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Abstract

We study the perpetual American option characteristics in the case where the underlying
dynamics involve a Brownian motion and a point process with a stochastic intensity. No
assumption on the distribution of the jump size is made and we work with an arbitrary
positive or negative jump. After proving the existence of an optimal stopping time
for the problem and characterizing it as the hitting time of an optimal boundary, we
provide closed-form formulae for the option value, as well as for the Laplace transform
of the optimal stopping time. These results are then applied to the analysis of a
real option problem when considering the impact of a fundamental and brutal change
in the investment project environment. The consequences of this impact, that can
seriously modify, positively or negatively, the project’s future cash flows and therefore
the investment decision, are illustrated by numerical examples.

Keywords: Optimal stopping time; perpetual American option; point process; real option

2000 Mathematics Subject Classification: Primary 60G40; 60G55
Secondary 60K99; 91B28

1. Introduction

In this paper, we consider a stochastic process S with dynamics involving a diffusion and a
unique jump process. In such a framework, we aim at studying the problem

ess sup
τ∈ϒt

E(e−µ(τ−t)(Sτ − 1)+ | Ft ),

where (Ft ) is the considered filtration, which will be made precise later, ϒt denotes the set of
Ft -stopping times taking values in (t,+∞[, (·)+ denotes the positive part, and µ is a positive
real number. This issue comes from real options and, more precisely, from the investor’s
problem to finance a project, when a (unique) sudden and drastic change can occur in the
environment. No assumption is made on the impact of this shock. As a consequence, even if
our study includes credit risk issues, it cannot be reduced to this type of problem. In particular,
we can also consider positive consequences of the drastic change on the project.

Real options studies are usually written in a continuous framework for the underlying
dynamics (see the seminal papers by Brennan and Schwartz (1985), McDonald and Siegel
(1986), and Dixit and Pindyck (1993)). But the existence of crises and shocks on investment
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markets generates discontinuities. Some research has been undertaken studying the impact of
such instabilities on the investment decision process (see, for example, Gerber and Shiu (1998),
Mordecki (2002), or Barrieu and Bellamy (2005)).

The question of the impact of a brutal change in the project environment has not been studied
so far, to our knowledge. Such a fundamental change in the regulation can seriously impact,
positively or negatively, the project’s future cash flows and therefore the investment decision.
Many situations can lead to a major brutal change in the project environment; for instance, a
currency devaluation, an increase in interest rates, the appearance of brand-new technologies,
or the entry of a new competing firm. Mathematically speaking, all these situations are similar
and are equivalent to considering a single jump diffusion process.

This work aims at studying the impact of such a market perturbation on the decision taking.
More precisely, the investor has a budget allocation problem. He has to determine whether the
project is interesting and if so, to have some idea of the optimal investment time to allocate his
capital among financial instruments with different maturities. Therefore, we need to specify
the optimal benefit/cost ratio, the project investment value, and the optimal time to enter the
project for the investor when he considers the project. This problem is similar to the study of
a perpetual American call option written on the project ratio with strike 1. However, since this
paper aims at analyzing a real option problem, we do not adopt a risk neutral logic, and the
calculations are made with respect to the prior probability measure, without inducing any loss
of generality.

In Section 2, we introduce the framework of study and present our model. The relationship
between a real option problem and the pricing of a perpetual American option is also recalled.
The main results on optimal stopping and perpetual options characteristics are given in Section 3.
We obtain in this section closed-form formulae without any assumption on the distribution of
the jump size and with an arbitrary positive or negative jump. Section 4 is devoted to the study
of real option problems in a disrupted framework. We first illustrate the main results of this
paper with different investment examples. Then we analyze the importance of the calibration of
the model and study the consequences of a misspecification in a bearish environment. Finally,
some proofs are presented in Appendix A.

2. The model

2.1. Framework

In this paper, we consider a given economic agent having the opportunity to invest in a
particular project. The stochastic framework is described by a probability space (�,F ,P)
where P is the prior probability measure representing the beliefs and anticipations of the agent.

The project is characterized at any time t ≥ 0 by its profit/cost ratio St , with

dSt = St−(α dt + σ dWt +� dDt),

S0 = s0,
(1)

where the following statements hold.

• Let (Wt ; t ≥ 0) be a P-Brownian motion and let α and σ be constants.

• The process (Dt ; t ≥ 0) describes the potential shock of a drastic change in regulation
on the project. It is defined as

Dt = 1{t≥T }, (2)

https://doi.org/10.1239/aap/1183667621 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667621


512 P. BARRIEU AND N. BELLAMY

where T is a random variable of exponential law with parameter λ and 1{·} denotes the
indicator function. We denote the compensated martingale associated with (Dt ; t ≥ 0)
by (Mt ; t ≥ 0), where

Mt = Dt − λ

∫ t

0
(1 −Ds) ds.

• The jump size � is a random variable. More precisely, � measures the impact of the
perturbation on the profit/cost ratio.

Therefore, the solution of the stochastic differential equation (1) is

St = s0(1 +�)Dt exp
[(
α − 1

2σ
2)t + σWt

]
.

We assume that the Brownian motion and the random variable T are independent. Moreover,
the random variable � is taken independent of both the Brownian motion and the jump time
process. Note that such an assumption is reasonable since the (regulation) shock is exogenous
to the project we consider.

Assumption 1. From now on, we make the following technical assumptions, ensuring that the
problem we consider is well-defined and nondegenerate:

(i) −1 < � ≤ � < �, for two constants � and �,

(ii) 0 < s0 < 1,

(iii) σ > 0,

(iv) µ > max(0, α, α + λ�).

In Assumption 1(i), � > −1 implies that the ratio S remains strictly positive, therefore the
investment opportunity is never worthless. Considering a bounded � ensures that the positive
impact of a drastic change in the environment cannot be infinite. Therefore, the situation we
study is neither catastrophic nor explosive; � is also assumed to be not identically equal to
zero, otherwise this study is reduced to the standard Black–Scholes framework.

Assumption 1(ii) states that the project is interesting (s0 > 0) but also that the problem is
about a ‘true’ decision since s0 is (strictly) less than one; delaying the project realization is only
relevant in the case where the profits/costs ratio is less than one.

Assumption 1(iii) maintains a Brownian source of randomness in the process dynamics. It is
indeed reasonable to assume that the ratio profits/costs randomly evolves even without a major
modification of the project environment. Assumption 1(iv) is an integrability condition.

The available information structure is characterized by the filtration (Ft ; t ≥ 0). At each
instant of time t , the agent knows what is the current value of the ratio profit/cost related to the
project, and therefore knows that σ(Ss; 0 ≤ s ≤ t). This information includes the value ofDt ;
indeed, at each instant t , from the observation of the underlying process S, the agent knows
whether the shock has already occurred or not. As a consequence, the filtration Ft is defined as

Ft = σ(Ss,Ds; 0 ≤ s ≤ t).

Note that the approach defined by the framework we consider differs from those of the models
in the literature related to both real options andAmerican options. On the contrary to most of the
existing literature (see for instance Gerber and Shiu (1998), Mordecki (2002), or Chesney and
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Jeanblanc (2004)), the underlying process S cannot be written in terms of a Lévy processXt as
S0 exp(Xt ). Quite recently, Muroi (2002) considered a general framework involving a possible
default for the underlying process of an American option. His approach is however different in
the sense that it is focused on the numerical aspects and based upon partial differential equation
methods. Moreover he does not provide closed-form characterizations for the American option.

2.2. Perpetual option and investment problem

The investor has neither any obligation to undertake it nor any time constraint to take his
decision. Therefore, the investment decision problem is often brought down to the study of a
perpetual American option with the profit/cost ratio S as underlying and 1 as striking level (see,
for example, McDonald and Siegel (1986)). Solving the real option problem at any time t is
equivalent to determine the value of the quantity

Ct = ess sup
τ∈ϒt

E(e−µ(τ−t)(Sτ − 1)+ | Ft ),

where ϒt denotes the set of Ft -stopping times taking values in (t,+∞[ and where µ is the
discount rate, which can be different from the instantaneous risk-free rate and represents the
agent’s preferences for the present. Also, E is the expectation with respect to the prior probability
measure P.

Since the pair (D, S), where D is defined in (2), is Markovian, we can rewrite Ct as

Ct = ess sup
τ∈ϒt

E(e−µ(τ−t)(Sτ − 1)+ | Ft )

= ess sup
τ∈ϒt

E(e−µ(τ−t)(Sτ − 1)+ | St ,Dt ),

or for all (t, x, d) ∈ R
+ × R

+ × {0, 1}, and adopting the natural notation,we obtain

C(t, x, d) = ess sup
τ∈ϒt

E(e−µ(τ−t)(Sτ − 1)+ | St = x, Dt = d). (3)

Note that the computations are made with respect to the prior probability measure P, corre-
sponding to the agent’s beliefs. This does not create any loss of generality. If the underlying
asset of the investment option is traded on financial market, a risk-neutral valuation formula
can be easily obtained by considering a risk-neutral probability measure, as underlined in the
following remark.

Remark 1. If a risk-neutral approach is adopted, then the only changes in the results come
from both the modification of the discount rate µ in the instantaneous risk-free rate r, and a
modification in the jump process intensity. More precisely, any equivalent martingale measure
P(ψ,γ ) is defined in terms of a pair of processes (ψ, γ ), satisfying the usual regularity conditions
and being the solution to

α + λ�(1 −Dt)− r + σψt + λ�γt = 0,

γt > −1.

The Radon–Nikodym derivative

dP(ψ,γ )

dP

∣∣∣∣
Ft

= L
(ψ,γ )
t
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is given by

dL(ψ,γ )t = L
(ψ,γ )
t (ψt dWt + γt dMt), L

(ψ,γ )
0 = 1.

Therefore, the intensity of (Dt ; t ≥ 0) evaluated with respect to P(ψ,γ ) is equal to
λ

∫ t
0 (1 + γs)(1 −Ds) ds.

2.3. Notation

We now give a series of various notations which are used throughout the paper. In spite of
being rather heavy, these notations are as simplified as possible and allow us to give explicit
formulae for the different quantities characterizing the investment project.

(i) Let N be the cumulative distribution of the Gaussian law, i.e.

N (x) = 1√
2π

∫ x

−∞
e−t2/2 dt.

(ii) For s0 > 0, ν > 0, L ≥ 1, ϕ ≥ 0, and a ∈ R, let Fϕ(s0, ν, L, a) be defined by

Fϕ(s0, ν, L, a) =
∫ +∞

0
ν e−νtN

(
1

σ
√
t

ln

(
L

s0(1 + ϕ)

)
− a

√
t

)
dt

−
(
L

s0

)2a/σ ∫ +∞

0
ν e−νtN

(
− 1

σ
√
t

ln

(
L(1 + ϕ)

s0

)
− a

√
t

)
dt, (4)

and 
F0,ϕ(s0, ν, L, a) be defined by


F0,ϕ(s0, ν, L, a) = Fϕ(s0, ν, L, a)− F0(s0, ν, L, a).

(iii) For ν > 0, ϕ ≥ 0, and a ∈ R, let fϕ(ν, a) be defined by

fϕ(ν, a) =
∫ +∞

0
ν e−νt 1√

2πt
exp

(
−1

2

(
1

σ
√
t

ln(1 + ϕ)+ a
√
t

)2)
dt

− a

∫ +∞

0
ν e−νtN

(
− 1

σ
√
t

ln(1 + ϕ)− a
√
t

)
dt, (5)

and 
f0,ϕ(ν, a) be defined by


f0,ϕ(ν, a) = fϕ(ν, a)− f0(ν, a).

(iv) We denote by a0, θ0, and v0 the following parameters

a0 = 1

σ

√(
α − σ 2

2

)2

+ 2µσ 2, (6)

θ0 = 1

σ

(
σ 2

2
− α +

√(
α − σ 2

2

)2

+ 2µσ 2

)
, (7)

v0 = α + σ 2/2

σ
. (8)
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3. Main results on optimal stopping and perpetual options

This section is devoted to the study of the perpetual call option, described in Section 2.2.
We first prove the existence of an optimal stopping time in (3), and characterize it as the hitting
time of an optimal region. Then, we look at the different characteristics of the perpetual option.
More precisely, we provide closed-form formulae for the Laplace transform of the optimal
stopping time and for the real option value.

3.1. Existence and characterization of an optimal stopping time

In this section, we consider the question of the existence of an optimal stopping time for the
problem (3). The following result holds true.

Theorem 1. There exists an optimal stopping time for the problem (3). In other words, there
exists τ ∗

t ∈ ϒt such that

C(t, x, d) = E(e−µ(τ∗
t −t)(Sτ∗

t
− 1)+ | St = x, Dt = d).

Moreover, τ ∗
t is characterized as the first hitting time by the process S of a region [Ld,∗t ,+∞),

fully known at time t , i.e.
τ ∗
t = inf{s ≥ t; Ss ≥ L

d,∗
t }.

Here, two very different situations have to be studied separately, depending on whether the
jump has already occurred or not (in other words, whether d = 1 or d = 0) at time t of the
study. The arguments used in both cases are of a completely different nature.

3.1.1. Case 1: Dt = 1. In the situation where the jump has occurred before time t , the problem

C(t, x, 1) = ess sup
τ∈ϒt

E(e−µ(τ−t)(Sτ − 1)+ | St = x, Dt = 1) (9)

is standard and well known, therefore we simply state the results and sketch the proof. More
precisely,

Proposition 1. (i) The optimal hitting time in the problem (9) exists and it is characterized as
the first hitting time of a constant region [L1,∗,+∞), i.e.

C(t, x, 1) = sup
L≥1

E(e−µ(τ−t)(SτL − 1)+ | St = x, Dt = 1)

= E(e−µ(τ
L1,∗−t)(Sτ

L1,∗ − 1)+ | St = x, Dt = 1),

where τL = inf{t ≥ 0; St ≥ L} is the first hitting time of [L,+∞).

(ii) The optimal level L1,∗ is given by

L1,∗ = k1

k1 − 1
,

where k1 is the unique positive real number such that ψ(k1) = µ, with ψ , the Lévy exponent
of the Lévy process X, defined by

Xs = (α − 1
2σ

2)s + σWs.
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Proof. Note that, on the set {t ≥ T }, we necessarily have τL ≥ T and, as a consequence,
for any s, t such that 0 ≤ T ≤ t ≤ s we have

Ss = x exp
((
α − 1

2σ
2)(s − t)+ σ(Ws −Wt)

)
.

Therefore, the proof of these results is similar to that of the standard Black–Scholes model (see,
for example, Merton (1992, Section 8.8) or Karatzas and Shreve (1998, Section 2.6)), and we
omit it.

3.1.2. Case 2: Dt = 0. The second situation where the jump has not already occurred at time t
is not standard. The problem is of a double nature: first we have to prove the existence of an
optimal stopping time for

C(t, x, 0) = ess sup
τ∈ϒt

E(e−µ(τ−t)(Sτ − 1)+ | St = x, Dt = 0) (10)

and then we have to characterize it.

(i) Existence of an optimal stopping time. For any x ∈ R
+∗ , and for Dt = 0, we denote by

St,x,0. the trajectory of the process S such that St,x,0t = x. Hence, for any s ≥ t we obtain

St,x,0s = x(1 +�)Ds exp
[(
α − 1

2σ
2)(s − t)+ σ(Ws −Wt)

]
. (11)

The following result holds true.

Lemma 1. The stopping time

τ ∗
t = inf{s ≥ t | C(s, St,x,0s , 0) = (St,x,0s − 1)+}

is P-almost surely finite.

Proof. Recall the constants � and � defined in Assumption 1. Now, the process S� and
the function C� are defined as follows:

S
�
s = x(1 +�) exp

[(
α − 1

2σ
2)(s − t)+ σ(Ws −Wt)

]
for s ≥ t

and
C�(t, x) = ess sup

τ∈ϒt
E(e−µ(τt−t)(S�τt − 1)+ | S�t = x(1 +�)).

The process S� and the function C� are defined in a similar way.
Because the inequalities −1 < � ≤ � < � hold true, we can write

τ ∗
t ≤ inf{s ≥ t | C�(t, x) = (St,x,0s − 1)+}

≤ inf{s ≥ t | C�(t, x) = (S
�
s − 1)+}

≤ inf

{
s ≥ t | C�(t, x) = k

(
S�s − 1

k

)+}
,

where k = (1 +�)/(1 +�). Now, from Assumption 1(iv) we have

inf

{
s ≥ t

∣∣∣∣ C�(t, x) = k

(
S�s − 1

k

)+}
< ∞ P almost surely.
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Proposition 2. There exists an optimal stopping time for the problem (10). In other words,
there exists τ ∗

t ∈ ϒt such that

C(t, x, 0) = E(e−µ(τ∗
t −t)(Sτ∗

t
− 1)+ | St = x, Dt = 0). (12)

Proof. From (11) and Assumptions 1(i) and 1(iv), we deduce that the optimal stopping
theory can apply (see, for example, El Karoui (1981, Section 2.11) or Peskir and Shiryayev
(2006)); therefore we conclude from Lemma 1 that the stopping time τ ∗

t is optimal.

(ii) Characterization of the optimal stopping time. In this second part of this case, we want to
characterize the optimal stopping time of the problem (10). Using the same type of arguments
as in Jacka (1991), we get a characterization similar to the one obtained for the case Dt = 1.

Let Y be the continuation region defined by

Y = {(t, x) | C(t, x, 0) > (x − 1)+},
and let Yt denote the section

Yt = {x | (t, x) ∈ Y}.
We first give the characterization of the section Yt of the continuation region in terms of an
optimal frontier.

Proposition 3. For any t > 0, there exists L0,∗
t > 1 such that

Yt = [0, L0,∗
t [.

Proof. From (12), the function x �→ C(t, x, 0) is continuous, therefore it suffices to prove
the following implication:

(x ∈ Yt and 0 < y < x) 	⇒ (y ∈ Yt ).

Let us assume that x ∈ Yt . As a consequence, C(t, x, 0) > (x − 1)+. Let τxt be defined by

τxt = inf{s ≥ t | (s, St,x,0s ) /∈ Y}.
On the one hand, we have,

C(t, x, 0) = E(e−µ(τxt −t)(Sτxt − 1)+ | St = x, Dt = 0) = E(e−µ(τxt −t)(St,x,0
τxt

− 1)+)

and, on the other hand, as τxt is not optimal for C(t, y, 0), we have

C(t, y, 0) ≥ E(e−µ(τxt −t)(St,x,0
τxt

− 1)+).

Therefore,

C(t, x, 0)− C(t, y, 0) ≤ E(e−µ(τxt −t)[(St,x,0
τxt

− 1)+ − (S
t,y,0
τxt

− 1)+]).
The assumption 0 < y < x together with (11) imply

C(t, x, 0)− C(t, y, 0)

≤ E(e−µ(τxt −t)(St,x,0
τxt

− S
t,y,0
τxt

))

≤ (x − y)E

(
exp

(
(α − µ)(τxt − t)+ λ

∫ τxt

t

ln(1 +�)(1 −Ds) ds

)
E(σW)τyt ,t

)
,

where E(σW)τyt ,t = exp(σ (Wτ
y
t

−Wt)− 1
2σ

2(τ
y
t − t)).
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Let P̃ be the probability measure, equivalent to P, defined by

dP̃

dP

∣∣∣∣Ft = exp

(
σWt − 1

2
σ 2t

)
.

Now,

C(t, x, 0)−C(t, y, 0) ≤ (x−y) Ẽ

(
exp

(
(α − µ)(τxt − t)+ λ

∫ τxt

t

ln(1 +�)(1 −Ds) ds

))
.

From Assumption 1(iv), we have

Ẽ

(
exp

(
(α − µ)(τxt − t)+ λ

∫ τxt

t

ln(1 +�)(1 −Ds) ds

))
≤ 1

and
C(t, x, 0)− C(t, y, 0) ≤ (x − y),

or
C(t, y, 0) ≥ C(t, x, 0)− (x − y) > (x − 1)+ − (x − y) > y − 1.

Let ξ = inf{u ≥ t | St,y,0u ≥ 2}, then

C(t, y, 0) ≥ E(e−µ(ξ−t)(St,y,0ξ − 1)+)

≥ E(e−µ(ξ−t))
> 0.

Therefore, for any (t, y) ∈ R
+ × R

+∗ , C(t, y, 0) > 0. Finally, C(t, y, 0) > (y − 1)+. Hence,
the result follows.

We can now characterize the optimal stopping time as the hitting time of a region.

Corollary 1. The optimal stopping time τ ∗
t of the problem (10) is characterized by

τ ∗
t = inf{s ≥ t | St,x,0s ≥ L

0,∗
t },

where L0,∗
t is defined in Proposition 3.

Proof. The proof is an immediate consequence of Proposition 3.

3.2. Perpetual option characteristics

We are now interested in finding the perpetual option characteristics, in particular its value.
As previously, the situations when Dt = 1 and Dt = 0 are very different. Therefore, we will
look at them separately.

3.2.1. Case 1: Dt = 1. As previously mentioned, when the jump has already occurred before
time t , the results are standard in this case.

Proposition 4. (i) The Laplace transform of the optimal time is

E(e−µ(τ
L1,∗−t) | St = x, Dt = 1) =

(
x

L1,∗

)L1,∗/L1,∗−1

,
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(ii) The price of the real option is given by

C(t, x, 1) = (L1,∗ − 1)

(
L1,∗

x

)−k1

,

where the optimal level L1,∗ is given by Proposition 1.

Proof. These results are similar to those of the standard Black–Scholes framework and can
be found, for example, in Merton (1992) or Karatzas and Shreve (1998).

Note that the formulae do not apparently depend on the jump size �. This comes from the
fact that after the jump, the jump size does not play any role apart from the shift in the ‘initial
condition’, which becomes s0(1 + �) instead of s0. This dependency is somehow hidden in
the value x of the process at time t .

3.2.2. Case 2: Dt = 0. As previously, the situation where the jump has not occurred yet at
time t , is not standard. We now want to study the characteristics of the perpetual option

C(t, x, 0) = ess sup
τ∈ϒt

E(e−µ(τ−t)(Sτ − 1)+ | St = x, Dt = 0),

which can also be written, using Corollary 1, as

C(t, x, 0) = ess sup
L0
t ≥1

E(e
−µ(τ

L
0,
t

−t)
(Sτ

L0
t

− 1)+ | St = x, Dt = 0).

For the sake of simplicity in the notation and computation but without loss of generality, we
consider this problem at time t = 0 (obviously, D0 = 0). Therefore, we look at

C(0, s0, 0) = ess sup
L0≥1

E(e−µτ
L0 (Sτ

L0 − 1)+ | S0 = s0). (13)

We now present the main result of this paper, giving the perpetual option characteristics in a
general framework where we do not know a priori the sign of the jump size �. The following
two theorems provide these explicit formulae at time zero. In particular, the optimal frontier
and a characterization of the optimal hitting time are now given in Theorem 2.

Theorem 2. (i) The optimal frontier of the problem (13) is given by

L
0,∗
� = η(�)

η(�)− 1 + �(�)
,

where

η(�) = 2

σ
f0(λ, a0)+ θ0σ

− 2

σ
E(1{�<0}(1 +�)θ0/σ )f0(λ, a0)

+ 2

σ
E

[
1{�>0}

[
λ

λ+ µ

f0,�(λ+ µ, a0 − θ0)− (1 +�)θ0/σ f�(λ, a0)

]]
and

�(�)

= 2

σ
E

[
1{�>0}

(
λ(1 +�)

λ+ µ− α

f0,�(λ+ µ− α, v0)− λ

λ+ µ

f0,�(λ+ µ, a0 − θ0)

)]
.
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(ii) For every s0 such that 0 < s0 < L
0,∗
� , the optimal hitting time is characterized by its Laplace

transform

E(exp(−µτ
L

0,∗
0 (�)

)) =
(
s0

L
0,∗
�

)θ0/σ

(1 +K(�))+�(�),

where

K(�) = −F0(s0, λ, L
0,∗
� , a0)+ F0(s0, λ, L

0,∗
� , a0)E[1{�<0}(1 +�)θ0/σ ]

+ E[1{�>0}(1 +�)θ0/σF�(s0, λ, L
0,∗
� , a0)],

�(�) = − λ

λ+ µ
E[1{�>0}
F0,�(s0, λ+ µ, L

0,∗
� , a0 − θ0)];

see Section 2.3 for the notation.

Proof. Let� be a constant denoted by ϕ. To prove this result, we first consider the following
two cases: ϕ is positive (i.e. a bullish environment) or ϕ is negative (i.e. a bearish environment).
Finally, the general result is obtained by means of conditional expectation, as it is enough to
consider the case where the jump size is a constant, from the independence of the random
variable � and the filtration generated by the Brownian motion and the jump process.

(a) The bullish environment. Assuming the random variable � to be a positive constant ϕ, we
determine the optimal threshold on which the agent bases his decision. We proceed in two steps
to obtain L0,∗

� in a bullish framework (with ϕ > 0).

Step 1. The functionsFϕ and fϕ , defined by (4) and (5) are linked by the following relationship:

for all λ > 0 and for all a ∈ R,
∂

∂L
Fϕ(s0, λ, L, a)

∣∣∣∣
s0

= L = 2

σL
fϕ(λ, a).

Moreover, the function Fϕ satisfies Fϕ(L, λ, L, a) = 0.

Step 2. We denote by c the following function:

c(s0, L) = E[e−µτL(SτL − 1)].
Then from Lemma 2 we deduce the following:

∂

∂L
c(s0, L)

∣∣∣∣
s0

= L

= 2

σL
(1 + ϕ)θ0/σ (L− 1)fϕ(λ, a0)+ 1 − θ0

σL
(L− 1)− 2

σL
(L− 1)f0(λ, a0)

− 2λ(1 + ϕ)

σ(λ+ µ− α)

f0,ϕ(λ+ µ− α, v0)+ 2λ

σL(λ+ µ)

f0,ϕ(λ+ µ, a0 − θ0).

The unique solution of
∂

∂L
c(s0, L)

∣∣∣∣
s0

= L = 0

is

L = L0,∗
ϕ = η+(ϕ)

η+(ϕ)− 1 + �+(ϕ)
,
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where

η+(ϕ) = 2

σ
f0(λ, a0)+ θ0σ + 2

σ

[
λ

λ+ µ

f0,ϕ(λ+ µ, a0 − θ0)− (1 + ϕ)θ0/σ fϕ(λ, a0)

]
,

�+(ϕ) = 2

σ

[
λ(1 +�)

λ+ µ− α

f0,ϕ(λ+ µ− α, v0)− λ

λ+ µ

f0,ϕ(λ+ µ, a0 − θ0)

]
.

(b) The bearish environment. In the case where the constant ϕ is nonpositive, the optimal
frontier is given by

L0,∗
ϕ = η−(ϕ)

η−(ϕ)− 1
,

where

η−(ϕ) = 2

σ

[
(1 − (1 + ϕ)θ0/σ )f0(λ, a0)+ θ0

2

]
.

The proof for this case is similar to that of the previous case and the result follows directly from
Lemma 3.

Theorem 2(i) is then a straightforward consequence of parts (a) and (b) of the proof and of
the independence of the random variable � with respect to the Brownian motion and the jump
process. Theorem 2(ii) can be deduced from this independence, Lemma 2, Lemma 3, and the
value of the optimal threshold given in Theorem 2(i).

The following theorem gives the perpetual option value.

Theorem 3. For every s0 such that 0 < s0 < L
0,∗
� , the perpetual option value at time t = 0 is

C(0, s0, 0) = (L
0,∗
� − 1)

(
s0

L
0,∗
�

)θ0/σ

(1 +K(�))+ J (�),

where K(·) is defined in Theorem 2 and

J (�) = − λs0

λ+ µ− α
E[1{�>0}(1 +�)
F0,�(s0, λ+ µ− α, L

0,∗
� , v0)];

see Section 2.3 for the notation.

Proof. The proof follows directly from Theorem 2, Lemma 2, and Lemma 3.

3.3. Comments

The model presented here, in particular the situation Dt = 0, is very different from the
existing literature, as it corresponds to a non-Lévy model. The results are therefore different.
Note, however, that if � ≡ 0 P almost surely, then all the formulae of this study are similar to
those of the ‘Black–Scholes’ model. The ‘interesting’ situation is when Dt is different from 1.
Otherwise, the formulae are similar to a standard Black–Scholes-type framework, where no
possible jump of the underlying process is introduced (as it is equivalent to have a shift in
the initial condition of our problem). Therefore, we focus on the nonstandard results, when
Dt = 0.

In this paper, Theorem 2 gives an explicit representation of the optimal boundary without
any particular assumption either on the sign of the jump� or on its distribution. Whether� is
positive or negative has a great impact on the structure of the different results since it shapes the
optimal frontier differently. In fact, both situations are mathematically very different, as it can
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be seen when considering the two particular cases where the random variable� has a constant
negative versus positive sign. The main reason is that when the jump is negative, the process
S necessarily crosses the given frontier in a continuous way. However, this property does not
hold any more if the jump is positive. Therefore, the mathematics involved and the results we
obtain are dissimilar. Moreover, the results we obtain are strongly different from those of the
Lévy model.

When the jump is negative, even if the optimal frontier is still of a standard shape, i.e.

L
0,∗
� = η−(�)

η−(�)− 1
,

both the Laplace transform and the value of the investment opportunity are different. The
standard equations for the Laplace transform and the price are perturbed by a multiplicative
factor K , this factor K being identical to the one in the bullish environment, we have

E(exp(−µτ
L

0,∗
0 (�)

)) =
(
s0

L
0,∗
�

)L0,∗
� /(L

0,∗
� −1)

(1 +K(�)),

C(0, s0, 0) = (L
0,∗
� − 1)

(
s0

L
0,∗
�

)L0,∗
� /(L

0,∗
� −1)

(1 +K(�)).

This multiplicative factor comes from the memory of the process used to model the profit and
cost ratio. Obviously, in the limit situation where there is no possible jump (� ≡ 0), the results
coincide with those of the standard Black–Scholes-type framework as K(0) = 0.

When considering a positive jump, we obtain explicit formulae for the three characteristics
of the investment opportunity. The results we obtain are fundamentally different from those of
Lévy models. In particular, the optimal frontier cannot be written under the previous standard
form (if we exclude the particular limit case where� = 0). Indeed, an additional term �+(�)
is present in the denominator of the optimal frontier, i.e.

L
0,∗
� = η+(�)

η+(�)− 1 + �+(�)
.

Both the Laplace transform and the investment value differ from the standard case by two
different effects. There is first a common multiplicative factor K and also two additive factors
J ′ (for the Laplace transform) and J (for the value of the investment), i.e.

E(exp(−µτ
L

0,∗
0 (�)

)) = �(�)+
(
s0

L
0,∗
�

)L0,∗
� /(L

0,∗
� −1)

(1 +K(�)),

C(0, s0, 0) = J (�)+ (L
0,∗
� − 1)

(
s0

L
0,∗
�

)L0,∗
� /(L

0,∗
� −1)

(1 +K(�)).

These differences can be explained as follows. As for the bearish case, the factor K comes
from the memory of the process used to model the profit and cost ratio, whereas the additive
factors J ′ and J translate the fact that in this case the optimal boundary L0,∗

� is not necessarily
crossed in a continuous way.
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4. Application to a real option problem

In this section, we look more closely at the investment problem (i.e. the value of the
investment project and optimal hitting time) when the investor has no particular knowledge
about the type of impact a new regulation, i.e. a sudden shock, may have on the project itself.
Namely, we do not know whether the sign of the jump will be positive or negative. This
may be the case for investment projects related to new technologies when the prospects are
uncertain. In this case, the related market witnesses a rapid evolution. New regulations can be
adopted, modifying its structure. They can generate either a positive impact when improving
the security and the transparency (bullish environment) or a negative impact when increasing
its complexity (bearish environment). New competitors can also enter the market, attracted
by these new prospects, and actual competitors can default, victims of a lack of experience
and speculation. Finally, we may think of new techniques that can be patented either by the
considered firm or by competitors.

In this section, we focus on the situation at time t = 0 without any loss of generality. In
fact, if a new regulation is expected, or if some disruptive factor for the economic environment
is likely to occur, we may think that the investor will delay his investment decision and wait
for the actual occurrence of the shock to evaluate the impact on the investment project and
to finally take his decision. This delay seems to be all the more important since the potential
impact (positive or negative) is unknown. In reality, however, the investor does not necessarily
have the opportunity of delaying his decisions, and often has to decide as soon as the investment
project appears (i.e. at time t = 0). This pressure may be due to several reasons. In the first
place, the investor could face some legal constraints, for instance in the search for concessions or
licences (for example, the Universal Mobile Telecommunications Systems, where the investors
have to take their decisions before a fixed deadline). The investor can also face some market
and competition constraints, where the postponement of a decision can give his competitors
the opportunity of taking a stand and, as a consequence, invalidate any possibility of investing
in the strategic business field for the investor. So considering the study at time t = 0 appears
to be relevant for the investment problem we analyze.

In the following, we look at a real option problem in a disrupted framework, as previously
described. We illustrate the results of Section 3 and provide numerical applications. In such a
context, one of the most important questions is certainly related to the calibration of the model.
This is all the more important since the shock induces a drastic decrease in the project cash
flows. Therefore, we conclude this study by looking at the impact of a model misspecification
in a bearish environment, i.e. when the impact of a shock is to be negative.

4.1. Illustration

We now illustrate the main results of this paper (Theorems 2 and 3) through numerical
examples. More precisely, we consider an agent facing an investment problem at time zero, in
a potentially disturbed environment. We focus especially on the sensitivity with respect to the
jump size of both the Laplace transform of the hitting time and the investment value. The set
of parameters we consider is

s0 = 0.8, σ = 0.2, α = 0.05, µ = 0.15.

In Table 1 we give some values of the optimal profit and cost ratio for different values of
the jump intensity λ and the jump size ϕ. The optimal ratio is monotonic with respect to the
jump size ϕ. Moreover, the optimal ratio is a nonincreasing function of the jump intensity λ
for negative values of ϕ, whereas it is a nondecreasing function of λ for positive values of the
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Table 1: The optimal profit–cost ratio.

ϕ λ = 0.25 λ = 0.5 λ = 1 λ = 2

−0.99 1.407 617 1.374 67 1.364 417 1.367 871
−0.8 1.415 605 1.382 496 1.372 175 1.375 653
−0.6 1.443 986 1.410 464 1.399 953 1.403 498
−0.5 1.468 846 1.435 171 1.424 556 1.428 139
−0.4 1.503 957 1.470 402 1.459 746 1.463 347
−0.3 1.553 697 1.520 998 1.510 504 1.514 057
−0.2 1.625 893 1.595 907 1.586 132 1.589 45
−0.1 1.735 855 1.713 473 1.705 999 1.708 546
−0.05 1.814 285 1.800 001 1.795 146 1.796 805

0 1.917 891 1.917 891 1.917 891 1.917 891
0.05 2.061 146 2.098 451 2.130 82 2.165 905
0.1 2.259 259 2.387 87 2.545 456
0.15 2.530 455 2.851 521
0.2 2.906 61 3.639 258
0.25 3.446 203
0.3 4.267 252
0.35 5.645 627
0.4 8.406 155

Table 2: The Laplace transform of the optimal time to invest.

ϕ λ = 0.25 λ = 0.5 λ = 1 λ = 2

−0.99 0.117 852 0.066 776 0.025 591 0.005 82
−0.9 0.118 797 0.068 404 0.027 797 0.008 327
−0.8 0.121 859 0.073 688 0.034 962 0.016 465
−0.7 0.127 039 0.082 68 0.047 158 0.030 297
−0.6 0.134 14 0.095 13 0.064 061 0.049 423
−0.5 0.142 747 0.110 47 0.084 925 0.072 96
−0.4 0.152 147 0.127 691 0.108 44 0.099 398
−0.3 0.161 184 0.145 118 0.132 457 0.126 331
−0.2 0.167 994 0.159 997 0.153 506 0.149 993
−0.1 0.169 553 0.167 775 0.165 981 0.164 525
−0.05 0.166 918 0.166 801 0.166 368 0.165 701

0 0.160 903 0.160 903 0.160 903 0.160 903
0.05 0.150 273 0.146 763 0.142 857 0.138 179
0.1 0.135 036 0.123 248 0.108 60
0.15 0.116 245 0.093 441
0.2 0.095 067 0.061 498
0.25 0.072 806
0.3 0.050 901
0.35 0.030 943
0.4 0.014 657
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Table 3: The investment value.

ϕ λ = 0.25 λ = 0.5 λ = 1 λ = 2

−0.99 0.048 038 0.025 019 0.009 326 0.002 141
−0.9 0.048 642 0.025 752 0.010 179 0.003 078
−0.8 0.050 645 0.028 185 0.013 012 0.006 185
−0.7 0.054 217 0.032 532 0.018 065 0.011 712
−0.6 0.059 556 0.039 048 0.025 622 0.019 942
−0.5 0.066 926 0.048 073 0.036 055 0.031 237
−0.4 0.076 676 0.060 066 0.049 855 0.046 056
−0.3 0.089 247 0.075 606 0.067 620 0.064 941
−0.2 0.105 146 0.095 343 0.089 975 0.088 414
−0.1 0.124 766 0.119 703 0.117 183 0.116 573
−0.05 0.135 919 0.133 441 0.132 287 0.132 032

0 0.147 691 0.147 691 0.147 691 0.147 691
0.05 0.159 882 0.161 456 0.161 618 0.161 111
0.1 0.171 207 0.171 558 0.167 923
0.15 0.179 599 0.173 483
0.2 0.183 058 0.162 57
0.25 0.179 627
0.3 0.167 352
0.35 0.144 303
0.4 0.108 75

jump size. Note also that whatever the jump intensity is, this ratio tends to

θ0

(θ0 − σ)

when the jump size tends to zero. This value corresponds to the optimal ratio when the model
uncertainty is simply driven by a Brownian motion.

Table 2 provides the variation of the Laplace transform E(exp(−µτ
L

0,∗
ϕ
)) and those of the

optimal investment value at time zero with respect to the jump size ϕ for different values of λ.
Tables 2 and 3 provide highly dissymmetrical values with respect to the sign of the jump.

Neither the Laplace transform nor the value of the investment are monotonic with respect to ϕ.
If the jump size tends to zero, then the Laplace transform tends to (s0(θ0 − σ)/θ0)

θ0/σ , and it
coincides with the value of the Laplace transform of the optimal hitting time in a Brownian
model. The same result holds for the investment value.

4.2. Misspecification impact in a bearish environment

Assume now that the agent who does not know the (negative) random jump size �, can
however estimate it by its expectation E(�). The question is then if he takes his investment
decision by considering only the expected value, how will his decision be impacted, in particular
his investment timing: will he invest too early or too late in the project? Note that the value of
the investment project is obviously reduced since C(0, s0, 0) is determined by using an optimal
frontier satisfying the supremum, i.e.

C(0, s0, 0) = ess sup
L0≥1

E(e−µτ
L0 (Sτ

L0 − 1)+ | S0 = s0).
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Any other frontier (in particular the level obtained by considering the expected value of the
jump size instead of the random variable) is suboptimal, and the supremum is not reached for
this particular value.

Let us first focus on the optimal level of benefit and cost ratio when the agent considers the
expected value as the estimate for the jump size. In the following result we establish that such
a misspecification leads the investor to undervalue the optimal level of the benefit/cost ratio.

Proposition 5. Using previous notation, we have

L
0,∗
� ≥ L

0,∗
E(�).

Proof. Let g be the function defined by

g(θ) = 1

2
θ2 + θ

σ

(
α − σ 2

2

)
− µ.

The inequalities 0 < θ0 and 0 ≤ α < µ and the equalities g(θ0) = 0 and g(σ ) = α −µ imply
that θ0/σ > 1. Hence, by Jensen’s inequality, we deduce

E((1 +�)θ0/σ ) ≥ (1 + E(�))θ0/σ .

On the other hand, we have

f0(λ, a) ≥ 0 for all λ > 0 and for all a ∈ R.

So, from Theorem 2, we may conclude that

L
0,∗
� ≥ L

0,∗
E(�).

Therefore, assuming that the agent chooses his investment time according to L0,∗
E(�), he will

enter the project as soon as the benefit/cost ratio reaches this threshold (instead of using the
optimal threshold L0,∗

� ). In that sense, it can be said that the model misspecification leads
them to undertake the project too early. More precisely, the agent has some beliefs regarding
the dynamics of the random benefit/cost ratio. He knows perfectly its dynamics when his
information is perfect or has simply an estimation when his access to the information is limited.
Given his beliefs, the agent is able to explicitly determine the optimal ratio and therefore his
investment strategy using this ratio as the threshold to take his decision. He has no better way
to decide when it is optimal to invest, as the knowledge of the dynamics of S simply gives
him the Laplace transform of the optimal investment time and therefore simply a heuristic
determination of an average investment time (see, for example, Barrieu and Bellamy (2005)).

5. Conclusion

In this paper, We provide closed-form formulae for the different characteristics of a perpetual
option in a framework where the uncertainty is brought by a Brownian motion and a point
process with stochastic intensity. An application of these results to a real option problem is
then presented. Assuming that a unique shock occurs in the context of an investment project,
we study the investment problem when the project’s environment can be subject to a brutal
and fundamental change (for instance, in its regulation or in its competitors’ strengths and
numbers). Mathematically speaking, all these situations are similar and are equivalent to
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considering a single jump diffusion process. Our aim has been to study the impact of such a
market perturbation on the decision. More precisely, assuming that the investor has a budget
allocation problem at time zero, he has to determine whether the project is interesting and if
so, to have some idea of the optimal investment time as to allocate his capital among financial
instruments with different maturities. In this framework, the investor determines his strategy
at time zero by characterizing the optimal profit/cost ratio, and then can anticipate the optimal
time to invest in the project by looking at the Laplace transform at time zero of the first hitting
time of this optimal ratio. We have obtained closed-form formulae for the optimal benefit/cost
ratio, the investment value, and the optimal time to enter the project, without any assumption
on the distribution of the jump size and with arbitrary positive or negative jump.

The framework of the investment problem studied in this paper can be extended. For example,
it is also possible to consider an investment environment that could be altered potentially by
different shocks. In this case, the profit/cost ratio is then written in the form

dSt = St−
(
α dt + σ dWt +

i=k∑
i=1

�i dDit

)
,

where Dit = 1t≥Ti and T1, T2 − T3, . . . , Tk − Tk−1 is an increasing sequence of independent
random variables with exponential law, the parameter of Ti −Ti−1 being λi . Such an extension
seems rather natural as it leads to a framework allowing for different impacts of different natures
on the investment field. In this sense, the uncertainty prevailing in investment problems could
be represented.

Appendix A

Lemma 2. Assuming that the jump size is a positive constant ϕ, the following equalities
hold:

(i) E(e−µτL 1{τL=T }) = − λ

λ+ µ

F0,ϕ(s0, λ+ µ,L, a0 − θ0),

(ii) E(e−µτL 1{τL>T }) =
(
(1 + ϕ)s0

L

)θ0/σ

Fϕ(s0, λ, L, a0),

(iii) E(e−µτL 1{τL<T }) =
(
s0

L

)θ0/σ

[1 − F0(s0, λ, L, a0)],

(iv) c(s0, L) = E[e−µτL(Sτ − 1)]

= (L− 1)

(
s0

L

)θ0/σ

[1 − F0(s0, λ, L, a0)]

+ (L− 1)

(
(1 + ϕ)s0

L

)θ0/σ

Fϕ(s0, λ, L, a0)

− λs0(1 + ϕ)

λ+ µ− α

F0,ϕ(s0, λ+ µ− α,L, v0)

+ λ

λ+ µ

F0,ϕ(s0, λ+ µ,L, a0 − θ0).
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Proof. (i) We have

E(e−µτL 1{τL=T }) = λ

λ+ µ
Eψ1(1{τL=T }),

where ψ1 = µ/λ and where Pψ1 is the P-equivalent probability measure specified by its
Radon–Nikodym derivative

dPψ1

dP

∣∣∣∣
Ft

= E(ψ1M)t = exp

(
ln(1 + ψ1)Dt − λψ1

∫ t

0
(1 −Ds) ds

)
,

and Eψ1 is the Pψ1 -expectation. Hence, we obtain

Eψ1(1{τL=T }) =
∫ +∞

0
(λ+ µ) e−(λ+µ)t

[
N

(
y − u0t√

t

)
− e2u0yN

(−y − u0t√
t

)]
dt

−
∫ +∞

0
(λ+ µ) e−(λ+µ)t

[
N

(
x − u0t√

t

)
− e2u0yN

(
x − 2y − u0t√

t

)]
dt,

we finally obtain

E(e−µτL 1{τL=T }) = λ

λ+ µ
(F0(s0, λ+ µ,L, u0)− Fϕ(s0, λ+ µ,L, u0))

= − λ

λ+ µ

F0,ϕ(s0, λ+ µ,L, a0 − θ0).

(ii) We have

E(e−µτL 1{τL>T }) =
(
(1 + ϕ)s0

L

)θ0/σ

Eθ0(1{τL>T }),

where Pθ0 is the P-equivalent probability measure, such that

dPθ0

dP

∣∣∣∣
Ft

= E(θ0W)t = exp

(
θ0Wt − 1

2
θ2

0 t

)
and where Eθ0 is the Pθ0 -expectation. We can write

E(e−µτL 1{τL>T }) =
(
(1 + ϕ)s0

L

)θ0/σ

Pθ0(M
a0,θ0
T < y, Y

a0, θ0
T < x),

where

Y
a0,θ0
t = a0t +Wt − θ0t,

M
a0,θ0
t = sup(Y a0,θ0

s , 0 ≤ t ≤ s),

y =
(

1

σ

)
ln

(
L

s0

)
, and

x =
(

1

σ

)
ln

(
L

s0(1 + ϕ)

)
.
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Therefore, we obtain

E(e−µτL 1{τL>T }) =
(
(1 + ϕ)s0

L

)θ0/σ

Fϕ(s0, λ, L, a0).

(iii) The third assertion follows directly from

E(e−µτL 1{τL<T }) =
(
s0

L

)θ0/σ

Eθ0(1{τL<T }) =
(
s0

L

)θ0/σ

(1 − F0(s0, λ, L, a0)).

(iv) We now consider c(s0, L) = E[e−µτL(SτL − 1)]. Let us first study the case where the jump
size is a positive constant ϕ. We have

E(SτL e−µτL 1{τL=T }) = λs0(1 + ϕ)

λ+ µ− α
Eψ2(1{τL=T }),

where ψ2 = (µ− α)/λ and Pψ2 is the probability measure defined by dPψ2/dPσ |Ft =
E(σW)tE(ψ2M)t . Then we obtain

E(SτL e−µτL 1{τL=T }) = s0(1 + ϕ)λ

λ+ µ− α
F0(s0, λ+ µ− α,L, v0)

− s0(1 + ϕ)λ

λ+ µ− α
Fϕ(s0, λ+ µ− α,L, v0),

where v0 is defined by (8). We conclude the proof by using (i), (ii), (iii), and the equality

c(s0, L) = (L−1)E(e−µτL 1{τL<T })+(L−1)E(e−µτL 1{τL>T })+E(e−µτL(SτL −1) 1{τL=T }).

Lemma 3. Let L be a frontier such that L ≥ 1 and L > s0. For any ϕ in ]−1, 0[, we have

E(e−µτL 1{τL>T }) =
(
(1 + ϕ)s0

L

)θ0/σ

F0(s0, λ, L, a0),

where a0, θ0, and F0(s0, λ, L, a) are defined by (6), (7), and (4) respectively.

Proof. For any ϕ in ]−1, 0[, we can write

E(e−µτL 1{τL>T }) =
(
(1 + ϕ)s0

L

)θ0/σ

Eθ0(1{τL>T }).

In this case we have
Eθ0(1{τL>T }) = F0(s0, λ, L, a0).
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