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1. Introduction. At a 1997 conference in Seattle, Kenny Brown promoted
“noetherian Hopf algebras” as a subject to be studied in its own right, surveyed
the status of this subject, and proposed a number of problems and conjectures [7]. A
decade later, he updated the status in the survey [8]. Our purpose here is to give a brief
further update, and especially to highlight a good selection of open problems. Many
of these are shamelessly borrowed from [7], [8]. The background is well laid out in
those surveys, which readers are encouraged to look at in conjunction with the present
paper.

Motivation for studying noetherian Hopf algebras comes in part from the fact that
the examples known for many years share a number of characteristics. Further, it is
important to understand those that appeared with the rise of quantum groups. From
the most general perspective, as put forward by Drinfel’d [13, p. 800], the notions of
“Hopf algebra” and “quantum group” are equivalent. Specializing to affine noetherian
Hopf algebras can thus be viewed as developing the theory of “quantum affine algebraic
groups”.

One might ask why it is reasonable to attack noetherian Hopf algebras as a class,
i.e., why is this not a hopelessly large and amorphous mixed bag of objects, like the
class of all rings? One response is that the existence of a Hopf algebra structure on an
algebra imposes a lot of rigidity – for instance, the representations form a monoidal
category. Another is to point to the extensive theory which has been developed for
finite dimensional Hopf algebras. The existence of this theory also prompts one to seek
suitably modified analogs in the infinite dimensional, noetherian case. On the other
hand, the extent of the finite dimensional theory rules against attempting to subsume
this in a noetherian theory. Taking existing examples together with the principles
of quantum groups into account, and recalling that the coordinate rings of connected
algebraic groups are integral domains, one is prompted to focus the study of noetherian
Hopf algebras primarily on those which are domains, or at least prime rings. This has
the advantage of avoiding all finite dimensional Hopf algebras except for the trivial
one-dimensional one (although many noetherian Hopf algebras have nontrivial finite
dimensional Hopf algebra quotients).
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Leaving finite dimensional Hopf algebras aside, the starting point for noetherian
Hopf algebra theory consists of five basic, long-known classes of examples. The Hopf
structures in each case are so well known that we do not describe them here, but just
refer to [7], [8], for instance.

• The enveloping algebra U(g) of any finite dimensional Lie algebra g. (While
all enveloping algebras are Hopf algebras, it is not known whether there exists
any infinite dimensional Lie algebra whose enveloping algebra is noetherian.)

• The group algebra k� of any polycyclic-by-finite group �, over a field k. (While
all group algebras are Hopf algebras, it is not known whether there exists any
non-[polycyclic-by-finite] group whose group algebra is noetherian.)

• The coordinate ring O(G) of any affine algebraic group G.
• The quantized enveloping algebra Uq(g) of any finite dimensional semisimple

complex Lie algebra g, where q is a nonzero scalar which may or may not be a
root of unity. (Descriptions of these Hopf algebras are given, for instance, in
[10, Chapter I.6]. One can find variants, multiparameter versions, and cocycle
twists of these in the literature.)

• The quantized coordinate ring Oq(G) of any connected semisimple complex
algebraic group G, where q again is an arbitrary nonzero scalar. (Descriptions
are given, for instance, in [10, Chapter I.7]. Variants, multiparameter versions
and cocycle twists occur in the literature.)

Additional classes of examples can be obtained from superalgebra versions of the
above. For instance, if g is a finite dimensional Lie superalgebra, then the enveloping
algebra U(g) is a noetherian ring and a Hopf algebra in the category of super (= �2-
graded) vector spaces, but it is not a Hopf algebra in the ordinary sense. However,
the bosonization U(g) ∗ �2 is a noetherian Hopf algebra. As an algebra, U(g) ∗ �2 is
the skew group ring corresponding to the action of �2 = 〈g〉 on U(g) under which
g.x = (−1)deg xx for homogeneous elements x ∈ U(g). For details of the Hopf algebra
structure, see [3, Theorem 3.1.1].

An immediate guiding question, of course, is to ask how representative of
noetherian Hopf algebras in general the above examples might be.

The following discussion concentrates on three aspects of the theory: structure,
homology and classification. The main lines of what is known will be sketched,
accompanied by many questions.

1.1. Fix a base field k. Throughout, all vector spaces, algebras, tensor products,
etc. are taken over k. For any Hopf algebra, we denote the multiplication, unit map, co-
multiplication, counit and antipode by m, u, �, ε and S, respectively. A recommended
reference for general Hopf algebra theory is [24]; an outline of the basic concepts can
be found in [10, Appendix I.9].

2. Structure. It is obviously too much to ask for a specific structure theory
covering arbitrary noetherian Hopf algebras, but a number of general issues raise
their heads. Since all the important noetherian examples are also affine (i.e., finitely
generated as algebras), we first ask about the relationship between these conditions.

2.1. Noetherian versus affine.

QUESTION 2.1. How are the noetherian and affine conditions related for Hopf
algebras?
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To support the reasonableness of this question, we offer the following results of
Molnar [23, Proposition and following remarks] and Liu–Zhang [18, Corollary].

THEOREM 2.2. [Molnar] (a) A commutative Hopf algebra is noetherian if and only
if it is affine.

(b) Any cocommutative noetherian Hopf algebra is affine.

THEOREM 2.3. [Liu–Zhang] A Hopf algebra is artinian if and only if it is finite
dimensional (in which case it is also affine).

In general, affine Hopf algebras need not be noetherian, as shown by the group
algebra k� of a nonabelian free group � of finite rank. Whether the converse might
hold is an open question, raised by Wu and Zhang [34, Question 5.1]. In view of
Molnar’s theorem, one might still ask for the implication “affine =⇒ noetherian” in
situations “close to commutative”. Brown has raised this question for Hopf algebras
satisfying a polynomial identity [8, Question C(iii)].

QUESTION 2.4.
(a) [Wu–Zhang] Is every noetherian Hopf algebra affine?
(b) [Brown] Is every affine PI Hopf algebra noetherian?

Among PI algebras, affineness often comes in the form of finiteness over the centre.
The latter property does not always hold, however, even for affine, noetherian, PI Hopf
algebras, as shown by a construction of Gelaki and Letzter [14, Remark 3.9] (see [8,
p. 10, footnote]). Brown specialized the question to the semiprime case [8, Question
C(i)]:

QUESTION 2.5. [Brown] Is every semiprime noetherian PI Hopf algebra module-
finite over its centre? What if it is also assumed to be affine?

2.2. The antipode. Recall that in the definition of a Hopf algebra, the antipode is
only required to be invertible with respect to the convolution product, not necessarily
as a map. All that follows from the axioms is that S must be an algebra anti-
endomorphism. Bijectivity of the antipode is important in many analyses, and appears
in all known noetherian examples, so this condition deserves some focus. To start with
the negative side: Takeuchi constructed Hopf algebras with non-bijective antipodes in
[30, Theorem 11], [31]. On the other hand, the situation is fine in the finite dimensional
case, due to the following results of Larson and Sweedler [16, Proposition 2] and
Radford [25, Theorem 1]:

THEOREM 2.6. [Larson–Sweedler, Radford] The antipode of any finite dimensional
Hopf algebra is bijective; in fact, it has finite order (i.e., some power of S is the identity).

The strongest conclusion in this direction is obtained for commutative or
cocommutative Hopf algebras [29, Proposition 4.0.1(6)], [24, Corollary 1.5.12].

PROPOSITION 2.7. In any commutative or cocommutative Hopf algebra, S2 = id.

Skryabin has established bijectivity of the antipode for many noetherian Hopf
algebras [27, Corollaries 1, 2], and made a general conjecture [27, Conjecture].

THEOREM 2.8. [Skryabin] (a) The antipode of any noetherian Hopf algebra is
injective.
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(b) Let H be a Hopf algebra which is either semiprime noetherian or affine PI. Then
S is bijective.

CONJECTURE 2.9. [Skryabin] The antipode of every noetherian Hopf algebra is
bijective.

Natural related questions, taking Theorem 2.6 into account, were raised by Brown
and Zhang [8, Questions H, I], [11, Question 6.2].

QUESTION 2.10. [Brown, Brown–Zhang] If H is an affine noetherian PI Hopf
algebra, does S have finite order? Is some (even) power of S an inner automorphism
of H?

In a non-PI noetherian Hopf algebra, the antipode need not have an inner power.
For example, let H = Oq(SL2(k)), which is an affine noetherian Hopf algebra. If q ∈ k×

is not a root of unity, then all powers of S are outer.
Some positive cases for the above question were obtained by Brown and Zhang

[11, Proposition 6.2 and following comments].

THEOREM 2.11. [Brown–Zhang] Let H be an affine noetherian PI Hopf algebra. If
H either has finite global dimension or is module-finite over its centre, then some power
of S is inner.

2.3. Grouplike and skew primitive elements. Two of the most important models
for noetherian Hopf algebras are group algebras and enveloping algebras. These are
distinguished by the behaviour of the comultiplication: in k�, we have �(g) = g ⊗ g
for all g ∈ �, whereas in U(g), we have �(x) = x ⊗ 1 + 1 ⊗ x for all x ∈ g. Conversely,
one can collect elements of these types in any Hopf algebra H to obtain a group or
a Lie algebra. More precisely, the set of all grouplike elements of H (see below) is a
subgroup of the group of units of H, while the set of all primitive elements is a Lie
algebra with respect to the additive commutator. We recall the definitions.

DEFINITION 2.12. Let H be a Hopf algebra.
An element g ∈ H is grouplike provided g 	= 0 and �(g) = g ⊗ g. (It then follows

from the counit axiom that ε(g) = 1.)
An element x ∈ H is primitive provided �(x) = x ⊗ 1 + 1 ⊗ x. (The counit axiom

then implies ε(x) = 0.) More generally, x is (g, h)-skew primitive, where g and h are
grouplike elements of H, provided �(x) = x ⊗ g + h ⊗ x. (Again, it follows that ε(x) =
0.)

Although it might seem overly myopic to concentrate on such elements, they play
a central enough role to be worthy of focus. The following easy lemma gives the basic
relationships with the antipode and a useful consequence.

LEMMA 2.13. Let H be a Hopf algebra.
(a) If g ∈ H is grouplike, then g is invertible, S(g) = g−1, and g−1 is grouplike.
(b) If x ∈ H is (g, h)-skew primitive, for some grouplike g, h ∈ H, then S(x) =

−h−1xg−1.

It follows from Lemma 2.13 that if a Hopf algebra H is generated (as an algebra)
by its grouplike and skew primitive elements, then S is surjective. In fact, S must be
bijective in this situation (Corollary 2.22).
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PROBLEM 2.14. Which noetherian Hopf algebras are generated by their grouplike
and skew primitive elements? More precisely, find conditions (not involving these kinds
of elements) under which a noetherian Hopf algebra must be generated by its grouplike
and skew primitive elements.

For a negative example, consider O(SL2(k)). This noetherian Hopf algebra has no
nonzero skew primitive elements, and no grouplike elements except 1.

Clues to the question of generation by grouplikes and skew primitives can be
obtained from the coalgebra structure of a Hopf algebra, as follows.

DEFINITION 2.15. A subcoalgebra of a Hopf algebra H is any linear subspace
C ⊆ H such that �(C) ⊆ C ⊗ C. It is a simple subcoalgebra provided C 	= {0} and the
only subcoalgebras contained in C are {0} and C. The Hopf algebra H is called pointed
if every simple subcoalgebra of H is one-dimensional.

The connection with the above discussion is that the one-dimensional
subcoalgebras of a Hopf algebra H are precisely the subspaces kg for grouplike g ∈ H.

For instance, over an algebraically closed base field, cocommutative Hopf algebras
are pointed [29, Lemma 8.0.1(c)]. More specific examples of pointed Hopf algebras
are k�, U(g) and Uq(g). On the other hand, O(SL2(k)) is not pointed, since it has a
four-dimensional simple subcoalgebra, namely the subspace spanned by the matrix
entry functions X11, X12, X21, X22. Since examples of this type only seem to appear in
dimension 3 and higher, Brown and Zhang raised the following question [12, Section
0.5].

QUESTION 2.16. [Brown–Zhang] Let H be a prime affine noetherian Hopf algebra.
If GKdim(H) ≤ 2, is H pointed?

The most useful condition implying pointedness is the existence of enough group-
like and skew primitive elements, as the following lemma shows. It is a corollary of [24,
Lemma 5.5.1].

LEMMA 2.17. If a Hopf algebra H is generated (as an algebra) by its grouplike and
skew primitive elements, then H is pointed.

The converse fails, even in the noetherian case. Here are two examples, taken from
[4, Examples 5.11, 5.12]; a third will appear following Question 2.20. For the first,
assume char(k) = p > 0 and view the polynomial ring k[x] as the enveloping algebra
of the one-dimensional Lie algebra kx. Then k[x] is a Hopf algebra, with x primitive.
Due to characteristic p, the ideal 〈xp2〉 is a Hopf ideal of k[x], and so k[x]/〈xp2〉 is a
finite dimensional Hopf algebra. Its dual, (k[x]/〈xp2〉)∗, is a finite dimensional (and
thus noetherian) pointed Hopf algebra which is not generated by its grouplikes and
skew primitives.

For the second example, take char(k) = 0, let q ∈ k× be a primitive �th root of unity
for some � > 1 (e.g., take q = −1), and let H be a vector space with basis {xn | n ∈ �≥0}.
Then H can be made into a Hopf algebra in which

xmxn =
(

m + n
n

)
q

xm+n and �(xn) =
n∑

i=0

xi ⊗ xn−i

for all n. It is noetherian and pointed, but not generated by its grouplikes and skew
primitives.
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That a characteristic zero example must be infinite dimensional is the content of a
conjecture of Andruskiewitsch and Schneider [4, Conjecture 1.4].

CONJECTURE 2.18. [Andruskiewitsch–Schneider] Assume k is algebraically closed
of characteristic zero. Then any finite dimensional pointed Hopf algebra over k is
generated by its grouplikes and skew primitives.

One case of this conjecture has been established by Angiono [6, Theorem 2]:

THEOREM 2.19. [Angiono] Let H be a finite dimensional pointed Hopf algebra over
an algebraically closed field of characteristic zero. If the group of grouplike elements of
H is abelian, then H is generated by its grouplikes and skew primitives.

There are many infinite dimensional pointed Hopf algebras known to be generated
by their grouplikes and skew primitives, such as the ones classified by Andruskiewitsch,
Schneider, and Angiono in [5, Theorems 4.3, 5.2], [1, Theorem 1.1]. These are Hopf
algebras H, over an algebraically closed field of characteristic zero, such that

• H is pointed and its group of grouplike elements is finitely generated abelian.
• H is a domain with finite Gelfand–Kirillov dimension.
• H has generic infinitesimal braiding in the sense of [5].

That these Hopf algebras are generated by grouplikes and skew primitives is part of
[5, Theorems 4.3, 5.2].

A sharpening of Question 2.16, in the case of a domain, is suggested by comments
of Wang, Zhang and Zhuang [32, Comments following Corollary 0.2].

QUESTION 2.20. [Wang–Zhang–Zhuang] Let H be an affine noetherian Hopf
algebra domain with GKdim(H) ≤ 2. Is H generated by its grouplikes and skew
primitives?

The restriction to GKdim(H) ≤ 2 in Question 2.20 is necessitated by the example
of O(SL2(k)). In fact, even in the pointed case, an affine noetherian Hopf algebra
domain with Gelfand–Kirillov dimension greater than 2 need not be generated by its
grouplikes and skew primitives. The following example was shown to us by J. J. Zhang:
take H = O(G), where G is the group of unipotent upper triangular 3 × 3 matrices
over an infinite field k. Then H is a polynomial ring k[x, y, z], with x and y primitive
while �(z) = z ⊗ 1 + x ⊗ y + 1 ⊗ z. The only grouplike element of H is 1, and the only
(skew) primitive elements are the linear combinations of x and y. Thus, H is an affine
noetherian Hopf algebra domain not generated by its grouplikes and skew primitives.
An application of [24, Lemma 5.5.1] shows that all simple subcoalgebras of H are
contained in k[x], and therefore H is pointed.

To end the section, we return to bijectivity of antipodes. The following “folklore”
result is given in [24, Corollary 5.2.11].

PROPOSITION 2.21. Let H be a Hopf algebra. If all simple subcoalgebras of H are
cocommutative, then S is bijective.

In particular, the antipode of any pointed Hopf algebra is bijective.

COROLLARY 2.22. If a Hopf algebra H is generated by its grouplike and skew primitive
elements, then its antipode is bijective.

3. Homological conditions. All known noetherian Hopf algebras enjoy strong
homological properties; we discuss these next. Recall that for noncommutative
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noetherian rings, finite global dimension alone is not a strong enough property
to be very useful. Good upgrades include the versions of regularity introduced by
Auslander and Artin–Schelter. Similarly, the Auslander and Artin–Schelter versions
of the Gorenstein condition are the most useful in place of finite injective dimension.
Good companions for these properties are the Cohen–Macaulay conditions, with
respect to Krull or Gelfand–Kirillov dimension. Definitions for all these conditions
are given in myriad sources; e.g., [10, Appendix I.15].

A key motivating result is the following theorem of Larson and Sweedler in the
finite dimensional setting [16, Remark, p. 85], [24, Theorem 2.1.3].

THEOREM 3.1. [Larson–Sweedler] Any finite dimensional Hopf algebra is a Frobenius
algebra.

COROLLARY 3.2. Any finite dimensional Hopf algebra H is self-injective.
Consequently, gl.dim H < ∞ if and only if H is semisimple.

The right (or left) global dimension of a Hopf algebra H is determined by the
projective dimension of a single H-module, as follows. This result was known in several
settings with additional hypotheses; the general result was observed by Lorenz and
Lorenz [20, Section 2.4]. Here, kH and Hk denote the trivial one-dimensional right and
left H-modules, respectively.

THEOREM 3.3. r.gl.dim H = p.dim kH and l.gl.dim H = p.dim Hk for any Hopf
algebra H.

Among our standard examples of noetherian Hopf algebras, U(g), O(G), Uq(g)
and Oq(G) are Auslander-regular and Cohen–Macaulay [9, Theorem B], [11, Section
6]. If � is a polycyclic-by-finite group, then k� is Auslander–Gorenstein, but not
necessarily Cohen–Macaulay [11, Theorem 6.7, Remark 6.7(b)].

For many purposes, it suffices to consider the Auslander versions of the above
conditions, since they imply the Artin–Schelter versions by the following theorem of
Brown and Zhang [11, Lemma 6.1].

THEOREM 3.4. [Brown–Zhang] Let H be a noetherian Hopf algebra. If H is Cohen–
Macaulay and Auslander-regular (respectively, Auslander–Gorenstein), then it is also
Artin–Schelter-regular (respectively, Artin–Schelter–Gorenstein).

Many authors have raised the question of extending the Larson–Sweedler theorem
– more precisely, the first part of Corollary 3.2 – to infinite dimensional noetherian
Hopf algebras [9, Section 1.15], [7, Question A], [33, Question 0.3], [34, Question 5.2,
Remark 5.9], [8, Question E].

QUESTION 3.5. [Brown–Goodearl and Wu–Zhang] Does every noetherian Hopf
algebra H have finite injective dimension? Is H Auslander–Gorenstein? What if H is
also affine?

Wu–Zhang and Brown also posed the question whether a noetherian Hopf algebra
in characteristic zero which is semiprime, or even a domain, must have finite global
dimension [33, Question 0.4], [8, Question K]. The answer is negative, as shown by
Goodearl and Zhang [15, Remark 1.7].

Several positive results in the homological direction have been proved, culminating
in the following theorems of Brown–Goodearl [9, Corollary 1.8], Wu–Zhang [33,
Theorem 0.1], [34, Theorems 0.1, 0.2] and Lu–Wu–Zhang [22, Theorem 0.4].
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THEOREM 3.6. Let H be a Hopf algebra.
(a) [Brown–Goodearl and Wu–Zhang] If H is affine, noetherian and PI, then it is

Auslander–Gorenstein, Cohen–Macaulay, and semiprime.
(b) [Wu–Zhang] If H is module-finite over its centre, Z(H) is affine, S2 = idH and

char k = 0, then H is Auslander-regular, Cohen–Macaulay, and semiprime.

THEOREM 3.7. [Lu–Wu–Zhang] Let H be a nonnegatively filtered noetherian Hopf
algebra whose associated graded algebra is connected graded with enough normal
elements. Then H is Auslander–Gorenstein and Cohen–Macaulay, and its antipode is
bijective. If it has finite global dimension, then it is semiprime.

A nonnegatively graded algebra A = ⊕
n≥0 An is connected graded provided A0 =

k, and it has enough normal elements provided that for each homogeneous prime ideal
P 	= ⊕

n>0 An, the quotient A/P contains a homogeneous normal element of positive
degree.

We close this section with the following questions of Brown and Goodearl [9,
Section 1.9]:

QUESTION 3.8. [Brown–Goodearl] Let H be a noetherian Hopf algebra with finite
global dimension. Is H Auslander-regular? Is it semiprime?

3.1. Integrals. Regularity conditions in Hopf algebras are closely tied to concepts
of integrals. There are left- and right-hand versions, with symmetric definitions; we
concentrate on the latter.

DEFINITION 3.9. The set of right integrals in a Hopf algebra H is the set
∫ r

H
:= {x ∈ H | xa = ε(a)x for all a ∈ H}.

Larson and Sweedler characterized semisimplicity (equivalently, finite global
dimension) in finite dimensional Hopf algebras by means of integrals [16, Proposition
3].

THEOREM 3.10. [Larson–Sweedler] Let H be a finite dimensional Hopf algebra.
Then H is semisimple if and only if ε(

∫ r
H) 	= {0}.

Since non-finite dimensional Hopf algebras never have nonzero integrals [29,
p. 108, Exercise 4], Lu, Wu and Zhang introduced the following homological version
[21, Definition 1.1]. They used it to characterize finite global dimension in certain cases
[21, Theorem 0.1].

DEFINITION 3.11. Let H be an Artin–Schelter–Gorenstein Hopf algebra with
injective dimension d. In particular, this requires that Exti

H(kH, HH) vanishes for i 	= d,
while Extd

H(kH, HH) is one-dimensional. The right homological integral of H is
∫ r

H
:= Extd

H(kH, HH),

which has a natural H-H-bimodule structure. (In case H is finite dimensional, there is
a natural isomorphism between this version of

∫ r
H and the classical one defined as in

Definition 3.9 [21, p. 4948].)
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Recall from Theorems 3.6(a) and 3.4 that affine noetherian PI Hopf algebras are
Artin–Schelter–Gorenstein.

THEOREM 3.12. [Lu–Wu–Zhang] Let H be an affine noetherian PI Hopf algebra
with injective dimension d. Then gl.dim H < ∞ if and only if

(a) ε∗ : Extd
H

(∫ r
H, HH

) −→ Extd
H

(∫ r
H, Hk

)
is an isomorphism.

(b) Extd
H(T, Hk) = 0 for all simple left H-modules T 	∼= ∫ r

H.

A natural question, buttressed by Theorem 3.10, is whether condition (b) is needed
in this theorem [21, Question 3.6].

QUESTION 3.13. [Lu–Wu–Zhang] In the context of Theorem 3.12, does condition
(a) alone imply gl.dim H < ∞?

One further type of integral is the following, distinguished from those in Definition
3.9 by a small change in terminology.

DEFINITION 3.14. A right integral on a Hopf algebra H is any functional t ∈ H∗

such that (t ⊗ f ) ◦ � = f (1)t for all f ∈ H∗. (If H is finite dimensional, this is the same
as t being a right integral in the dual Hopf algebra H∗, that is, t ∈ ∫ r

H∗ in the sense of
Definition 3.9.)

The existence of a nonzero right integral on H is equivalent to the existence of a
nonzero left integral on H (defined symmetrically), by [17, Theorem 3]. In this case, H
is called a co-Frobenius Hopf algebra. (See [17, p. 361] for the original definition of this
condition, and [17, Theorem 3] for its equivalence with existence of nonzero integrals.)

Integrals on Hopf algebras bring us back to antipodes once again, via the following
result of Sweedler [29, Corollary 5.1.7] and Radford [26, Proposition 2]:

THEOREM 3.15. [Sweedler, Radford] If H is a co-Frobenius Hopf algebra (i.e., there
exists a nonzero right or left integral on H), then the antipode of H is bijective.

4. Classification. The rigidity of the structure of a Hopf algebra suggests that
Hopf algebras are not thick on the ground, especially if there is some kind of limitation
on their size. There is a big ongoing project to classify finite dimensional Hopf algebras,
and there are plenty of these. Certainly, there is no hope of subsuming that project in any
classification of noetherian Hopf algebras. From the noetherian viewpoint, however,
vector space dimension is not a very important measure of size. In that arena, Krull
dimension and Gelfand–Kirillov dimension take precedence. Furthermore, from the
noncommutative viewpoint, the major algebras of interest are prime or even domains.
Thus, it is reasonable to see how far prime noetherian Hopf algebras of low Gelfand–
Kirillov dimension can be classified. The case of Gelfand–Kirillov dimension zero can
be dismissed, since the only prime finite dimensional Hopf algebra over k is k itself.

4.1. Gelfand–Kirillov dimension 1. Lu, Wu and Zhang initiated the programme
of classifying prime noetherian Hopf algebras of Gelfand–Kirillov dimension 1 in [21,
Section 7]. This was carried forward by Brown and Zhang in [12] under the following
hypotheses:

(H1) H is a prime, affine and noetherian Hopf algebra, the base field k is
algebraically closed of characteristic zero, gl.dim H < ∞, and GKdim H = 1.
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By the Small–Stafford–Warfield Theorem [28, Theorem], H is then module-finite over
its centre; in particular, H satisfies a polynomial identity. Further, it follows from
Theorem 3.6(a) that, in fact, gl.dim H = 1.

There are three immediate examples satisfying (H1):
• U(g), where dim g = 1.
• k�, where � = � or � = 〈x, g | g2 = 1, gxg−1 = x−1〉.

The first two of these may also be presented as the coordinate rings of the algebraic
groups (k,+) and (k×, ·). There are no other coordinate rings to consider, since the
two groups mentioned are the only connected one-dimensional algebraic groups over
k.

Two additional families are known to appear under (H1). One was introduced in
[21, Example 2.7]; the other [12, Section 3.4] generalizes a family constructed by Liu
[19, Section 2].

• H(n, t, ξ ), generated by a grouplike element g and a (gt, 1)-skew primitive
element x satisfying gn = 1 and xg = ξgx, where n ≥ 2 and 0 ≤ t ≤ n − 1 are
integers and ξ ∈ k× is a primitive nth root of unity.

• B(n, w, ξ ), generated by commuting grouplike elements x±1, g±1 and a (g, 1)-
skew primitive element y satisfying xy = yx, yg = ξgy, and yn = 1 − xw =
1 − gn, where n ≥ 2 and w ≥ 1 are integers and ξ ∈ k× is a primitive nth root
of unity.

Brown and Zhang proved that in the case of prime PI-degree (and somewhat more
generally), these examples constitute a classification of (H1) [12, Theorem 0.5]. They
also raised natural companion questions [12, Questions 7.1, 7.2, 7.3C].

THEOREM 4.1. [Brown–Zhang] If H satisfies (H1) and PIdeg H is prime, then H is
isomorphic to one of the examples described above.

QUESTION 4.2. [Brown–Zhang] (a) Do the above examples exhaust all Hopf
algebras satisfying (H1) with non-prime PI-degrees?

(b) Is there a similar classification if the condition “gl.dim H < ∞” is removed
from (H1) and/or “prime” is weakened to “semiprime”?

4.2. Gelfand–Kirillov dimension 2. In [15], Goodearl and Zhang moved to
Gelfand–Kirillov dimension 2, with slightly different hypotheses than in (H1), namely,
restricting from prime rings to domains but allowing infinite global dimension. As it
turns out, the classification results at this level for affine Hopf algebras are exactly
the same as for noetherian Hopf algebras, so both can be stated together. The specific
hypotheses are

(H2) H is a Hopf algebra domain which is either affine or noetherian, the base field
k is algebraically closed of characteristic zero, and GKdim H = 2.

There are several immediate examples satisfying (H2):
• U(g), where dim g = 2.
• k�, where � = �2 or � = � � � and in the semidirect product, � acts on itself

by the rule m.n = (−1)mn.
• O(G), where G = (k,+) � (k×, ·) and (k×, ·) acts on (k,+) by the rule b.a =

bna, for some n ∈ �≥0.
The two group algebras mentioned may also be presented as the coordinate rings of
(k,+)2 and (k×, ·)2. These two groups, together with the ones mentioned in the last
item, are the only connected two-dimensional algebraic groups over k.
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Three additional families of examples satisfying (H2) were constructed in [15,
Section 1]:

• A(n, q), generated by a grouplike element x, its inverse, and a (1, xn)-skew
primitive element y satisfying xy = qyx, where n ∈ �≥0 and q ∈ k×. (The
coordinate rings O(G) in the third item above have the form A(n, 1).)

• C(n), generated by a grouplike element y, its inverse, and a (yn−1, 1)-skew
primitive element x satisfying xy − yx = yn − y, where n ∈ �≥2.

• B(n, p0, . . . , ps, q), generated by a grouplike element x, its inverse, and
commuting (1, xmin)-skew primitive elements y1, . . . , ys satisfying ypi

i = ypj

j and
xyi = qmi yix, where n and mi = p1p2 · · · ps/pi are positive integers satisfying
some numerical conditions we do not list here, and q ∈ k× is a primitive
(np1p2 · · · ps/p0) th root of unity.

All the above examples, except for the last, are Auslander-regular and Cohen–
Macaulay of global dimension 2, while the last is Auslander–Gorenstein and Cohen–
Macaulay of injective dimension 2 [15, Proposition 0.2 and proof].

A classification of (H2) was obtained under an additional homological
assumption, equivalent to the existence of an infinite dimensional commutative
quotient algebra [15, Theorem 0.1, Proposition 3.8].

THEOREM 4.3. [Goodearl–Zhang] If H satisfies (H2) and Ext1
H(Hk, Hk) 	= 0, then

H is isomorphic to one of the examples described above.

While the homological assumption Ext1
H(Hk, Hk) 	= 0 appears natural, it does not

always hold, as shown by Wang, Zhang and Zhuang [32, Section 2].

CONSTRUCTION 4.4. [Wang–Zhang–Zhuang] There exists a family of Hopf algebras
satisfying (H2) but Ext1

H(Hk, Hk) = 0.

Construction 4.4 is a modification of that for the B(n, p0, . . . , ps, q) of [15]. Both
families satisfy polynomial identities, and in fact, one has the following result [32,
Corollary 1.12] and D.-G. Wang et al. (in preparation, Theorem 0.1).

THEOREM 4.5. [Wang–Zhang–Zhuang] Any Hopf algebra H satisfying (H2) and
Ext1

H(Hk, Hk) = 0 is a PI algebra.

CONJECTURE 4.6. [Wang–Zhang–Zhuang] Any Hopf algebra H satisfying (H2)
and Ext1

H(Hk, Hk) = 0 is isomorphic to one of those in Construction 4.4.

A more ambitious problem is to line up the mentioned classifications in Gelfand–
Kirillov dimensions 1 and 2:

PROBLEM 4.7. Classify the prime Hopf algebras, over an algebraically closed field
of characteristic zero, which are affine or noetherian with Gelfand–Kirillov dimension
at most 2.

Let us finish by mentioning a general classification programme for certain infinite
dimensional Hopf algebras put forward by Andruskiewitsch and Cuadra [2]. It lays out
a proposal to classify suitable (in a certain technical sense) classes of Hopf algebras over
an algebraically closed field of characteristic zero [2, Theorem 1.3, Questions I, II, III].
(In particular, the class of Hopf algebras with finite Gelfand–Kirillov dimension, and
the class of co-Frobenius Hopf algebras, are suitable.) N. Andruskiewitsch (personal
communication, February 2012) has asked whether the class of noetherian Hopf
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algebras is suitable in the sense of [2], and has proposed trying to classify this class
along the line of [2, Section 1].
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