Sub-prime radical classes determined by zerorings

B.J. Gardner

It is shown that the correspondence which associates with each radical class \mathcal{T} of abelian groups the (radical) class of prime radical rings with additive groups in \mathcal{T} gives a complete classification of those radical classes of rings which are determined (as lower radicals) by zerorings.

In this note we investigate radical subclasses of the Baer lower (= prime) radical class B. B is the lower radical class defined by the class of all zerorings, so we are interested in the extent to which rings in the lower radical class over a class of zerorings are describable in terms of their membership of B and the (additive) structure of the zerorings concerned.

In what follows, G^0 is the zeroring on an abelian group G, R^+ the additive group of a ring R and L(C) the lower radical class defined by a class C of rings. (For details concerning radicals, see [3].)

Let T be a radical class of abelian groups, $T^0 = \{g^0 \mid g \in T\}$, $T^* = \{R \mid R^+ \in T\}$. Then T^* is a radical class and thus there are two ways of associating a radical subclass of B with T: one can consider $L(T^0)$ or $B \cap T^*$. (For further details, see [4].) It is clear that $L(T^0) \subseteq B \cap T^*$ in all cases, so the obvious problem is to determine when we have equality here. Armendariz [1] showed that equality holds when T

Received 29 October 1974.

is subgroup-closed and this was extended by the author [4] to the case where T is merely closed under pure subgroups. In this paper we demonstrate equality for every T.

Since for any radical class R the class of zerorings in R has the form T^0 , and since, moreover, a nilpotent ring A belongs to a radical class R if and only if $A^{+0} \in R$ ([5], Theorem 2.5) our result provides a characterization of the lower radical classes defined by classes of nilpotent rings.

We make use of a notion introduced by Sands [7] in his investigation of the interaction between radicals and Morita contexts. A class C of rings is principally left hereditary if $Ra \in C$ for all $a \in R \in C$.

All rings considered are associative; the symbol 4 indicates an ideal.

PROPOSITION 1. Let T be a radical class of abelian groups. Then $B \cap T^*$ is principally left hereditary.

Proof. If $a \in R \in B \cap T^*$, then Ra^+ is a homomorphic image of R^+ via the correspondence $r \mapsto ra$, so $Ra \in T^*$. Also B is subring-closed and hence $Ra \in B$.

PROPOSITION 2. Let R be a principally left hereditary radical subclass of B, M the class of nilpotent rings in R. Then R = L(M).

Proof. By Theorem 3 of [6], L(M) consists of all rings A such that every non-zero homomorphic image A'' has a non-zero accessible subring S in M; that is, there exists a finite chain

$$0 \neq S = I_1 \triangleleft I_2 \triangleleft \ldots \triangleleft I_n \triangleleft A".$$

Since R is homomorphically closed, it is enough to show that non-zero rings in R have non-zero accessible subrings in M and clearly only non-nilpotent rings need be considered. Such a ring R does not coincide with its right annihilator (R:0), so R/(R:0) is a non-zero ring in B and accordingly has a non-zero nilpotent ideal I. Let \overline{a} be a non-zero element of I represented in R by a. Then

$$Ra/[Ran(R:0)] \cong [Ra+(R:0)]/(R:0) \subseteq I$$
,

so Ra/[Ran(R:0)] is nilpotent, whence it follows that Ra is

nilpotent. Also $Ra \neq 0$, and, since R is principally left hereditary, $Ra \in M$. Finally, let J/(R:0) = I. Then J is nilpotent and $Ra \subset J$. By Proposition 8 of [2], Ra is an accessible subring of R. //

THEOREM. Let T be a radical class of abelian groups. Then $L(T^0) = B \cap T^*$.

Proof. A nilpotent ring A belongs to a radical class R if and only if A^{+0} does ([5], Theorem 2.5) and $\{G \mid G^0 \in R\}$ is a radical class of abelian groups ([4], Proposition 1.1). Combining these observations with Propositions 1 and 2, we see that $B \cap T^* = L(U^0)$ for some radical class U of abelian groups. But $U^0 \subseteq B \cap T^*$ implies $U \subseteq T$, while $T^0 \subseteq B \cap T^* = L(U^0) \subseteq B \cap U^*$ implies $T \subseteq U$. This proves the theorem. M

Note that we have also shown that a radical subclass of B is principally left hereditary if and only if it has the form B \cap T*.

References

- [1] E.P. Armendariz, "Hereditary subradicals of the lower Baer radical", Publ. Math. Debrecen 15 (1968), 91-93
- [2] Reinhold Baer, "Meta ideals", Report of a conference on linear algebras, 33-52 (National Research Council Publication 502. National Academy of Sciences, Washington, 1957).
- [3] Nathan J. Divinsky, Rings and radicals (University of Toronto Press, Toronto; Allen & Unwin, London; 1965).
- [4] B.J. Gardner, "Radicals of abelian groups and associative rings", Acta Math. Acad. Sci. Hungar. 24 (1973), 259-268.
- [5] B.J. Gardner, "Some aspects of T-nilpotence", Pacific J. Math. (to appear).
- [6] Yu-Lee Lee, "On the construction of lower radical properties", Pacific J. Math. 28 (1969), 393-395.
- [7] A.D. Sands, "On normal radicals", submitted.

Department of Mathematics, University of Tasmania, Hobart, Tasmania.