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Can a Fibonacci group be a

unique products group?

Colin D. Fox

We show that a certain class of Fibonacci groups can not be right

ordered. A question remaining is:

Are the torsion-free members of this class unique products

groups?

The Fibonacci groups in which we are interested are the groups

Fl P n ) - < T Y v • T r = r 7 = 1 ? n

^M+l X l '

(see Brunner [2] and Johnson [3]).

The pair (G, £) is a right ordered group if G is a group, £ is a

linear order on the set G , and for all a, b, c £ G , a £ b implies

ao £ bo . A group G is called a right orderdble group if there is a

linear order £ on the set G such that (<3, £) is a right ordered

group.

The group G is a unique products group if for all a , a., ..., a ,

b , bo, ..., b (. G , there exist a. and b . (l £ i £ m and
1 ^ w t j

1 £ j £ n ) such that

a.fc. ( {a J : l £ r £ w , l £ s £ n , and (i, j) + (r, s)} .
i> 3 r s

We denote by I? and IJ the classes of right orderable groups and

unique products groups respectively. It is known that F! c U (Botto Mura

and Rhemtulla [/]) while I know of no group in U\R . (Also recall that
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the question "Is a torsion-free group a unique products group?" i-s still

open.)

In this note we show (see the theorem below) that F(2, n) $ j| for

all integers n 2 3 . However, it is possible that IJ contains some of

these Fibonacci groups. One contender is F{2, 6) which is isomorphic to

—1 2 —2 —1 2 ?
the torsion-free group (x,y: xyx=y~,y x y = x~ > (Brunner [2],

Passman [4]). go w e leave the following question for the reader:

Is F(2, 6) a unique products group?

It is worth noting that the integral group ring 7L[F(2, 6)) has no

zero divisors (Passman [4]). So if the answer to our question is "no" then

F(2, 6) provides a negative answer to the question:

If 2(G) has no zero divisors, is G a unique products group?

We conclude with a theorem which, probably, can be generalized to the

groups F{v, n) (Johnson [3]). Observe that n i 3 is a necessary

restriction on n since F(2, 0) is the free group on two generators and

both F{2, l) and F{2, 2) are the trivial group.

THEOREM. For all integers n i 3 , F{2, n) is not a right orderable

group.

Proof. Suppose n 2 3 is an integer. We rewrite the presentation

for F{2, n) as

<xl« X2> •••' xn ' XXX2 = XV •••' xn-\xn = V V l = V •

Assume - is a right order for F(2, n) . Without loss of generality

x > 1 (where 1 is the identity of F(2, n) ) and x. is the generator

with greatest magnitude. That is x 5 x. and x - x. for all

i = 2, 3, ..•, n . So we have

*E-3 — X-, X-. Xp — X-.

°* X-,X Xn - X,

1 n 1 1
xnx £ 1
1 n

while
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x 2 xn =* x x S x x
n - 1 1 n - 1 n I n

X l ~ xlxn
=> 1 < x x

1 n

a contradiction.

So no F(2, n) , n 2; 3 , can be right ordered.
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