Can a Fibonacci group be a unique products group?

Colin D. Fox

Abstract

We show that a certain class of Fibonacci groups can not be right ordered. A question remaining is:

Are the torsion-free members of this class unique products groups?

The Fibonacci groups in which we are interested are the groups $F(2, n)=\left\langle x_{1}, x_{2}, \ldots, x_{n+2}: x_{i} x_{i+1}=x_{i+2}, i=1,2, \ldots, n\right.$,

$$
\left.x_{n+1}=x_{1}, x_{n+2}=x_{2}\right)
$$

(see Brunner [2] and Johnson [3]).
The pair (G, \leq) is a right ordered group if G is a group, \leq is a linear order on the set G, and for all $a, b, c \in G, a \leq b$ implies $a c \leq b c$. A group G is called a right orderable group if there is a linear order \leq on the set G such that (G, \leq) is a right ordered group.

The group G is a unique products group if for all $a_{1}, a_{2}, \ldots, a_{m}$, $b_{1}, b_{2}, \ldots, b_{n} \in G$, there exist a_{i} and $b_{j} \quad(1 \leq i \leq m$ and $1 \leq j \leq n$) such that

$$
a_{i} b_{j} \notin\left\{a_{r} b_{s}: 1 \leq r \leq m, 1 \leq s \leq n, \text { and }(i, j) \neq(r, s)\right\}
$$

We denote by $\underline{\underline{R}}$ and $\underline{\underline{U}}$ the classes of right orderable groups and
 and Rhemtulla [1]) while I know of no group in $\underset{=}{U} \backslash \underline{\underline{R}}$. (Also recall that

Received 1 December 1978.
the question "Is a torsion-free group a unique products group?" is still open.)

In this note we show (see the theorem below) that $F(2, n) \& \underline{\underline{R}}$ for all integers $n \geq 3$. However, it is possible that $\underset{N}{U}$ contains some of these Fibonacci groups. One contender is $F(2,6)$ which is isomorphic to the torsion-free group $\left(x, y: x^{-1} y^{2} x=y^{-2}, y^{-1} x^{2} y=x^{-2}\right.$) (Brunner [2], Passman [4]). So we leave the following question for the reader:

Is $F(2,6)$ a unique products group?
It is worth noting that the integral group ring $\mathbb{Z}(F(2,6))$ has no zero divisors (Passman [4]). So if the answer to our question is "no" then $F(2,6)$ provides a negative answer to the question:

If $\mathbb{Z}(G)$ has no zero divisors, is G a unique products group?
We conclude with a theorem which, probably, can be generalized to the groups $F(r, n)$ (Johnson [3]). Observe that $n \geq 3$ is a necessary restriction on n since $F(2,0)$ is the free group on two generators and both $F(2,1)$ and $F(2,2)$ are the trivial group.

THEOREM. For all integers $n \geq 3, F(2, n)$ is not a right orderable group.

Proof. Suppose $n \geq 3$ is an integer. We rewrite the presentation for $F(2, n)$ as

$$
\left\langle x_{1}, x_{2}, \ldots, x_{n}: x_{1} x_{2}=x_{3}, \ldots, x_{n-1} x_{n}=x_{1}, x_{n} x_{1}=x_{2}\right\rangle
$$

Assume \leq is a right order for $F(2, n)$. Without loss of generality $x_{1}>1$ (where 1 is the identity of $F(2, n)$) and x_{1} is the generator with greatest magnitude. That is $x_{1} \geq x_{i}$ and $x_{1} \geq x_{i}^{-1}$ for all $i=2,3, \ldots, n$. So we have

$$
\begin{aligned}
x_{3} \leq x_{1} & \Rightarrow x_{1} x_{2} \leq x_{1} \\
& \Rightarrow x_{1} x_{n} x_{1} \leq x_{1} \\
& \Rightarrow x_{1} x_{n} \leq 1
\end{aligned}
$$

while

$$
\begin{aligned}
x_{n-1} \leq x_{1} & \Rightarrow x_{n-1} x_{n} \leq x_{1} x_{n} \\
& \Rightarrow x_{1} \leq x_{1} x_{n} \\
& \Rightarrow 1<x_{1} x_{n}
\end{aligned}
$$

a contradiction.
So no $F(2, n), n \geq 3$, can be right ordered.

References

[1] Roberta Botto Mura and Akbar Rhemtulla, "Notes on orderable groups" (University of Alberta, Edmonton, Canada, 1975).
[2] A.M. Brunner, "The determination of Fibonacci groups", Bull. Austral. Math. Soc. 11 (1974), 11-14.
[3] D.L. Johnson, Presentations of groups (London Mathematical Society Lecture Note Series, 22. Cambridge University Press, Cambridge, London, New York, Melbourne, 1976).
[4] D.S. Passman, "Advances in group rings", IsraeZ J. Math. 19 (1974), 67-107.

Department of Pure Mathematics,
La Trobe University,
Bundoora,
victoria.
Present address:
Scotch College,
Hawthorn,
victoria.

