(r)=
∫ r

1
xJ2

1(λ0x) dx; (A 9)

I10(r)=
∫ r

1
J1(λ0x)Rb(x) dx. (A 10)

REFERENCES

AKIKI, G. & MAJDALANI, J. 2010 On the bidirectional vortex with arbitrary endwall velocity. In
46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN: AIAA
Paper 2010-6652.

AKIKI, M. & MAJDALANI, J. 2012 Improved integral form of the compressible flowfield in thin
channels with injection. AIAA J. 50 (2), 1–9.

AKIKI, M. & MAJDALANI, J. 2016 Compressible integral representation of rotational and axisymmetric
rocket flow. J. Fluid Mech. 809, 213–239.

BALAKRISHNAN, G., LIÑÁN, A. & WILLIAMS, F. A. 1992 Rotational inviscid flow in laterally
burning solid propellant rocket motors. J. Propul. Power 8 (6), 1167–1176.

BARBER, T. A. & MAJDALANI, J. 2009 Exact Eulerian solution of the conical bidirectional vortex.
In 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, CO: AIAA
Paper 2009-5306.

BLOOR, M. I. G. & INGHAM, D. B. 1987 The flow in industrial cyclones. J. Fluid Mech. 178,
507–519.

BRUCE, C. E. R. 1961 Spiral stellar nebulae and cosmic gas jets. J. Franklin Inst. 271 (1), 1–11.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

31
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.310


Compressible Trkalian vortex flow field 785

CHIAVERINI, M. J., MALECKI, M. J., SAUER, A. & KNUTH, W. H. 2002 Vortex combustion chamber
development for future liquid rocket engine applications. In 38th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference and Exhibit, Indianapolis, IN: AIAA Paper 2002-4149.

CORTES, C. & GIL, A. 2007 Modeling the gas and particle flow inside cyclone separators. Prog.
Energy Combust. Sci. 33 (5), 409–452.

DERKSEN, J. J. 2005 Simulations of confined turbulent vortex flow. Comput. Fluids 34, 301–318.
DERKSEN, J. J. & VAN DEN AKKER, H. E. A. 2000 Simulation of vortex core precession in a

reverse-flow cyclone. AIChE J. 46 (7), 1317–1331.
ESCUDIER, M. P. 1988 Vortex breakdown – observations and explanations. Prog. Aerosp. Sci. 25

(2), 189–229.
HOEKSTRA, A. J., DERKSEN, J. J. & VAN DEN AKKER, H. E. A. 1999 An experimental

and numerical study of turbulent swirling flow in gas cyclones. Chem. Engng Sci. 54 (3),
2055–2065.

HU, L. Y., ZHOU, L. X., ZHANG, J. & SHI, M. X. 2005 Studies of strongly swirling flows in the
full space of a volute cyclone separator. AIChE J. 51 (3), 740–749.

KAPLAN, C. 1946 Effect of compressibility at high subsonic velocities on the lifting force acting on
an elliptic cylinder. NACA 834. Langley Memorial Aeronautical Laboratory, National Advisory
Committee for Aeronautics, Langley Field, VA.

KELSALL, D. F. 1952 A study of motion of solid particles in a hydraulic cyclone. Trans. Inst.
Chem. Engrs 30, 87–103.

KÖNIGL, A. 1986 Stellar and galactic jets: theoretical issues. Can. J. Phys. 64 (4), 362–368.
LEIBOVICH, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221–246.
LEIBOVICH, S. 1984 Vortex stability and breakdown: survey and extension. AIAA J. 22 (9),

1192–1206.
TER LINDEN, A. J. 1949 Investigations into cyclone dust collectors. Proc. Inst. Mech. Engrs 160,

233–255.
MAICKE, B. A. & MAJDALANI, J. 2008 On the rotational compressible Taylor flow in injection-driven

porous chambers. J. Fluid Mech. 603, 391–411.
MAJDALANI, J. 2007a On steady rotational high speed flows: the compressible Taylor–Culick profile.

Proc. R. Soc. Lond. A 463, 131–162.
MAJDALANI, J. 2007b Vortex injection hybrid rockets. In Fundamentals of Hybrid Rocket Combustion

and Propulsion (ed. K. Kuo & M. J. Chiaverini), chap. 6, pp. 247–276. AIAA Progress in
Astronautics and Aeronautics.

MAJDALANI, J. 2012 Helical solutions of the bidirectional vortex in a cylindrical cyclone: Beltramian
and Trkalian motions. Fluid Dyn. Res. 44 (6), 065506.

MAJDALANI, J. & CHIAVERINI, M. J. 2009 On steady rotational cyclonic flows: the viscous
bidirectional vortex. Phys. Fluids 21, 103603.

MAJDALANI, J. & CHIAVERINI, M. J. 2017 Characterization of GO2-GH2 simulations of a miniature
vortex combustion cold wall chamber. J. Propul. Power 33 (2), 387–397.

MOLINA, R., WANG, S., GOMEZ, L., MOHAN, R., SHOHAM, O. & KOUBA, G. 2008 Wet gas
separation in gas–liquid cylindrical cyclone separator. J. Energy Resour. Technol. 130 (4),
042701.

MURRAY, A. L., GUDGEN, A. J., CHIAVERINI, M. J., SAUER, J. A. & KNUTH, W. H. 2004
Numerical code development for simulating gel propellant combustion processes. In 52nd
JANNAF Propulsion Meeting, Las Vegas, NV: JANNAF Paper TP-2004-0115.

PENNER, S. S. 1972 Elementary considerations of the fluid mechanics of tornadoes and hurricanes.
Acta Astron. 17, 351–362.

ROM, C. J. 2006 Flow field and near nozzle fuel spray characterization for a cold flowing vortex
engine. Master’s thesis, University of Wisconsin-Madison.

ROM, C. J., ANDERSON, M. H. & CHIAVERINI, M. J. 2004 Cold flow analysis of a vortex chamber
engine for gelled propellant combustor applications. In 40th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference and Exhibit, Fort Lauderdale, FL: AIAA Paper 2004-3359.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

31
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.310


786 B. A. Maicke, O. M. Cecil and J. Majdalani

SHALABY, H., PACHLER, K., WOZNIAK, K. & WOZNIAK, G. 2005 Comparative study of the
continuous phase flow in a cyclone separator using different turbulence models. Intl J. Numer.
Meth. Fluids 48 (11), 1175–1197.

SMITH, J. L. 1962a An analysis of the vortex flow in a cyclone separator. Trans. ASME J. Basic
Engng 84 (4), 609–618.

SMITH, J. L. 1962b An experimental study of the vortex in the cyclone separator. Trans. ASME J.
Basic Engng 84 (4), 602–608.

TOLLMIEN, W. 1941 Grenzlinien adiabatischer potentialströmungen. Zeitschrift für Angewandte
Mathematik und Mechanik 21 (3), 140–152.

TRAINEAU, J-C., HERVAT, P. & KUENTAMANN, P. 1986 Cold-flow simulation of a two-dimensional
nozzleless solid rocket motor. In 22nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference,
Huntsville, AL: AIAA Paper 86-1447.

VYAS, A. B. & MAJDALANI, J. 2006 Exact solution of the bidirectional vortex. AIAA J. 44 (10),
2208–2216.

VYAS, A. B., MAJDALANI, J. & CHIAVERINI, M. J. 2003 The bidirectional vortex. Part 3: Multiple
solutions. In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville,
AL: AIAA Paper 2003-5054.

WASISTHO, B., BALACHANDAR, R. & MOSER, R. D. 2004 Compressible wall-injeciton flows in
laminar, transitional, and turbulent regimes: numerical prediction. J. Spacecr. Rockets 41 (6),
915–924.

ZHU, Z., NA, Y. & LU, Q. 2008 Pressure drop in cyclone separator at high pressure. J. Thermal
Sci. 17 (3), 275–280.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

31
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.310

	On the compressible bidirectional vortex in a cyclonically driven Trkalian flow field
	Introduction
	Compressible Bragg–Hawthorne formulation
	Normalization
	Density–streamfunction formulation
	Compressible energy relation

	Asymptotic solution strategy
	Rayleigh–Janzen expanded equations
	Specification of B and H
	Compressible Bragg–Hawthorne solution strategy

	Problem specification
	Geometric idealization
	Analytical model

	Compressible Bragg–Hawthorne formulation
	Leading-order solution
	Leading-order boundary conditions
	First-order streamfunction solution
	First-order boundary conditions

	Results and discussion
	Comparison to a numerical simulation of a similar cyclonic chamber
	Compressible velocity steepening
	Compressible sliding of the mantle interface
	Density and pressure variations
	Sensitivity to the inflow swirl parameter κ
	Vorticity
	Compressibility criterion

	Conclusion
	Acknowledgements
	Appendix A 
	References


