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EISENSTEIN SERIES FOR REDUCTIVE GROUPS 
OVER GLOBAL FUNCTION FIELDS I. 

The Cusp Form Case 

L. E. MORRIS 

Introduction. Let G be the Lie group SL(2, R) and r a discrete 
subgroup of arithmetic type. The homogeneous space T\G can be 
equipped with an invariant measure so that there is a Hilbert space of 
square integrable functions, denoted L2(T\G), on which G acts by right 
translations. If T\G is compact then this Hilbert space breaks up into 
a countable direct sum of irreducible representations of G, each occurring 
with finite multiplicity. Quite often however T\G is not compact, but of 
finite volume; in this case L2(T\G) splits into a discrete spectrum Ld

2, 
which behaves as if T\G were compact, and a continuous spectrum Lc

2, 
which is described by the so called theory of Eisenstein series. These are 
generalized eigenfunctions of the Casimir operator of G, which are para­
metrized by a right half plane in C, and as such are analytic functions on 
this half-plane; in the course of describing the continuous spectrum Lc

2 

however, one analytically continues them to meromorphic functions over 
all of C, and shows them to satisfy functional equations. A key role in 
this is played by the so called constant term of the Eisenstein series which 
is an intertwining operator that can also be analytically continued over C, 
and also satisfies its own functional equation. Such a theory was first 
developed by Selberg in order to extend his trace formula to the case 
where T\G has finite volume; his ideas and methods were decisive for 
the later development of the subject. 

More generally, let G be a connected reductive algebraic group defined 
over a global field F, and write A for the associated ring of adeles of F. 
In recent years there has been considerable interest in the representation 
of G (A) by right translations on L2(G(F)\G(A)) and closely related 
spaces, inspired by what is now called Langlands' philosophy. Roughly 
speaking the working hypothesis of this philosophy is that there is a 
correspondence between irreducible representations of G (A) occurring in 
L2(G(F)\G(A)) and irreducible representations of the Galois group of 
"the" algebraic closure of F. It is not our purpose here to describe the 
questions raised by this philosophy, or to provide evidence for it, which is 
considerable, but merely to point out that one of the most powerful known 
ways to attack these problems is by means of the trace formula, which is 
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still evolving, and that, just as above, there is a continuous spectrum 
which must first be dealt with in some manner. 

In case F is a number field, this problem was attacked and solved by 
Langlands some fourteen years ago, by adapting the ideas of Selberg, and 
using ideas of his own ; for a description of the results we refer the reader 
to [13], appendix II. The aim of this paper and its sequel is to describe 
the continuous spectrum in case F is a global field of characteristic p > 0, 
i.e., a function field in one variable with a finite field of constants. The 
methods are similar in spirit to those of Selberg and Langlands; in par­
ticular, considerable use is made of the spectral theory of bounded self-
adjoint operators. The argument is an inductive one and will be described 
in the next paper; the purpose of this paper is to start the induction, and 
it corresponds to § 1-6 of Langlands' notes [13], i.e., to Eisenstein series 
arising from cusp forms. 

We now briefly describe the contents of this paper. Let G, A, F be 
as before; although in fact we do not work with L2 = L2(G(F)\G(A)) 
we shall pretend that we do for the discussion that follows. Chapter I 
contains a summary of results from root systems and reduction theory 
together with some applications; we remark in passing that the reduction 
of Section 4 is due entirely to Harder [8], [9] (but cf. also [14]). 

The object which parametrizes Eisenstein series coming from a given 
parabolic P = NM is a complex analytic manifold DM(Q- This is defined 
in Chapter 2, Section 1, along with some associated vector bundles and 
function spaces. In § 2 0-series (as Godement calls them), and Eisenstein 
series arising from cusp forms are defined, and their convergence proper­
ties examined. Next, in § 3 the constant term of such Eisenstein series 
is studied, and a formula for the inner product of two 0-series is given, 
which involves this constant term. Such a formula is crucial for later 
developments, and it also provides a decomposition of L2 into a direct 
sum of spaces of 0-series (2.3.4). The last part of § 3 is concerned with 
estimates for the constant term, and approximation arguments which are 
employed extensively in Chapter 3. Finally in § 4 we study to what extent 
the various constant terms of a reasonable function on G(F)\G(A) deter­
mine that function, and deduce miscellaneous related results. The basic 
observation here is also due to Harder ([10], Lemma 1.6.7) and should 
be compared with the corresponding situation in the number field case. 

Initially, Eisenstein series are parametrized on an open subset of DM(Q, 
and as such are analytic functions. Similarly their constant terms repre­
sent matrix valued analytic functions on the same open subset of DM(£). 
Chapter 3 is the heart of the paper: in it we analytically continue Eisen­
stein series E(g> $, z) arising from cusp forms <£ associated to maximal 
parabolic subgroups (z G C* ^ DM(£) in this case), and show that they 
satisfy the requisite functional equations. At the same time we prove 
similar results for the constant term M{z) of E(g, <ï>, z); indeed the 
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method consists in first proving the results for M(z) then passing to 
£(g> $> z) via. 2.4. To begin, we construct a bounded self-adjoint oper­
ator A, and relate its spectrum to the analytic behaviour of the operator 
valued function M{z) via the inner product formula for 0-series; this 
permits analytic continuation outside the unit circle except for two 
"whiskers" of finite length which protrude from z = + 1. In § 2 truncated 
Eisenstein series are discussed; they permit one to continue M(z) over 
the unit circle by a reflection principle. It remains to deal with the 
whiskers, and the points z = + 1 , 0 . 

To deal with these one makes more use of spectral theory. First, by 
using Stone's formula, which relates the resolvent of a self-adjoint oper­
ator to the resolution of the identity, one shows that M(z) can be analyti­
cally continued along the whiskers (except for z = + 1), and has at 
worst a finite number of simple poles there (in fact the simple poles cor­
respond closely to isolated points in the spectrum of A). For the points 
z = + 1, one makes essential use of Stone's formula, and then brute 
force to deduce that M(z) is analytic at z = + 1 ; more precisely one 
studies the behaviour of the eigenvalues of the unitary operator M(z) for 
\z\ = 1 as z —> + 1. This involves a careful study of the inner product 
formula for truncated Eisenstein series and elementary analysis; some­
day when the theory of Hecke operators is better understood it will be 
possible to deal with z = + 1 in a less circuitous fashion. At this stage of 
the argument it is easy to deal with M{z) as z —> 0 ; in fact as a bonus one 
obtains that M (z) and E(g, <ï>, z) are rational functions (3.5) of z. 

Finally in Chapter 4 we show how the results in Chapter 3 imply 
similar results for Eisenstein series and their constant terms arising from 
cusp forms associated to non-maximal parabolics. This method is that of 
Langlands [13]; while it is not the only method available, it is certainly 
the quickest. 

It will be clear to anyone who glances at them, that this paper owes a 
great deal to Langlands' manuscript [13], and Harder's paper [10], and 
it is a pleasure to acknowledge my debt. I would also like to thank 
Dr. S. J. Patterson for reading an earlier version of Chapter 3, and the 
referee for many helpful comments. In a less mathematical vein, I thank 
Professors Coates and Deligne for their help as well. 

1. Preliminaries from Root Systems and Reduction Theory. 

0. Some notation and conventions. Throughout this paper F will 
stand for a function field in one variable with finite field of constants Fq, 
and A will denote the associated ring of adeles. 

0.1. If G is defined over F with Lie algebra ® then ad : G —» Aut (©) 
is the algebraic morphism defined by conjugation; in terms of points 
ad (g)x = gxg~l. We define Ad : G —> Aut G in the same way. Suppose A 
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is an P-algebra a n d / is a function of some kind on G (A). Then Ad gives 
rise to Ad*, with 

<Ad*(g)/,*> = </',*> := (f/x) = </, Ad (g)x) 

where °x = Ad (g)x\ we also write x° for ^ x , so that °f = /*~\ 

0.2. Let P be a rational parabolic subgroup of G, with unipotent radical 
iV. The modulus character of P(A) is denoted by ôP : if p Ç P(A) , then 
ôp(p) is |det (ad (£))|1 /2 where ad is restricted to act on the Lie algebra 
olN. 

0.3. If F is a complex analytic manifold, we shall write âv for its 
structure sheaf; if U C F is an open subset then T(U,&V) denotes the 
ring of sections over U. 

0.4. Let H be a locally compact topological group equipped with a 
Haar measure. If / , g are suitable complex valued functions on H, 
supposed measurable, then the convolution/ * g is the function defined by 

f*g(x) = I f(xy~1)g(y)dy 

("suitable" means that the integral exists e.g. / , g continuous with 
compact support). 

The above is by no means complete, but rather a list of miscellany 
which appear either without comment, or with a cursory remark at some 
point in the paper. 

1. Preliminaries from root systems. 

1.1. Let 8% = (M, M*, P , R*) denote a root system in the sense of 
S.G.A.D. XXI, with Weyl group W. We shall suppose chosen a set of 
simple roots A and write R+ for the corresponding set of positive roots. 
It is well known that W is generated by the fundamental reflections 
say a 6 A. We denote by \(w) the minimum of 

{/| w = wl . . . wt, Wi = sai,a G A}. 

In particular, 1(1) = 0, l(sa) = 1. 
Set 2W = P+ C\ w-^R-), and define n(w) = |2„|, for w £ W. 

LEMMA. Let a £ A, w £ W. Then 
(i) n(saw) = n(w) + 1 if w~la 6 R+. 

(ii) n(saw) = n(w) — 1 if w~la £ P~. 
(iii) n(wsa) = w(w) + 1 if w~la £ P + . 
(iv) n(wsa) = n(w) — 1 if w~la £ P~. 

Proc/. Observe that 2S(xW = {wr1**} W 2W to get (i). For (ii), replace w 
by 5aw in (i). Finally, note that n(w) = n{w-1) to obtain (iii) and (iv). 
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1.2. The next result is well known. 

THEOREM. The numbers l(w), n(w) are equal. 

As a corollary, one has 

1.3. COROLLARY. W(A) = A implies w = 1. 

1.4. Let 9 Ç A, and write Re = (linear span 9) Pi R, and similarly 
for RQ*. If MQ is the sublattice generated by 9, there is a map induced by 
transposition M* —> (Me)*, and the system (Me, Me*, Re, RQ*) is a 
root system. The group We, generated by the sa, a G A is the Weyl group 
for this root system. 

Define De to be the set of w G W such that w(r) G R+, each r G 9. 

PROPOSITION . (i) Each element w G W can be written uniquely in the form 
we = dewe, de G De, We G We, and ï(w) = \(dQ) + l(wQ). Let 0h 92 

C A, Wi the Weyl group corresponding to Qiti — 1,2. Define 

£ V e 2 = {w G W\ w'Si > 0, w02 > 0}. 

(ii) Each element d, d~l G Del can be written uniquely in the form 

dnw2, d12 G DQl,e2,W2 G We2, and 1(d) = l(d12) + l(w2). 

Proof, (i) Induction on l(w) ; if l(w) = 0, or w G DQl, it is trivial. If not 
there is a G 9 and wa < 0. By 1.1 (iv) l(wsa) — l(w) — 1; induction 
implies wsa = dwi with l(wsa) = 1(d) + l(w^. Then 

W = d î ^ , 1(W) = l(wSa) + 1 = 1(d) + (I(Wi) + 1). 

Now ï(^i^a) ^ ï(^i) + 1 ; if there were strict inequality, one would have 

\(w) ^ 1(d) + \(wlSa) < 1(d) + ï(w1) + 1. 

This gives existence. For uniqueness: let d' = dw, 1 7e w G WQl. Write 
w = w'spj with \(w) = l(w') + 1. Then d'sp = dw' has smaller length, 
and by induction sp = w' (note 0 G 9X). For (ii) induct on \(d)\ we can 
suppose 1(d) > 0 and d G De2. Then there is a root /3 G 92 and dfi < 0. 
Since s$ preserves all positive roots except & we see that dsp G De{~1 as 
well and l(ds$) — 1(d) — 1. An argument as in (i) now shows that d = 
di2w2 as desired, and uniqueness follows in the same way. 

1.5. COROLLARY. Each element w G W can be written uniquely in the form 
w = W\dw2, Wi G Wi, d G ^ei,e2> 

and l(w) = l(w0 + 1(d) + l(w2). 
Proof. Apply (i) above to w~l to get w = wxd\, dx G Dex~

l. Then (ii) 
implies d\ = d12w2. Uniqueness follows as in (i) above. 

1.6. COROLLARY. In each double coset WiwW2 there is a unique element d 
of minimal length, characterized by any of the following properties: 
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(i) Any element w Ç WiwW2 can be written uniquely in the form 

w' = w1dw2, \(wr) = \{wi) + 1(d) + l(w2). 

(ii) It is the element of least length in WxW, wW2. 
(iii) drlQi > 0, de2 > 0. 

1.7. Given 0i, 02 Ç A, set W(eu 02) = [w £ W\ wQl = 92}, and say 
that 9i and 62 are associate if this set is non empty, associate by w £ W 
if w6i = 02. 

For 0 Q A, define w e to be the longest element in We- Such an element 
is unique, by the theory of Coxeter complexes. Then 1(WQ) = |i?e+|. 

LEMMA. Given 0 C ^ Ç A, WQ = w^we. Then 2w?o = i?*+ — Re+. 

Proof. l(w0) = n(wo), and since I(wo) ^ l(w*) (by definition of w in 
the root system coming from \F) we have SM,o Ç R^+. Moreover w0O > 0 
implies 2Wo Ç i?^+ — RQ

+. The characteristic property of w* implies 

\(w0) = 1(>M>) — I(we). 

Since I(we) = | ^e + | , l(w*) = |^*+ | , we see that 

SWo = R-q,+ — Re+-

1.8. If 0 Ç A, a 6 A\0, ^ = 0 U {a}, the conjugate of 0 in * is 
defined to be 

0 = w*we(Q) = w^( —0) Ç >£. 

Note that 0 can be equal to 0. 

PROPOSITION. The conjugate of 0 in SF is the only subset of ^ associate 
to 0 by a non trivial element of W*. 

Proof. Let wO = 0', 1 ^ w Ç W*. Then ¥ = 0' \J ( ^ . N o w ^ G ' > 0 
implies w~'1p < 0, and w~lfi 6 R*~ — Re~- Lemma 1.7 implies 

Wo(R*~ - Re~) Ç R*+. 

Thus WQW-1(&) = 0 > 0, and Wtfw~lfi > 0. Hence w0w_1 = 1. 

2. Standard parabolic subgroups. 

2.1. Let G be a connected reductive group defined over 7*\ T' a maximal 
torus not necessarily defined over F. We shall suppose chosen a set of 
roots Rf, and simple roots A' for the pair (GF, TJ?) over an algebraic 
closure F of T7. Let To be a maximal F-split torus, T0 Q T', R the set of 
roots of G with respect to T0. We can choose a set of simple roots A for G 
with respect to TQ in such a way that if a £ A' then o:| TQ is either trivial or 
an element of A; if this is so then there is a correspondence between sub­
sets of A, and Gal ( F/F)-stable subsets of A/, where A/ consists of those 
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elements of A' not trivial on P0. The set A corresponds to a minimal 
parabolic subgroup Po denned over P. There is a canonical Levi decompo­
sition Po = NQMO, where No is the unipotent radical of P0 , and M0 is 
the group ZG(T0). 

Given a subset O C A there is a canonical way to attach a parabolic 
Pe 2 Po to 9, which is defined over F. Indeed because of the correspon­
dence above, we may suppose 9 is a Galois stable subset of A/ and work 
over F. Then Pe C P0 will be the identity component of PUee ker (a), 
and Me = ZG(TQ). The group Ne is the unipotent group generated by 
the root groups Np such that f} is a positive root of the form 0 = 2maa, 
and where at least one of the coefficients ma, a G A/ — 9 is strictly 
positive. The group Me normalizes Ne, and Pe is defined as the semi-
direct product NeMe', the set AP e = A — 9 is said to be the set of simple 
roots of (P e , Pe). 

A parabolic subgroup constructed in this way is said to be a standard 
parabolic subgroup. The set of all standard parabolic subgroups is a set 
of representatives for the P-conjugacy classes of parabolic subgroups of G. 
In particular P 0 = P 0 and P A = G. The standard proper maximal para-
bolics are defined by subsets of the form A — ja) ; we shall sometimes 
simply write Pa rather than PA-{<*} in this case. 

In this paper we shall work only with standard parabolic subgroups, 
and the word "parabolic" will mean implicitly "standard parabolic". 
We shall refer to the pair (Pe, Pe) as a parabolic pair. 

2.2. Let (P, T) be a parabolic pair, P = NM. We denote by LM%r 

the lattice generated by the roots of (P, P), and set 

The elements of XM(R) give rise to homomorphisms 

Z G (A)M(F) \M(A)->R+, 

or alternatively, to homomorphisms 

Z0(A)ZM(F)\ZM(A)->R+. 

There is a homomorphism 

HZM : ZM(A) -> Mor (XM(R), R) = X V ( R ) , 

described as follows. If 2 € ZM(A), then for x € -XV(R), 

x(z) =<z<*Vz)*>. 

The image HZM(ZM(A)) is a lattice LZ/tI* in ^V(R)- There is also a 
homomorphism 

HM : M(A) -» XM*(R) with HM|Z M (A> = HZM, 
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defined in the same way as before, and we set 

M° = {m e M(A)\ x(m) = 1, x € XM(R)} 

ZM° = F H Z M ( A ) 

LM* = M°\M(A). 

We shall write XM(C) = XM(R) ® C, XM*(C) = XM*(R) ® C. 

2.3. Write X0(R) for XM o (R) , etc. There is a natural projection 

Xo*(R)-^X M *(R) 

and injection 

Z M (R) C Xo(R) 

coming from the map M0 C M", when P = NM is a parabolic containing 
P0 . Any root a G ^ ( R ) is the restriction of a unique root ao G X 0 (R) . 
Write a* for the projection of the coroot a0* to 1 ^ ( R ) . The set thus 
obtained is a basis for XM(R); let L M c be the lattice in XM (R) 
generated by the a* (called coroots by abuse), for a £ AP. 

The inverse image of I?M,c in ZM(A) will be denoted by ZMtC\ it is a 
subgroup of finite index in ZM(A), and there is an exact sequence 

ZM C_ ZM,C "** -L>M,c 

2.4. Let P 2 2 P i be parabolics with Levi decompositions P* = NtMi. 
Then P x P\ M2 is a parabolic subgroup of M2 with unipotent radical 
iVi2 = iVi H M2. Let Ai2 be the set of roots for the pair (P1 H M2, Pi) ; 
it is a subset of Ai. In this way, subsets of Ai correspond to parabolic 
subgroups containing Pu while the map P i —> P\ C\ M2 is a bijection 
between parabolics contained in P 2 and parabolic subgroups of M2. 

We shall often write A P for the basis dual to the basis of coroots, and 
refer to it as the basis of weights. 

2.5. Let Pt = PQl (i = 1, 2) be as above, w 6 W(0U 02). Write [Oi] 
for the set of roots spanned by Qt, Rt = C[9 j C\ R+, and similarly for 
Rt-. Let 

R' = c[ez] n ^-^2, P" = Px+ n «r1^"). 

Then Px = R' KJ R", and i?2 = rf U ^ ( - i ? " ) . The sets P ' , R" are 
convex, so closed, hence generate unipotent groups N\ N" respectively, 
and the product map Nf X N" —» N\ is an isomorphism of varieties. 
Similarly for wNf X W(N"~) -> iV2, and we have "W = N2 C\ WNL 
Let 5' (resp. 5") be the modulus character of Mi restricted to N' (resp. 
N"). In additive notation, ôx = ô' + <5", <52 = wô' — wô'', where ôt is the 
modulus character for Mt. 
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3. Chamber decompositions. 

3.1. The main result of this section is due to R. P. Langlands (see [13] 
especially Lemma 2.13), but the proof given here has been taken from 
unpublished notes of W. Casselman, who attributes it to J. G. Arthur. 

3.2. We shall say that P , = NtMi (i = 1, 2) are associate if Mu M2 

are conjugate by an element of G(F). 

PROPOSITION. Suppose Pt corresponds to Q{ (i = 1, 2). The following are 
equivalent: 

(i) Pi , P 2 are associate. 
(ii) There is g G G(F)t and gTxg~l = T2. 

(iii) There is w G Wy and wQi = 92. 
In this case one can always choose g G N(T0) for (ii). 

Proof. One need only show (ii) <=> (iii), and clearly (iii) => (ii). Suppose 
(ii) holds, then both gTQg~l, T0 are maximal P-split tori in M2 so conjugate 
by an element m2 G M2(F). Then m2g G NG(T0), Int (m2g)Ti = T so 
we may suppose g G NG(T0). Choose the unique element w of minimal 
length in the coset of W1XW/W2 containing the image of g (1.6). Then 
1.6 also implies that wQi > 0, and since g Pig -1 = ^2, this implies 
wRQl = Pe2 , so that wQi C Pe2+ whence wRe2

+ = Pe 2
+ and î£;6i = G2. 

3.3. For G Ç A we identify 

Xe*(R) = {x G X0*(R)|a(x) = 0,a G 6}. 

For brevity, Xa*(R) = Z{a}*(R). We set 

Co = {x £ XQ*(R)\a(x) > 0,a G A\0j 

Ce = {x f Z e *(R) | a (x ) ^ 0, a G A\0}. 

The set of regular elements is the set 

X e *(R) + = * e * ( R ) \ U « w * e (*«*(&) H X e * ( R ) ) . 

It is an open subset of X0*(R). 

PROPOSITION, (i) Each connected component of Xe*(R)+ has the form 
w~lCç>> for some unique 0 ' C A, w G W(0, 0')-

(ii) Giro?» 0, 0' Ç A, w G W(0, 0'), ^ e exist subsets 0i = 0', . . . 
0„ = 0 and for each 1 ^ n — 1, //^re exists a root ai G A\0 such that 
Qi+iis the conjugate of Qfin ^r{ — 0Z U {«<}. If one sets wt = w^-we» /0r 
1 ^ i ^ n - 1, then w = ^ _ ! . . . w2wx. 

3.4. Remarks, (i) Observe that the Weyl group W acts on X0(R) by 
means of the representation contragredient to the representation by 
which it acts on X0*(R). 
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(ii) Each connected component of X 0 * ( R ) + is a simplicial cone ([3], 
V. 1.6). 

We first prove 3.3 (i) in case C is a component of X 0 * ( R ) + which has 
a face in common with Ce. Such a face mus t then have the form 

Z a * ( R ) H Ce, a £ A\G. 

3.5. L E M M A . Let C be a component with X a * ( R ) C\ Ce in common with 
C e , a G A \ 0 . Then C = W$~1CQ where w0 = W^WQ, 9 = conjugate of 9 in 
^ = G U {a}. 

Proof. w0-1-Yë*(R) = X e * ( R ) since Wo"1© = 9 ; w0"1(-X'e*(R)+) = 
Z e * ( R ) + . Moreover W^1CQ is a connected component of X 0 ( R ) + . We 
show 

(i) WQ~1CQ 7e Ce; this will prove the lemma if we also show 
(ii) WO^CQ has the face Xa*(R) H Ce-

(i) Let â be the unique element of 9 U { a } \ 9 , then 

w 0
_ 1â G R*-\Re~. 

Hence, if x Ç C§ then 

(^o_1ô:) (w0
- 1x) = « ( # ) > 0, 

so 
( — WQ-1^) (wo^x) < 0 

i.e., WQ~1X $ C e . 
(ii) Ce has the face X«*(R) H Ce, and 

w 0(Z«*(R) H Cô) = X a * ( R ) H Ce. 

3.6. We can now finish the proof of 3.3 (i), by using induction. If C is 
a connected component , define df = d(Ce, C) to be the minimal number 
of hyperplanes separat ing Ce from C . We proceed by induction on d'. 

Let H be a face of C which is pa r t of a chain (Xu . . . , X&>) of hyper­
planes of minimal length separat ing Ce from C . T h e n there is a com­
ponent C" sharing this face, and d" = d' — 1. W e conclude t h a t C" = 
W"~1CQ,> for some unique 9 " C A, and w " £ W ( 0 , 9 " ) . Moreover 
w " C and CQ>> share a face, so t h a t we can apply the lemma to find 
W{T1CQ" — w"C. Then w = w0w

n', and 9 " will do. As for uniqueness, 
if WICQ1 = w2Ce2 then this means t h a t 

W2~
1WICQ1 = Ce2 

so t ha t 

w2~
1WiG2 = 6 i . 

This implies t h a t w2~
lwx keeps all positive roots positive, hence w2~~lw1 — 

1 and 9 2 = Gi. T h e proof of 3.3 (ii) follows from tha t of (i) . 
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3.7. Let P^ = NtMi (i = 1, 2) be parabolics, 

7T : P1 -» iVAPi ^ Mi 

the natural map. Set P 2 = 7r(P2 H P I ) . The next lemma is straight­
forward to prove. 

LEMMA, (i) P 2 is a parabolic subgroup of Mi with unipotent radical 
ir{N2r\Pl). 

(ii) / / P 2 = Mi, then M2 2 ML 

4. The reduction theory of Harder. 

4.1. Let c be a real number. Then we write 

PoW = K Po(A)| (a,HM(x)) ^c,a £ A} 

where as usual 

\a(x)\ = ^ ' % ( ^ . 

Let X be an open compact subgroup of the form UPKP. The first main 
result of reduction theory is the following. 

THEOREM. There exists a constant cx > — oo such that 

G(A) = G(F)P0(c1)i:K 

where 2 is a finite subset ofG(F), depending only on K. 

Remark. The constant C\ depends on the genus of F. 

4.2. Suppose y = pfrk Ç P^c^^K, & G 2; we write |a(y)| = |a(p)| 
for a G A. This is well defined. 

THEOREM. (Second main theorem of reduction theory). Let cY be a 
number such that 4.1 holds. There is a constant c2 = c2(ci) with the following 
property: 

ifyt PoteOhK n yPoicMiK, y e G(F), £<(* = 1, 2) e 2 ;&** 
7 € PA-A>(F) if\*(y)\ > qC2foreacha £ A' C A. 

4.3. The next question to consider is that of compactness. 

THEOREM. M C G(A) w relatively compact modulo Z(A)G(F) if and 
only if 

M C G ^ P o ^ O S X , 

for stfme c', wftertf 

Po(clf(/) = M i"o(A)|2c ' è |«(*)| ^ 3Cl,« É A}. 

4.4. Let XG-(R) be the group of quasi characters G (A) —> R+. This is 
a finite dimensional vector space over R; write XG*(R) for its dual. In 
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the same way as before, there is a homomorphism 

G(A)->X G *(R) 

and we write G° for its kernel. 
Recall that G is anisotropic if and only if G contains no proper parabolic 

subgroups. 

THEOREM. The following conditions are equivalent. 
(i) G is anisotropic. 

(ii) G(F)\G°/K is a finite set. 
(iii) G(F)\G° is compact. 

4.5. Let N be a soluble linear algebraic group denned over F. The 
following result is proved in [5] Théorème 2, cf. [9] Satz 2.2.1. 

PROPOSITION. N(F)\N° is compact. 

4.6. It will be convenient to reformulate some of these results. From 2.2 
we have a homomorphism 

Mo(A)-^XMo*(R), 

and lattices 

It follows that the group Z0(A)Mo0 has finite index in Mo (A); let I* be 
a set of coset representatives so that 

Mo(A) = Ù*Mo°Zo(A)U 

Then Ho(m) can be written in the form 

Ho(m) = H0(z) + H0(U) 

where li} HQ(Z) are unique. Therefore 

Mo(A) = Mo°Z0(A)A, A finite 
Po(A) = 7Vo(A)Mo°Zo(A)A. 

Theorem 4.4 implies that Mo° = M{F)Z(K)v, where v is a compact set, 
and Theorem 4.5 implies thatiVo(A) = No(F)u, where co is a compact set. 
Combining these results we see that 

Po(A) = iVo(A)M0(/<>Zo(A)A = P,(F)œZo(A)vA. 

Moreover, if we replace cx by cx — inf7,a |a(I0| , then Po(Ci) can be 
replaced by Po(F)wZo(ci)v A, and 

G(A) = G(F)œZ,(c1)C 

where C = v^K is a compact subset of G (A). 
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Similarly, by changing c2(ci) if necessary we can reformulate Theorem 
4.2 in this fashion. 

Finally, suppose K is a maximal compact subgroup, chosen so that 
G (A) = P0(A)K (such K always exist from the work of Bruhat-Tits) ; 
then changing C\ again if necessary, we can eliminate the finite set S from 
the fundamental domain obtained above. 

We may write Z0(ci) in the form Z0° • L*(ci) where L*(ci) maps iso-
morphically onto a subset of LZM. Then we can put the fundamental 
domain above in the form coL*(ci)C. We shall write @(ci, o>, C) for the 
subset o>L*(ci)Cor sometimes ©(ci, co) when no confusion can occur (this 
will imply that a subset C has been chosen in the manner above). On 
occasion we shall use these same symbols to denote the subset wZ0(ci)C 

As a corollary of Theorem 4.1 one has 

4.7. COROLLARY. G{F)Z(A)\G{A) has finite volume. 

Proof. Set @ = uZG(ci)C, and choose a sequence ©w C @ (n ^ 1) 
such that (i) ©w is compact mod Z(A) (ii) U @„ = ©. Let /n be the 
characteristic function of ©w- Then 

f f,(g)dg = f H.Uyg)dg. 
J Z(A)\G(A) J Z(A)G(F)\G(A) G(F) 

The left hand side is just the volume of (Z(A)\@n) ; the right hand side 
is at least the volume of the image of ©n in G{F)Z(A)\G{A). Now use 
monotone convergence. 

5. Applications. 

5.1. We begin with some remarks concerning compact subgroups of 
G(A). From now on, in this paper, K will always denote a fixed maximal 
compact subgroup of the form IL$Kp, and Kf will stand for an open 
compact subgroup Kf Q K, also of the form lip Kp. Moreover, we 
suppose K is chosen as in 4.6, so that G = Po(A) • K. 

Suppose p : K —>GL(m, C) is a continuous (irreducible) representa­
tion. Since K is totally disconnected, p factors through H\K where H is 
an open compact subgroup; it is clear that H contains a subgroup Kr as 
above. Thus if F is a finite dimensional complex vector space on which 
K acts then V is fixed pointwise by some normal subgroup K', and the 
representation factors through the finite group K'\K. 

5.2. Let <p : G(F)\G(A) —> C be a measurable function. Then cp is 
K-finite if the space V(<p) generated by right i£-translates of <p is a finite 
dimensional C-vector space. In this case V(<p) is fixed pointwise by an 
open compact subgroup K\ and in particular consists of locally constant 
(hence continuous) functions. 
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We shall say t h a t <p is cuspidal if for every proper parabolic P = NM, 

one has 

<PP(g) : = ! <p(ng)dn = 0. 
d N(F)\N(A) 

5.3. T h e next proposition has been known for some t ime, cf. [7], [10]. 

PROPOSITION. Let <pbe a K-finite cuspidal function on G(F)\G(A). Then 
<p has compact support modulo Z(A)G(F). 

In order to prove this result we need the following result, which we 
shall then use to prove a lemma. 

5.4. Let P = NM be a parabolic corresponding to 9 Ç A . For each 
root 13 = £ Qtfitj, (Xj G A, set 

aj£A\e 

and let Rt be the set of roots f3 such t ha t a(f$) > i, for each integer i ^ 0. 
Then each Rt is closed, and Rt Pi ( — Ri) = 0 hence gives rise to a sub­
group Nt Q N. This gives a chain 

N = No 2 # i 3 . . . ^Nn = {1}. 

T h e proof of the following proposition can be found in S G A D X X V I 
Proposition 2.1, cf. also [2] Théorème 3.17. 

PROPOSITION, (i) Each N^ is smooth, connected, and characteristic and 
closed in P. For each F algebra A, one has the commutator relation 

{Nt{A),N}{A)) QNi+j+1(A). 

(ii) Each Ni+i\Nt = Wu a vector group on which P acts linearly. 
(iii) dim (N) = dim (Lie (Np)) ^ n. 

5.5. LEMMA. There is a constant c' such that if t £ T0(ci) and if for some 
a G Aonehas\a(t)\ ^ cf, 

Na(F)(t(K' H N«(A))t~l) = Na(A) 

where Pa = NaMa. Here c1 is as in 4 .1 . 

Proof. We prove the lemma by climbing up the chain exhibited in 5.4 
for the group Na. 

First consider the group Wt(A). According a well known va r i an t of 
the Riemann-Roch theorem, if 12 is an open subgroup of the vector group 
F ( A ) , there is a constant CQ = c such t h a t for each a £ A* with \a\ > qc, 
one has afi + V(F) = V(A). T h e construction of Wt implies t h a t as 
schemes 

Wi = ©o(|3) = f+l Np, 
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where in this case /3 = a(l3)a + /3'. Furthermore it follows from the 
construction that under the action of To, the vector group W{ breaks up 
into a sum of weight spaces Wp, 

such that on Wp, To acts via /3. For each 0, write /3 = a(fi)a + 0' where 0' 
contains no multiple of a. Letting ft vary, one can choose a number c3 

such that |/3'(*)| > qC3, t G 7"0(ci). Then 

|/5(0| = |a(O|fl(»l0'(/)l > kWI^V3-

Taking projections we see that K' = II(i£' P\ Nt{h)) is an open sub­
group of W*(A) and that Kf C\ Wp(A) is open compact in W$(A). 
Set R/ = K' C\ Wfi(A). Then 

tR/tr1 = a(t)aMp(t)R0'. 

Choose 

c = s u p l -^rl 
Then for |a(/)| > c', 

tR'f1 + Wi(F) = Wi(A). 

Here we have taken Q$ = J? / . 
Now let n G A7'* (A) ; set 

N' = n Ne 
n(B) = i+l 

where Np as before is the unipotent group generated by those (absolute) 
positive roots restricting to the relative root (3. There are isomorphisms 
of schemes 

iVf+i X N' —> Nt (given by multiplication) 

N' -> Wt. 

In particular n G Nt(A) can be written n = ni+iu'', ni+i G Ni+i(A), 
n' G iV'(A). The preceding remarks imply that 

ri = nF'k', nF
f G N'(F), V G t{K' C\ iV'(A))/-1; 

hence n = w/w,-+ iV^. Now WH-I7**'' G iVi+i by the commutator formula 
in 5.4 (i), so by induction, 

ni+iF' = Wi+ifei for \a(t)\ ^ gCt'41. 
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Thus 

n = ntn' = nF
fni+iFkik'', 

nF
fni+iF G Ni(F), and 

fe<fe' G tK't-ir\Ni{K). 

So if we take c* = max (ci+i, c') we get the lemma for iVt-(A). 

5.6. Proof of Proposition 5.3. From 4.1 it is enough to show that given 
a compact set £2, one can find a constant c' such that if t G ^o(ci), <p(/g) 
^ 0 implies / G r0(ci, c') for g G Î2. For each g G Œ, the function x i—> v{xg) 
satisfies the same conditions as (p. Further, since ti/K' is finite one may 
find K" so that all the functions x t—> (p(xg) are K" invariant. So it is 
enough to show that (pit) ^ 0 implies t G T0(ci, cf) whenever <p is Kf 

invariant, cuspidal. 
For each n G Na(A), we may write n = ytn't~l, y G iVa(F), n' G 

N«(F) r\Kf, by the lemma. Then 

<p(w/) = <piytn') = <p(t), and 

0(0 = I <j>(nt)dn = 0 by assumption. 
•J iVa(F)\iVa(A) 

5.7. For £ a character of Z(F) \Z(A) , define££i\G\, £) to be the space 
of measurable functions 

*>: G(F)\G(A) - > C 

satisfying 

(i) *>(*£) = É(s)*>te), z G Z(A). 

(") <£F(g) = I *(»g)d» = o, 
^ N(F)\N(A) 

all proper parabolics P = NM. 

(iii) I |*(g)|2dg < o o . 
J G(F)Z(A)\G(A) 

PROPOSITION. Let K' be a compact open subgroup of G (A). The set of 
<P G S£ i\G\, £) invariant on the right by K' is a vector space of finite dimen­
sion. 

Proof. (Jacquet-Godement). The proof of the lemma shows there is a 
compact subset C C G (A) such that all functions right invariant by K' 
have support in Z(A)G(F)C; moreover C is evidently a finite union of 
right cosets of K'. Therefore these functions are determined by their 
values on the finite set C/K', and the result follows. 

5.8. From 5.7 it follows that for each / in the Hecke algebra (cf. [7]), 
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the convolution operator/ acting on<^f({G}, £) has an image of finite 
rank. This implies the following. 

THEOREM. Let po be the action of G (A) on££\\G\, £) by right translations. 
Then po is a discrete sum of irreducible unitary representations, each of which 
occurs with finite multiplicity. 

5.9. We conclude this section with some amplifications of 5.3. 
Firstly, observe that one can prove a version of Lemma 5.5 for any 

proper parabolic subgroup, using Proposition 5.4. 
Secondly, suppose that <p is not cuspidal, but merely infinite. Then 

using the version of Lemma 5.5 just mentioned one sees that there is a 
constant c' so that if |a(0 | > c',a 6 9 then <p(t) = <pp(t) for t G £o(c') 
where P is the parabolic of type A\9. This leads us to our next observa­
tion. 

Choose © = ©(ci, w, C) as in 4.6, and let g = ntx where n G to, t Ç 
Lo(ci),x Ç C. Then g = t(trlnt)x,din<\ U tzua) t~lwt is relatively compact. 
Thus g — ty, y £ C where C is compact. Using the argument of 5.6 
together with the remark above we find that if nmk = g 6 © satisfies 
|a(ra)| > e' for cf large enough, a G 9, then <p(g) = <pp(g), P the standard 
parabolic of type A\9. 

Finally, note that both <p and <pp give rise to functions on P(F)\G(A). 
Thus by projecting © into P(F)\G(A) one can interpret the above in 
terms of the functions on P(F)\G(A). 

6. Weights and heights. 

6.1. Let F g be the separable algebraic closure of F; if H is an algebraic 
object defined over F, we write Hs for the corresponding object obtained 
by extending scalars to Fs. The next two results in their present form are 
proved in [16], Théorème 2.5, 3.3. In this section we write As+ for the 
set of those dominant weights of Gs with respect to some root system, 
which are characters for the maximal torus. 

6.2. THEOREM. For each X £ As+ there is an irreducible F ^representation 
having X as dominant weight, which occurs with multiplicity one (i.e. it is 
simple). There is a one to one correspondence between elements of A5+ and 
F ̂ isomorphism classes of absolutely irreducible F ̂ representations of Gs. 
The dimension of such a representation is no greater than the dimension of 
the corresponding representation over the complex numbers. 

6.3. Let V be such a representation with dominant weight X. It is well 
known and easy to see that there is a unique line D\ in V upon which B, 
the Borel group corresponding to the chosen set of simple roots A, acts 
via X. In fact if P\ is the standard parabolic obtained from those simple 
coroots orthogonal to X, then P\ is the stabilizer of D\. In particular, 
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let m\a be a multiple of one of the fundamental dominant weights, then 
the corresponding parabolic is simply Pa. 

6.4. Recall that if G is defined over F, then a £ Gal (Fs/F) = T acts 
upon the root system, and on the weight group; the action we take is 
the *-action. Namely, for a £ I\ the natural action gives another set of 
simple roots cr( A), so there is a unique element wa of the Weyl group which 
takes or (A) back to A, and we set o-*a = w<T{o>{a)). 

Finally, if D is a finite dimensional division algebra over F, then a 
D-module V is an F-module equipped with a D-action. We define GLD( V) 
to be the algebraic group such that for each F-algebra A, 

GLD(V)(A) = Autz>®A(7 ® A), 
F 

where Aut^®^ means l'automorphisms preserving the D (x) A action." In 
F F 

particular GLn,D refers to GLD(V), V = (D)n. 

THEOREM (Tits). Let X £ As+
T. There exists a division algebra, central 

over F, and a D-representation p : G —> GLm, D, which is absolutely irreduc­
ible with dominant weight X; D is unique up to F-isomorphism. For given D, 
the representation is unique up to D isomorphism. If X G As0 {group 
generated by roots, and by weights which are trivial on the semi simple part of 
TS1 T a maximal torus defined over k), or if G is quasi-split, then D = F. 

6.5. The group As
r is a free submodule of As with basis given by the 

elements {Xai + . . . + ^arl&i € r («i)} , where T(ai) is the orbit under T 
of «i. Let X correspond to T(a). If a\To gives a relative root â, then 

(X|ro, a*) = r(Xa,a*) = r. 

On the other hand, the relative F-weights are generated by the X«t-. From 
this it follows immediately that to each X«, a a simple F-root, there exists 
an integer ms ^ 1 so that w5X5 corresponds to an irreducible D representa­
tion with dominant weight W5X5. Furthermore there is a unique line 
Dma\a stabilized by the maximal F-parabolic P". This follows from the 
fact that the representation corresponding to Xai + . . . + Xar corresponds 
to the conjugacy class of parabolics of type PA

 — {«1, • • • ,&r}, which by 
descent corresponds to the maximal parabolic P5 . 

6.6. As we shall be considering G(F)\G(A) it will be convenient for us 
to consider representations V oî G contragredient to the above. Suppose 
that we have a representation p\ as in 6.5. Then we get a right G action 
px (in pointwise language) in the usual way by setting 

(?*P\(g),v) = 0*, P\~l(g)v)-

As a variant of 6.5 we obtain a representation pma\a corresponding to a 
negative integer ma ^ — 1. 
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6.7. Let 7 be a finite dimensional F-vector space. We say that v £ 7(A) 
is primitive if there is a g £ GL(7(A)) such that 0 ^ vg € 7(F) . We 
define a height function || || on the set of primitive elements in the follow­
ing way. Choose on each V(Fp) (Fp being the local field corresponding to 
the place p), a norm compatible with the field norm| \p on Fp, such that, 
for almost all p, and almost all vp £ 7(Fp) one has 

\\vp\\p = SUpi \£i\p 

where 

n 

Vp = ]£ ?^z, 

^ a base of V(F) fixed once and for all. Then for v primitive, one defines 

NI = n NI». 
P 

The properties of such a function are enumerated in [5] § 1.1; we recall 
only those of immediate interest: 

(i) Fixge GL(7(A)) .Then{vG V(F)\ \\vg\\ < c) is finite modulo F*, 
and thus \\vg\\ achieves its minimum on 7(F) . 

(ii) ||Xi;|| = |X| ||v||, all X £ A*, v G 7(A) primitive. 
(iii) If C C GL(7(A)) is compact, there are constants C\, c2 > Osuch 

thatci||t;|| ^ \\vc\\ ^ c2|M|,allc G C, v 6 7(A) primitive. 
(iv) If || ||i, || ||2 are two heights, then IHI1/IMI2 remains in a fixed 

compact subset of R+ \{0}, when v varies. 

7. A partition. 

7.1. Let P and P' be parabolic subgroups corresponding to G, 0 ' 
respectively. In the following lemma we shall suppose that |0 | = |0 ' | 
and that 0 ^ b < 1 is fixed. For each at Ç A we write (7'u pt) for the 
rational representation in 6.6 with lowest weight ŵ Wj. For brevity we 
write Xi = *»*«*. 

Finally, if g £ P0(ci)K as in §4, write g = pgkg with pg Ç Po(ci), 
*, G X. 

LEMMA. Suppose that g and gf = yg £ Po[ci]K,withy £ G(F). There are 
constants t, t' such that if a, fi G A and 

\<*(Po)\ > t,a £ 0 

l«(P,)l*> |0(P,)|,« ^ , ^ 9 

and 

HP/)\ > t'iOLÏ 0' 

HP/)\ > l£(£/)Ue 0',£e 0r 
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then 

P = P ' . 

Proof. From Theorem 4.2 one knows that to may be chosen so that 
7 Ç P(F), and similarly for £</; we suppose this is the case. In particular, 
if vt G Fi is a rational vector transforming by x under the action of the 
maximal parabolic Pi = Pai, then 

lx(g)MM,ll = l|»*P<(«)|| = \\viPi(g')\\ = |x(g')IIM,'ll 

where we are writing | x(g)| = I x(Po)\- Thus there are numbers du d2 > 0 
and 

d i ^ |x(g)l/|xfe')l ^ ^ 2 . 

Since o^ == ^ c^w*, we readily deduce the existence of constants di, d2' > 
0 such that 

d i 'Mg ' ) l ^ |a,(g)| g d 2 ' M g ' ) | for each a, G A. 

Order the simple roots such that 

k(*')l ^ |«*(g')l è . . . èk(g' ) | . 
Our assumptions on g' imply then that 6' = {aQ+u . . . , an} some q ^ 1. 
If i ^ g < 7, then 

M * ) | è <2i'Mg')l = di'Wig')] laj-'ig'ïï > \aj(g
t)\d1

fh,1'K 

Choose to' so big that dl'h
n-b > 1. Then 

M * ) l > ^ ( g W o ' 1 - » è l/d2 '«,(g) - d i V 1 - 6 > k-(g)| 

for i ^ q < j and /0' large enough. 
If now we order the simple roots /3t- £ A so that 

|0,(g)| è |02(g)| è è |ft.(f)l 

then the preceding argument implies that 

Thus 9 = Q' and P = P ' . 

7.2. Given ©(ci, w, c) = © as in 4.6, numbers 0 ^ b < 1 and £ > 0, 
and 9 C A, we write 

Write G(A) = iVG4)M(A)i£ where P = iVM is a maximal parabolic. 
We suppose in the sequel that P = P a , a Ç A. Given P > 0 let 

G ( D = {g\ q(HM^'«) ^ P}. 
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Fix b, and put 

©(ft, a) = {g G ©| |a(g)|» ^ |/3(g)|, 0 * «}. 

Finally © a ( D = G(r ) O ©(&,«)• 

LEMMA. There is a constant T' = T'(T,b) so that 

®a(T) Ç @ ( & , A \ { a } , H . 

Proof. Let (F, p) be the rational representation corresponding to P , 
with lowest weight x = maûa. We let p be the vt in the preceding lemma. 
If g 6 @, g = £o&o = £fe G P(A)i£ with £0 6 wM0(ci), &0 G # , then 

lx(^o)|IWI = |X(P)IW. 
Set p = 3 Ira, where m £ M°(A), I represents a coset of L Z M * \ L M * , and 
2 £ ZM(A). The equality becomes 

\x(Po)\\\vk0\\ = | x ( * ) | | M | | x ( t ) | . 

Since the number of possible Ï is finite, we obtain numbers d\, d2 > 0 
such that 

di Û |x(£o)|/|x(*)l £d2. 

On the other hand œa = ^ ba$, bap ^ 0 and on ZM, maœa = mabaaa} 

baa > 0. Thus 

\x(po)\ = ni^o)iM»^-i«(^o)r«Aw 

\X(z)\ = \a(z)\m"»««. 

Since p0 is supposed to be in © a(P), we have 

\a\po)\ è \P(po)\,P*a 

so that 

n \i3(po)\m^> uw(po)\ma^. 
Thus 

\a(p0)\
c ^ \x(Po)\ ^d2X(z) ^dA(T) 

since z £ @a(T). Here c is a negative (T^O) number. The result follows. 

7.3. Remark. Note that P ' increases if T increases, and T > 1. 

7.4. Let 

G ( A ) - 5 ^ P ( F ) \ G ( A ) 

n 

G(F)\G(A) 
A 
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be the obvious projections and write 

sa(T) = n(@a(r)),sa'(r) = uP
f(sa(T)). 

LEMMA. We can choose T so that if a 9^ 13 then Sa(T) C\ Sp(T) is empty 
and such that IIP is a bisection of Sa'(T) onto Sa(T). 

This lemma follows immediately from 7.1 and 7.2. 

2. A Preliminary Decomposition. 

1. The complex analytic manifold DM(g). 

1.1. Let P = NM be a parabolic, fixed in the sequel. Let £ be a character 
of Z(F)\Z(A). We write DM(£) for the set of those quasi-characters of 
ZM(F)\ZM(A) which prolong £. 

The group XM(C) acts on DM(£) via 

x >-> x • 4HZM">°\ x 6 £*(£) , « 6 X M (C) . 

The stabilizer of x is just t^zM , where 

LZM = {« e X M (C) | (HM(z),u) € 27rZ/logg,Z 6 2M(A)J 

and where i is the square root of —1 which lies in the upper half plane. 
Consequently, there is a structure of complex analytic manifold on 

DM(£) characterized by the fact that each orbit is an open and closed 
subvariety. 

If f £ DM(OI
 o n e defines Re f by Re f = |f|; it is an element of 

XM(K). By definition, the set of characters of DM(%) is the set of f for 
which |f| = 1; we denote this set by DM

0(O-

1.2. We note in passing some observations on the orbit structure. To 
begin, observe that if two elements x» f °f DM(£) restrict to the same 
element on ZM

Q then they are in the same orbit. In effect xf-1 is trivial 
on ZM°, so can be viewed as a quasicharacter on LZM*. 

Similarly, if a; is a character of ZM°, then the set of quasicharacters 
prolonging w is just the coset ûXM(C), w is any character extending co. 

On the other hand, the set of quasicharacters of ZM° which extend £ is 
a countable set of characters. Indeed £ is unitary, and we have 

0 - Z(F)\Z(A) -> ZM(F)\ZM» -> Z(A)ZM(F)\ZM» -> 0. 

By Pontrjagin duality, and the fact that Z(A)ZM(F)\ZM° is compact, 
the set of quasicharacters prolonging £ is just 

o>(Z(A)ZM(F)\ZM°)h 

where œ is a character chosen to prolong £. 
Henceforth, we shall suppose chosen a set {co} of characters representing 

the orbits 12(co) of DM(£) under the action of XM(C). 
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1.3. In 1.2.2 the lattice L*f was denned; it contains as a sublattice the 
lattice LZM. Let I i , . . . , la be a set of coset representatives for LZM\LM- If 

g = nmk e N(A)M(A)K = G(A), 

write HM(g) = HM(m); this is a locally constant map, invariant by 
N(A)P(F). Write HM(g) = HM(g) + l„ where HM(g) 6 L*M, and 
Iff G {Ii, • . . , Ia}î such a decomposition is evidently unique. The map 
g i—> HM(g) is evidently locally constant, invariant by N(A)P(F), 
because the map g »—> HM{g) is. 

1.4. With these considerations out of the way, we now begin the study 
of the space^(£) , which is the main object of interest in this paper. It is 
defined to be the space of measurable functions <p : G(F)\G(A) —» C 
such that 

(i)<p(zg) = £ ( * M s ) , s € Z ( A ) f g < E G(A) 

(ii) I \4>(g)\2dg < oo. 
^ Z(A)G(F)\G(A) 

The object of the theory of Eisenstein series, to be described in this, 
and a subsequent, paper is to describe the action of G (A) by right 
translations on «Sf (£) in terms of representations induced from standard 
parabolic subgroups. To do this one must introduce a number of auxiliary 
spaces defined in terms of these subgroups. 

Suppose then that P = NM is a proper parabolic; the subgroup M ^ G 
is a reductive group as well, and we define ££M(£) to consist of those 
measurable functions <p on M(F)\M(A) which satisfy 

(i) <p{zm) = Ç(z)<p(m),z G Z(A) 

(ii) I \(j)(m)\2dm < oo . 
J Z(A)M(F)\M(A) 

The closed, invariant (by M (A)) subspace i f ({M), £) is defined in 
terms of proper parabolic subgroups of M, as in 1.5. We observe that one 
can also define the space J^({M°}y £), where M° is defined in 1.2.2, 
because Q(A) P\ M° always contains the unipotent radical of Q(A), if 
Q Q M is a proper parabolic. 

Since Af(A) acts on J£(\M\, £) by right translations we may consider 
the representation, 

Ind|&> ( i ?{MM)) 

where P(A) acts on^f({M], £) via the natural projection P —> M. This 
representation of G (A) acts on the space ^ {P, £) of functions, 

<p: N(A)P(F)\G(A)->C 
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such that 

(i) m ^<p(mg) 6Jèf({M},{), each g € G(A) 

(ii) f (n) | i*fe)i2^<oo. 
Z(A)JV(A)P(F)\G(A} 

In 1.3.2 we have denned the notion of an associate class of parabolics. 
Write {P} for the class of parabolics associate to P. 

We set 

#({P},É) = e w ,s ) . 
PGP) 

1.5. We shall work extensively with a subspace ^o(-P, 0 of ^ ( P , £). 
It is defined to consist of those functions <p such that 

(i)(p is (right) infinite. 
(ii) For each g Ç G (A), the support o f m ^ <p(mg) is compact modulo 

M°. 
(iii) The space of right translates of <p by G (A), viewed as a space of 

functions on M°, is a finite sum of irreducible subspaces of ££ ({-M0}, £). 
The result proved in 1.5.3, together with (ii) and (iii) implies that <p 

has compact support modulo N(A)P(F)Z(A), whence compact support 
modP(F)Z(A) . 

There is a simple variant of ^ o ( P , £) which we shall often use. Namely, 
if K' C JK" is as described in 1.5.1, then we replace (i) by (i)' <p(gk') = 

The resulting space is denoted ^o(P, Kf, £) ; we have 

^ o ( P , 0 = U * ' ^ o ( P , # ' , £ ) • 

In particular any element of ^ o ( P , £) is locally constant. 

1.6. The next thing we must define in this setting is a Fourier transform. 
Let*) € Vo(PA),v G Z>M(0;then j/ can be written (w, f ) where 

r e tLZ M*\XM(C) and co G M . 

We set 

*(g; *) = *(g; («, f)) = I *(2g)(« • f)_1(s)^. 
^ ZM(F)Z{\)\ZM{A) 

The assumption (ii) in 1.5 implies that this integral is finite. For each v, 
$(g; w ' f) = $(&; *0 is a function satisfying the conditions (i) and (iii) 
in 1.5 and is such that 

(ii)' $ (sg ,a , . f ) = «(s)r(z)S(g,ctf),z G ZM(A); 
(iv) For each g, the function 

m J—> <ï>(rag; f) 
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satisfies 

I \$(mg; t\2e(m, -2Ço)dtn < oo , Re f = f 0-
J ZM(A)M(F)\M(A) 

This implies 

(v) I |3>(g; f \2e(g, -2fo + 2dP)dg < GO 
•̂  ZM(A)N(A)P(F)\G(A) 

where for g — ntnk, we write as usual, 

e(g, r) = e(m, f) = exp {log q(HM(m), f)}. 

The property (iv) follows from the Plancherel formula and Fubini's 
theorem cf. the argument in 3.9 below. 

We shall denote this space of functions by ^oCP, co • f). If we fix g for 
the moment, and let z vary, it follows from standard commutative 
harmonic analysis, that 

*>(g) = I *(g;r)df. 
•/Ref=fo 

1.7. Let ^oCP, # ' , «f$j») be the subspace of ^ 0 ( P , cof5p) analogous to 
the subspace ^o(-F\ -K7, £)• Then ^o(-P, JST', cofôP) is finite dimensional 
by 1.5.7; we remark in passing that ^^(P, K', £) is not finite dimensional. 

In particular, if ç> £ ^o(-P, •£', £)> w e obtain functions 

There is a map, 

From its construction, this map is an isomorphism. Thus we obtain a 
finite dimensional complex analytic vector bundle over DM(^), via 

XM{C) XiLzM^o(P,Kf
yœ^P) 

—> Uf€i£~ X,(C) tëoiP, K', CO • fôp) 

where the space on the right inherits its analytic structure from the space 
on the left. At (co, f ) the fibre of this vector bundle is ^ o ( P , K', co • fôP). 

In fixing K', one ensures that only finitely many co can intervene. 
Indeed Kr has finite index in K, and if we restrict co to Z^°, we see that 
it can only be one of a finite number of possibilities, since ZM(F)Z(A)\ZM° 
is compact. Consequently the vector bundle just constructed has fibre {0} 
outside a finite number of components. We denote it by ^oC^, K'). 

Let us fix a single component for the moment; then a holomorphic 
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global section over it can be viewed as a holomorphic function 

$w : iLZM\XM(C) -> # o ( P , K', a) • ÔP). 

Now the Fourier transform constructed above assigns to each function 
cp G ^oCP, if', £) a section, via 

<P ^e(g, - f ) $ ( g , co • fôp). 

It follows by standard arguments that this section is holomorphic. In 
fact if one chooses a basis for XM(C) then the space of sections obtained 
can be identified with the space of trigonometric polynomials with values 
in ^ ( P ^ u - ô p ) . 

A holomorphic global section over the whole bundle can thus be viewed 
as a function 

(1.7.1) *(f) : \LZM\XM{C) -> 0 t t ^ 0 ( P , K\ co • dP) 

where the sum on the right is finite, by an earlier remark. We write 
r (^ 7

0 ( i 3 , K')) for this space of sections. 

1.8. Conventions. We pause to make some conventions, and remarks. 
(i) We have been viewing an element <ï> Ç Y(^é\(P, K')) both as a 

function 

$(D : xLZM\XM{C) -+ 0 - # o ( P , if', «o • Sp) 

and as a family of functions <£;-, each of which belongs to 

01-) #o (P , • £ ' , « • ft,). 

From now on, we shall write $(f ) to mean we are considering things in 
the first way, and we shall write <£$• when we are looking at matters from 
the second viewpoint. 

(ii) Each w £ W(My M') induces isomorphisms 

XM(C) —>XM>(Q) 

We shall always write this action on the left; it is given by 

(wï,x) = <f, uri-x), 

where the action on the right is the one induced by Ad : w • x = wxur1. 
We remark that we shall indiscriminately write quasicharacters in addi­
tive or multiplicative form. Thus for example (^f) -1 will correspond to 
— ze/f under this convention. 

(iii) A word is in order concerning the space fêoiP, co • fôp). The group 
G (A) acts by right translation on this space. If we equip ^\(P\ co • fôP) 
with the norm 

f \tr\g)\Mg)\2dg 
J N(A)ZM(A)P(F)\G(A) 
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then the action of G (A) is unitary with respect to this norm if 
Re (w • fôP) = ôp. The point is that 

so the norm above is equivalent to, but not the same as, the norm given 
in 1.6 (v). 

2. The functions <A 

2.1. Let P = NM be a parabolic with roots ai, . . . . , aT\ there are 
corresponding fundamental weights côi, . . . . , œT. For each such weight œi} 

one can find a rational representation 

Pi:G-+GL(V) 

such that G (A) acts on V(A) to the right, a negative integer mu and a 
rational vector v such that P a i (A) acts on v via mfcoz (cf. 1.6). In particu­
lar P 0 C Pai acts on v this way. 

If x e G(A) = P(A)i£, we put 

|a>i(x)| = |w<(p)| for x = pk. 

This is well defined since there is an integer m* such that w^f is a 
rational character, and |côz

Wî(x)| takes values in R+. 

LEMMA. Let C be a subset of G (A), compact modulo Z(A). Then, 

sup \âi(yc)\ < oo. 
y£G(F) 

c£C 

Proof, Take y, wf as above, x = w^w*. It is enough to show 

inf |X (T^ ) | = ini \ô)imi(yc)\ < oo. 

Since G (A) = P(A)K, there are constants diy d2 > 0 such that 

di\x(g)\ è\\vg\\ ^ d , | x ( g ) | , g € G ( A ) . 

From 1.6.7 (i), one has a constant d% > 0 such that 

IMI = ^3, 7 G G(F). 

These two remarks imply that there is a d4 > 0, and | X ( T ) | ^ d4 for 
7 G G (F). If now c G G, then 

IWI = |X(7)||W|, 

where y = pk, so that 

||fl7c|| è ^4 • d > 0, 

since kc varies over a compact set. 
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2.2. Let X : ZM(F)\ZM(A) —» C* be a quasicharacter supposed unitary 
on Z(A). For the next lemma we shall consider functions 

$ : P ( F ) i V ( A ) \ G ( A ) - * C 

such that 
(i) <S>(zg) = \(z)*(g), z G ZM(A), g G G(A) 

(ii) $ is (right) infinite 
(iii) $ is bounded on subsets compact modulo M°. 
Recall that the Weyl chamber CP associated to P consists of those 

elements X Ç XM(R) such that 

(X,«,*) ^ 0 ,a , Ç AP. 

We write X > JU if X — / i f CP. 

LEMMA. (Godement) The series^2yeP{F)\G(F) $(yg) converges uniformly 
on subsets of G (A) compact modulo Z(A), provided 

Re A - 2ôp G Cp. 

Proof. We recall the function g —» HM(g) of 1.3; it gives rise to a func­
tion g -» X(g) = e(g, X) (1.6). Since 

G (A) = N(A)ZM(A)BM°K 

where B is a finite set, and since 

\3>(nzbm°k)\ ^ |X(z)| |$(6ra°fe)| 

we may, by (iii) above, suppose that X is real valued, and that <£(g) > 0 
with $(p°g) = $(g) if p° e N(A)M°. Consequently, it follows that for Œ 
compact modulo Z(A), one can find constants dit d2 > 0 such that 

dMg) g $(gco) £ d2^(g), co 6 0, g ç G(A). 

This implies that it is enough to prove convergence at the point 1. Let K' 
be any open compact subgroup of G (A) such that $ is right i£'-invariant; 
then convergence at 1 is equivalent to convergence of 

£ f $(yk')dk'. 
P(F)\G(F) J Z(A)\K'Z(A) 

Choose K' so small that G(F) P\ K' = {1}, then one only has to show 
that 

/ Hg)dg 
J P(F)Z(A)\G(F)K'Z(A) 

converges. Now, Lemma 2.1 implies that 

G(F)K,Z(A) C N(A)M(t)K, some t > 0 
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where 
M{t) = {m G M(A)\ \<âi(m)\ ̂  qN = t, each w<}. 

The integral 

/ , 
$ (nmk )8p (m) dndmdk 

P(F)Z(A)\N(A)M(t)K 

L 
may be written as 

3> (nmk)ôP~2 (m)x (nmk)dndmdk 
' P(F)Z(A)\N(A)M(A)K 

where x is the characteristic function for N(A)M(t)K. In turn, this can 
be written 

/ / / / / 
LM,c*

nLM*/LM* LM,c*nLM* M(F)Z(A)\M<> J N(F) \N(A) JK 

By assumption (ii), everything reduces to computing (after adjusting t, 
perhaps) 

/ , 
* r\ 7 * 

x(f)Mp~\l)dl. 

The lattice LMc C\ LM can be coordinatized by positive multiples of the 
a*,ai £ AP. If we note that 

then the resulting integral is just 

(ai*,\-25p)Nri 

2.2.1) f i 1 _ ri(ai*,\-2ôP) , r t > 0. 

2.3. Now let <? G ^ o ( P , # ' , ?), and define / by 

7£P(F)\(?(F) 

LEMMA. 77ze series <pA(g) converges uniformly on subsets of G (A) compact 
modulo Z(A) G (F). 

Proof. Let 12 be compact modulo Z(A)G(F) ; one may as well suppose <p 
non negative, and 12 compact. For each g £ 12, gK' is an open neighbour­
hood of g ; we conclude that there is a finite number of g £ 12, gi, . . . , gs 

say, and 12 C U i ^ ^ s g ^ ' . If g (i 12 then g = g*(mod K'). Thus 

«/(g) = £*>(7g<), 
7 

and a term <p(ygi) is non zero if ?g* Ç supp <p. Now supp <p is compact 
modulo P{F)Z(A) (cf. the remark in 1.5) so we conclude that for each i, 
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the number of such 7 is finite mod P(F)Z(A). Since 1 S i ^ s, we are 
done. 

2.4. LEMMA. The support of <p is compact modulo Z(A)G(F). 

Proof. As remarked earlier, supp <p is compact modulo P(F)Z(A). 
Let 12 be compact such that supp <p Ç P(F)Z(A)$l. Then, by reduction 
theory, 

G Ç P o O i W ) ^ , 2 finite. 

One may choose c2" so that Theorem 1.4.2 holds for c{, c2". If a is a 
simple root, let (F, p), x be as in 1.7.1, and let ô = infff€0||z;g||. 

By an argument used in 1.5.5 one can arrange for c2" to be such that 
(H0(g)f a) > c2" implies \\vg\\ < d, g € P^c^^K' (here one uses x = 
mabaaa + ] > ^ « mabapP, where ma < 0, bap ^ 0, and &aa > 0). Now suppose 
g Ç Po(ci ' )2# ' , and <i?0(g), a ) > c2", a G A, so that ||»g|| < 5. If / ( g ) 
5̂  0 then there is 7 Ç G(F), and 

7g 6 0 S P o f c i ' ) ^ ' . 

Theorem 1.4.2 implies 7 G Pa(F), but then ||^7g|| = \\vg\\ > ô and this is 
a contradiction. 

2.5. COROLLARY. / Gif (£) . 

2.6. Suppose now that 3>w 6 ^oCP, X', co • ôP). Recall that for f Ç 
XM(C) we have constructed a function 

7>*„(g) = (/<*"<'> •*>*„(*) = *„.r(g). 

Since q(HM(v) -f) = 1 if and only if f £ tLZAf, one can work with t L Z M \ 
XM(C) equally well, and 

<*Vr € ^ O ( P , X / , C O - ^ P ) . 

Now define 

E(g, $«.?) = Z) $«.r(7g). 
76P(F)\G(F) 

Lemma 2.2 implies that this series converges uniformly on subsets of 
G (A) compact modulo Z(A)G(F) provided Re f — ôP G CP. It is a 
holomorphic function with values ino£?ioc(£)> where, foroéf ioc(£) one takes 
the space of measurable functions 

<p\ G ( F ) \ G ( A ) - > C 

such that 
(i) v(zg) = É(*Mg) ,* G Z(A),g G G(A); 

(ii) For each compact subset C Q G(F)Z(A)\G(A), one has 

I k(g) | 2 dg<oo. u c 
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The function E(g, $w.r) is evidently K finite. 

2.7. Given <p Ç *& Q(P, K'', £), we have constructed a Fourier transform 
$(g; w • fôp) in 1.6. In the notation above, this function can be written 
<*VÏ(g). Set 

This is a finite sum, since a non zero summand only occurs if o)\K'nzMQ 

= 1 by Schur orthogonality. We set 

LEMMA . 

^A(g) = / E(g, *r)df. 
^ Re f=f o 

Proof. The result follows from the formula 

*(g) = I *r(g)# 
47 Re f=fo 

(which follows from the usual formula, and the remark above about Schur 
orthogonality), and from interchanging sum and integral, which can be 
done because <p is very well behaved. The details are left to the reader. 

2.8. The next proposition says that the <pA form a dense subspace of 

PROPOSITION. Let cj> Ç °èf (£) and suppose that (</>, ^) = 0 for each ty 
as \(/ runs through Up ^ o ( ^ , £)• Then 0 = 0 . 

Proof. One may suppose <j> is right i^'-invariant for some K' \ indeed 
G (A) has a countable base of neighbourhoods of the identity which con­
sist of open compact subgroups, so that there is a sequence <t>n —> <j> 
(in<if (£)) where #n is ̂ / - invariant, and also satisfies the same properties 
as <j>. Then 

0 = f <t>(g)W)dg = J *P(g)W)-
J G(F)Z(A)\G(A) J P(F)N(A)Z(A)\G(A) 

We are finished as soon as we have recalled the following. 

2.9. Let / be a measurable locally bounded function on P(F)N(A)\ 
G (A) transforming by £. Then for any h £ ^o(Pj £) the integral 

f , f(g)Hg)dg 
J N(A)P(F)Z(A)\G(A) 

exists. We shall say that the cuspidal component of / is zero if the above 
integral vanishes for all such h. 
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PROPOSITION (Langlands). Suppose <t> is a continuous function on 
G(F)\G(A) such that the cuspidal component of <j>p is zero for every P, 
including P = G. Then </> = 0. 

The proof of this is by now well known, see for example [1] (Proposi­
tion 3.2 (actually, to use Springer's proof, let 

* ^^(\M\,MC\K', £) 

and define a function i// on N(A)P(F)\G(A) by demanding \p' to be 
./^-invariant on the right, N'(A) invariant on the left, equal to ̂ <5P

+2 on 
M (A) and zero outside N(A)M(A)K'. Then 

0 = 1 I <j>p{mk)\p{mk) = I <j>p{rn)yp(m) 
J K J M(F)Z(A)\M(A) J M(F)Z(A)\M(A) 

and then one can argue as Springer does). 

3. The constant term. 

3.1. Recall that for $ Ç r ( ^ 0 ( P , K')) we have constructed the locally 
integrable function E(g, $ r) , f G I L Z M \ X M ( C ) , Re f - ôP G CP. 

Let J" = iV'Af' be another parabolic. We set 

EP'(g,$t) = J E(n'g,*t)dn'. 
U N'(F)\N'(A) 

Since N' (F)\N' (A) is compact and £(g, $f) continuous, this integral 
does exist. This expression is usually referred to as "the constant term". 

LEMMA. Suppose P , P' have the same rank. Then 

0 ifP> g {P} 

EP (g, s r ) = j £ j $ («rVg)dn ' , #*<rf. 

Proof. Use 

z = z 
P(F)\G(F) P(F)\G(F)/N-'(F) 

times 

2V"(F) ny-lP(F)y\N'(F) 

to see that 

(3.1.1) E*'(g,*r)= E f $r(7»'«)d»' 
P(F)\G(F)/N'(F) U y-^P{F)y f\ N' (F) \N' (A) 
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(Note 

/ , v l*rl 
y-lp(F)y H N' (F) \N' (A) 

= 1 E l*rl<«>.) 
u N'(F)\N'(A) y~1P(F)y nNf(F)\N'(F) 

(3.1.2) = Z f 
«̂  7_1i>(A)7 fl W (A) VV (A) 

X I $ç{yun'g)dudnr. 
J y~1P(F)y C\ N> (F)\y-lp(A)y H N' (A) 

The last integral may be written as 

/ 3>f(w7n'g)dw. 
P(F) r)7N'(F)y-i\p(A) C\yN,(A)y~i-

Here one is integrating over the unipotent radical of the parabolic sub­
group M r\ yP'y~l of M. On the other hand m H-> <ï>(rag) is cuspidal as a 
function of M°. We conclude that 

I $c(uyn'g)du = 0 
^ P(F) H7iV'(F)7-1\P(A) nTA^ ,(A)7-1 

unless the unipotent radical is trivial, i.e., P C\ yN'y~l C iV. In this 
case 1.3.7 implies that P and P r are associate by 7_1 , i.e., 7 _ 1 £ W(M, M'), 
and we may replace the sum over the double cosets by a sum over 
W(M, M'). 

Suppose then that P, P' are associate. Then 3.1.2 becomes 

2 I $c(yn'g)dn' 
J y-lp(A)y nN'(A)\N'(A) 

and 3.1.1 becomes 

X I $r(7 Vg)dw' 
TF(Af.Af') ^ 7PCA)7_1 nN'(A)\N'(A) 

Z) I <MT ln'g)dri 
TFOlf.M') ^ 7iV(A)7~1 H ^ ' ( A ) ^ ' ( A ) 

as claimed. 

3.2. Set 

47 wiV(A)^-1 n N' CA) \JV' (A) 

for w e W(M, M'). 

https://doi.org/10.4153/CJM-1982-009-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-009-2


124 L. E. MORRIS 

LEMMA. The map $f *-> N(w,Ç)fyis a linear transformation 

N(w, f) : ^ o ( P , K', co • fôp) -* ^ 0 ( P r , X7, "co • *fôP,). 

Proof. One can suppose that P, P' are associate. Let 

P = -Pei = -Pi» P' — ^G2 = ^ 2 -

If N(w, f ) ^ 0, then 

wrW2w H P i C iVi, 
and 

Thi 

« ^ */>; 
iV(w, f)$r(g) = / $r(w n2g)dn2. 

wNi (A)w~ ! fl #2 (A) \iV2 (A) 

iV(w, f)$r(*2g) = J $r(w ln2z2g)dn2, z2 £ ZM2 

= I ^ ( « T 1 ; ^ • w~1(z2~
1n2z2)g)dn2 

and one only has to see what happens when the change of variable 

^2 —* z2~
ln2z2 

is effected. The discussion in 1.2.5 implies that the integral may be written 

V*2)fZ(ffj"('2),~"r+'p*) f # r ( ^ ~ W ) ^ 2 . 
«^ wiViCA)^- 1 H W2 (A) V2V2 (A) 

This implies that 7V(w, f) <!>$- transforms in the desired way, and the 
remaining conditions in the definition of fé5'0(P', i£', ""to • "'fop') are easy 
to check. 

3.3. Let <p e ^ o ( P , K', £), * G ^ o ( i " , # ' , £). Taking inner products 
in Ĵ f (£), we have 

(*A, tA) = f *A(g)^F)dg 
^ G(F)Z(A)\0(A) 

= f 0A(g)v¥)^g 
^ P'(F)Z(A)\G(A) 

= I f <t>p' {mk)\j/{mk)bp~2{m')dmdk. 

Since 

4>\g) = J E(g, $r)# = 0 f £(g, *„.,)# 
•/ Re f=f0 {«} ^ Ret=to 
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for f o > àp, this expression can be replaced by 

I I I Ep'(mk, fy)\P(tnk)ÔPr2(m)dnidkdÇ. 
J R e f=fo J K J M'(F)Z(A)\M'(A) 

This expression is zero unless P and Pr are associate; in this case from 
3.1, 3.2, one obtains 

I I ! ^N(w,Ç)$s(rnk)yl/(tnk)bPr\m) 
J Re f=f0 ^ ^ ^ M/(/^)Z(A)\iW/(A) 

W(M,M') {co} ^ Re r=fo U K U 

X J ^(s^)"co-"fôp-1(s)ô-2(m) 

(first integral over M'\F)ZM>(A)\M''(A), second over Z(A)ZM>(F)\ 
Z ^ ( A ) ) 

•^ Re f=fo J K J 

since we may suppose that W(M, M') preserves the set {co}. 
Set (7V(w, f)$r, ^ r f p r ) equal to 

(3.3.1) I I N{w^)^(mk)^{^)-i{mk)bPr\m)dmdk. 
J K J M'(F)ZM,(K)\M'(A) 

Then one can condense the formula for (<£>A, i/' ) into 

WCW.M') ^ Re f=fo 
(3.3.2) 2- I ( % f ) * r , * T O - ^ 

W(Jkf,Af') ^ Re f=fo 

3.4. Writeoff ({P}, 0 for the closure in i f (?) of {/|*> G ^o({P}, £)} 
(cf. I.4.). Combining 3.1-3.3 and 2.8, we have: 

PROPOSITION. The spaces i f ({P}, £) are orthogonal to each other for 
different {P}, and 

&(t) = e , p , i f ( { p } , » . 

If ^ 6 ^ o ( P , X'f ?), <A G ^o (P ' , # ' , ?) with P associate to P ' the 
scalar product in i f (?) of <pA, with ^A is given by 3.3.2. 

3.5. If we regard the expression (3.3.1) for a moment we see that it 
comes from a sesquilinear pairing 

( , ) : Sf 0(P' , K', ÇÔP>) X <5f 0(P' , # ' , P Ô P O -> C 

(3.3.3) ( $ r , ^ r — ) = I I ^(mk)^t-i(mk)ÔPr2(m)dmdk. 
J K J M'(F)ZM(A)\M'(A) 
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This can of course be interpreted in another way, which is also useful. 
Namely (3.3.3) can be written as 

J I $ ' (riik)ty (mk)ôp~2 (m)dmdk 
K' J M'(F)ZM(A)\M'(A) 

where 

*'(g) = < r ^ ) , f > < M g ) 6 © V*ÇP',Kf, co • Op) 
{co } 

and similarly for ^f(g). 

3.6. Next, we shall interpret N(w, f ) in terms of vector bundles, and 
the trivialization with fibre ^ o ( P ' , K', co • ôP). 

First, given an element w Ç W(M, M'), there is an induced map 

If we take the vector bundle ^${P', K') over .DM'(£) we obtain a bundle 
w*^ 0 (P ' , •£') over £>M(£) with fibre at co • f the space ^ 0 ( P ' , # ' , 
(wco • "'fSp/)). Thus one may view the N(w, f) as giving a holomorphic 
section N(w) for the bundle 

Horn ( ^ 0 ( P , X ' ) , w*^o(P' , K')) 

at least when one restricts to the open subset of DM(0 defined by 
Re f > dp. 

We shall eventually prove that N(w) extends to a meromorphic global 
section over DM(Q-

Secondly, let us see what this means if we trivialize at the point 
co G {co}. 

There are maps 

tfo(P, K', co • fôp) N(W' " ' % V0(P', K>, »«r«P.) 
A I 

rr b y 
I Y 

^ o ( P , X', co • ÔP) Vo(P', K', "co • ÔP) 

which induces a linear map 

M(w, f) : 0 ( - i ^ o ( P , X', coôp) -> e l B ) < W , X' , "coop-). 

Since there is a non degenerate pairing 

<<f o(P', if', coôp) X ^ 0 ( P ' , « ' , " « « P O - • C 

one may certainly speak of the adjoint M*(w, f) of M(w, f). 
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3.7. Define XM(R)+ by 

XM(R)+ = CP + hP 

where CP is the Weyl chamber associated to the standard parabolic P, 
and dp is the modulus character, as usual. 

LEMMA. The adjoint of M(w, f) is M{w~l, {wl)~x) both holomorphic on 

{r|Re f G convex hull {XM(R)+ \J {w)~lXM\R)+}}. 

Proof. Given <p £ ^^(P, Kf,Ç) define a function <pw by 

Since <p (g) exists, and since 

G(F) = U P(F)wP'(F) 
W(M,M') 

one concludes that <pw(g) exists, invariant by P'(F). A straightforward 
computation using the by now familiar double coset decomposition im­
plies that 

I t(g)<Pto(g)dg = / fa-i(g)<p(g)dg. 
J P'(F)Z(A)\G(A) U P(F)Z(A)\G(A) 

Each of these integrals is readily computed by means of familiar manipu­
lations. The left one is just 

/ , 
<*(-«£) , M(w, t)*(f) )dt, h 6 CP + Ôp 

Re f-fo 

which implies that the right side is given by 

<¥(x), M(w-\ x )**( -w- x x) ) , xo G CP, + dy. L Re x=X0 

Set x' = — w~lx, then the second integral becomes 

/ . <*(-«*'), M(«r\ -«*')**(x'W, 

Xo' G - « T ^ O + 5P/). 

We shall refer to the two integrals as (3.7.1), (3.7.2) respectively. 
Now let 

G2(x) = < ^ ( - w x ) , ^ ( w - 1 , -wx)*<Kx)>. 

Let v be any holomorphic function 

v : iL Z M \Z M (C) -> 0 { w } # 0 ( P , X', co) 
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which is a Laurent series (e.g. a finite sumYi ifiit(mi\^i G LZ M*).Then 
v gives rise to a function on XLZM\XM(C), and it is evident by standard 
Fourier analysis that the Fourier transform of <£>f • z;(f ) is an element of 
^ o ( P , X', £)• Applying this remark to (3.7.1) and (3.7.2) one obtains 

J t / (-wf)-GiG0 = J w(-wx)-G s (x). 

From this, and the Plancherel formula for the group LZM*, one deduces 
the existence of a function h on Lz * such that 

A(«) = JG-IO-I + yi)q{'-tl+i"% = JGÎO-S + WzM>% 

with fi G Cp + <5P, f2 G — w~~l(CP' + ôp/), and ft is independent of 
Çi(i = 1, 2). The conclusion follows easily from this, since the Fourier 
transform of ft is holomorphic on the desired convex hull. 

3.8. Our next task is to estimate \\M(w, f)||. In view of the definition of 
the pairing (3.3.2) it is enough to estimate \M(w, Ç)$(mk)\ for m G M"0, 
k Ç K. One can certainly choose a compact set C in APK such that 
each $ r G ^ o ( P , -K7, ?ôP) has support in C mod ZM(A)M(F), and then 
C/X' is a finite set. Thus it is enough to estimate \M(w, f)3>(gf)|, for a 
finite set {gt}. Let w be a compact set such that N'(A) = N'(F)œ, and 
let 12 be compact so that œgt C 12 each g*. Then 

IM(W,f)*(gi)i ^ nvfeor1 f E 1 (̂7^01 

^ csup) £ l$r(7w'g,)l( ^ csup X) l$r(7g)|. 
n'€co \P(F)\(?(F) / ?çS2 

Since | $ | is bounded on G(A) = N(F)ufMQZM{K)?,Kf (where S is a 
finite set and to' is compact), the last inequality becomes 

^ ! l $ I L E ^ ( 7 f f ) , f o 5 p ) , Re r = To, and 

||*IL = suPjr5p-^(g)|. 

Now, one can apply Lemma 2.2 to the function 

g ^q(HM(Y9),t0+àP) 

so, from (2.2.1) 

^ •»• Q 

cf. (2.2.1). 
Let <î> run through a basis of the finite dimensional space *lê> *{P, K', 

o) - 5P), then the following result has been proved. 
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LEMMA. There are constants c > 0, and N, such that 
(aj*,ïo-ôp)Nrj 

l|M(w,f)|| ûcR _ >i*,ro-ap>r,- , Ref = f0. 

3.9. It will be convenient to make use of some remarks concerning 
Fourier transforms and approximations. As these arguments (and simple 
variations) will occur many times in later sections, we shall give the 
technique in some detail, and forego repeating it. 

Let r > 1, and set 

XM(R)r = interior {convex linear hull {w • ôP • r\w £ W(M, M)}\ 

XM(C)r = {f G X M (C) |Ref G XM(R)r\. 

Then XM(C)r gives rise to an open complex submanifold DM(£)r of 
DM(£), and XM(G)r P\ (<5P + CP) is a non empty open set. 

Let <p G &o(P, K', £)» then the inner product formula and 3.8 tell us 
that if f0 belongs to a compact subset of XLZM\XM(C) 

yAf= Z f <*(-«*), M(«>,f)*(r)># 
W(M,M) u Re f=fo 

^•Sff l<J-(-^)|2)1/2(f l$(f)|2)1/2. 
W R e W o / W Re f=fo / 

Here we are writing <£(f) = 0{W} T V - 1 ^ . ^ where «ïVsp is the Fourier 
transform of <p, so that $(f) is a function 

L L Z M \ X M ( C ) -> 0 { w } ^ 0 ( P , * ' , co • op). 

Suppose on the other hand, that one is given a holomorphic function 

¥ : LLZ M \XM(C), -> 0 M V0(P, # ' , co • Op). 

Set * r = r r ^ ( f ) . The integral j Re f=f0 ^r(^)^r is independent of 
fo^M(R)r, by analyticity; call the resulting function \p{g). From the 
Plancherel theorem, 

/ \t(zg)\2e(zg, - f o - 2f0 - 2dP)dz 
ZM<.F)Z(\)\ZM(\) 

" / . 
I*f(g)|e(g,-2fo-2«,) 

Re f=fo 

so that formally, since both sides are functions on M(F)ZM(A)\M(A) 

/ / - / / 
J M(F)ZM(A)\M(A) J ZM(F)Z(A)\ZM(A) J M(F)ZM(A)\M(A) J Re f=fo 

If one interchanges the last two integrals, one obtains a convergent 
integral; this follows from the definition of ^(g, f), and from the fact 
that J f=r0 is over a finite number of circles for which the new integrand 

https://doi.org/10.4153/CJM-1982-009-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-009-2


130 L. E. MORRIS 

is a continuous function. Fubini's theorem implies that the first two 
integrals exist. Thus 

I \t(g)\2e(g, -2f 0 )<te<oo 
J Z(A)N(A)P(F)\G(A) 

and the argument implies that the expression below is finite 

(3.9.1) Z f \t(g)\2{e(g, -2w[o) + e(g, 2wf0)}. 
W(M,M) u Z(A)N(A)P(F)\G(A) 

Let ^ r o ( P , K', £) be the space of functions on N(A)P(F)\G(A) 
satisfying (i), (iii) of 1.6 and (3.9.1), this last making it into a Hilbert 
space. We write \\<p\\s0 f° r the norm on this space. If <p Ç ^o(P, Kf, £), 
then the remarks concerning the inner product formula imply that 

II A l i o ^ r*\\ || 9 

\\<P II2 ^ H M I f o 2 

and this means that the map 9 : <p i—> <p can be extended to the space 
fëoiP, Kf, £). Thus if J4?(P, Kr, r) denotes the space of holomorphic 
functions 

*(r) : iLZM\xM(C)r -. e , „ , ^„(P, *', co • bP) 
then we have shown that the map 9 gives rise to a map 

which we also denote by 9. The inner product formula still holds for this 
class of functions, as follows by an easy continuity argument. 

In the sequel, we shall refer to arguments of the above type as approxi­
mation arguments. 

4. The principle of the constant term. 

4.1. In this section we study more closely the relationship between the 
various constant terms of a function on G(F)\G(A) and the function 
itself. The main results are based on a variant of an observation of 
Harder's (cf. lemma 1.6.7 of [10]), and are somewhat simpler to prove 
than in the number field case (cf. § 5 of [13], and Chapter III of [11]). 
First some notation. 

Let / be a continuous function on G(F)\G(A), transforming by £. 
Given P = NM SL parabolic, we write fp ~ 0 if the cuspidal component 
of/p is zero (2.9). 

We record the next lemma for reference; it follows from an argument 
similar to that of Lemma 3.1. 

LEMMA. Let $$• Ç ^ o (P, w • fôP), and E(g, $ f) the associated Eisenstein 
series {under the assumptions of 2.6). Then Ep' (g, <ï>) ~ 0, unless P' G {P\. 
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4.2. Fix constants cx, c2 as in 1.4.1, 1.4.2; we shall in fact suppose that 
c2 has also been chosen as in 1.5.5 so that the results of 1.5 are in force 
(especially 1.5.9). Write D for the image of G(F)P0 (cu c2)K

r in G(F)\ 
G (A) ; if m £ Po(ch c2), let 8m be the characteristic function of the double 
coset G(F)mKf (as usual, Kf is an open compact subgroup in G(A)). 
Thus dm has compact support mod Z(A) in G(F)\G(A), and we define 
a new function Aw, by 

Am(g) = J bm(zg)r\z)dz. 
J Z(F)\Z(A) 

In particular Am has compact support mod Z(A) in G(F)\G(A), and 

LEMMA. ([10], Lemma 1.6.7). The function Am can be written in the form 

where \f/, 9, R all have compact support mod Z(A)G(F), such that \p Ç 
«if ({G}, £), 9 w a finite sum of Q-functions, and R has support outside of D. 

Proof. Let C be a subset of G(A) compact modulo G(F)Z(A), so that 
supp Am is contained in C modulo G(F); we can suppose that C 2 K'. 
In particular, the image of C in G(F)\G(A)/K' is a finite set modulo 
Z(A). Let Vc be the space of functions on G(F)\G(A)/K' which have 
support in C, and which transform according to £; then Vc is a finite 
dimensional, hence closed, subspace of ££(J). From this, and 2.8 we can 
argue as Harder does to obtain the result. 

4.3. Now let Pi , . . . , Pt be the standard parabolics of rank r, where r is 
fixed, and r ^ l . 

THEOREM. Le£ {<l>n} be a sequence of functions on G(F)\G(A) satisfying 
the following conditions: 

(i) <j>n transforms by £, and is right invariant by K'. 
(ii) If P is a standard parabolic {possibly G) not of rank r then the 

cuspidal component of <t>n
p is zero. 

(iii) If P = Pi is one of Pi, . . . , P u then <t>n
p —> $tin the finite dimen­

sional inner product space ^ 0 (P,K',œôP) (where œ is unitary). 
Then <j>n —> <£ uniformly on compact subsets of G(F)\G(A) where <£ is 

right invariant by K! and transforms by £. Moreover <t>Pi = $tfor 1 ^ i :g t, 
and the cuspidal component of <f>p is zero otherwise. 

Proof. First, observe that convergence in the mean implies pointwise 
(uniform) convergence for sequences in ^ 0 (-P, K'', o)8P). Indeed, one can 
choose a subset C C M (A) which is compact modulo ZM(A)M(F) such 
that all elements of ^ 0 (P, K', coôP), viewed as functions on M(F)\M(A), 
have support in C. Thus ZM(A)M(F)\C/K' is a finite set (this is why 
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the vector space in question is finite dimensional) and the result follows 
directly from this. 

(i) Suppose that m G Pofci) does not belong to PQ(CU C2). This means 
that there is a simple root a such that |a(m)| ^ qc'2. We then know from 
1.5 that 4>n(m) = <t>n

p(m) if P is the maximal parabolic corresponding to a, 
and the remark above implies that 

I <f{m) defined by induction, if not. 

If both \a(m)\ ^ qC2, \0(m)\ è <ZC2 for a y* fiy then uniqueness of limits 
implies that it is irrelevant which parabolic one chooses. If g — ymk, 
y G G (F), m as above, k £ K', then <t>n(ymk) = <t>n{m) and we can argue 
as before. 

(ii) Suppose that ra0 G Po(ci, C2), then by Lemma 4.2, 

volume (G(F)\G(F)m<>K')(l>n(mo) 

= J *n(g) W<M) + Ô(g) + Rn(g)}dg. 

By assumption, the first integral is zero. The second can be rewritten as 
a sum of integrals of the form 

in particular we can apply the remark at the beginning of the proof to see 
that such a sequence of integrals converge (note that <j) has compact 
support modulo M°, when viewed as a function on M (A)). As for (iii), 
we know that R(g) has its support disjoint from G(F)P0(cu c<i)K, and 
we can apply (i) and uniform convergence (the #w's are right invariant 
by K') to see that the third integral also converges. We can extend the 
convergence to points of the form g = ymk with y G G (F), m G PQ(CI, C2), 

and k G K' /m the same way as we did in (i). 
To summarize, we have shown that the <t>n converge uniformly to a 

function <f> on G(F)P0(c1)K\ To go from this set to G{F)P(){c1)K is 
easy: one simply repeats the arguments above for sets of the form 
G(F)Pçi{ci)kiK

f', where {&*} is a (finite) set of coset representatives for 
K/K'. The final assertions in the statement of the theorem are straight­
forward limit arguments, using the definitions, and the fact that 
N{F)\N{A) is compact. 

4.4. We shall make some refinements of Theorem 4.3, necessary for the 
applications. 

COROLLARY. Suppose that \<t>n\ is as in the statement of Theorem 4.3 
subject to the following modifications: 
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(iiyifP = P^s one of Pu. . . ,P uthen 

<t>n
P € ^ o ( P , K', tt) and e( • , - f O * / ' -* *t £ 

Vo(P,K',<*M 

where fw —• f0 ^ Aaf(f)- 77&ew the conclusion of Theorem 4.3 holds, except 
that now <i>p = e( • , Ç0)$iif P = P\is one of Pu . . . , Pt. 

The proof of this is clear, using Theorem 4.3, and the definition of 
e(-,t) (1-6). 

4.5. The next assertion is not so much a corollary, as an addendum, to 
Theorem 4.3. 

LEMMA. Suppose in 4.4 that for each P, it is true that 

2(6po — dp — Re fo) £ Cpo* (dwa/ chamber). 

Then the function <j> in Theorem 4.4 w square integrable on Z(A)G(F)\G(A), 
i.e., i/ w aw element of J£(Ç). 

Proof. In view of what we know, we only have to check that <t>p is 
square integrable on a set of the form L0*(c) where P is a maximal 
parabolic, L0* is the lattice L£0 and c is a suitable constant. This is left 
to the reader. We remark in passing that such a computation is essentially 
the same as the corresponding (known) one in the number field case: 
indeed one is computing a sum over a lattice which is truncated below, 
and this sum is comparable to the integral over the corresponding real 
vector space which is truncated below. 

4.6. The following variant of 4.4 is the one that occurs for Eisenstein 
series. 

THEOREM. We suppose {<j>n) is as in 4.4, with condition (iii) replaced by 
the following 

t 

(iii) </>/ = X &n,j 
7 = 1 

where $ntj G ^ o ( P , K', <a£nJp). If 

e( ' , -Çnj)$nj -> Qjin VoiP, K', <afiP) and ÇnJ -> f0,,-, 

then <t>n —» <j> uniformly on G(F)\G(A). 

We remark that there is, of course, a corresponding assertion to that 
of 4.3-4.4 for the constant terms of the function </>. 

4.7. There is one piece of notation which will be useful now, and later. 
If <ï> Ç &o(P, K', œôp) then we have seen how to construct a function 
$ f £ ^oCP, Kf, wÇôp) (via e{ • , f )) and thus E(g, $f) (if it makes sense). 
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We shall often write £(g, $f) in the form £(g, $, f) to emphasize the 
function <ï>. 

4.8. The next result can be proved in several ways, but we refer the 
reader to [10], Theorem 1.6.6 for a proof that is in the spirit of this section. 
In what follows the unexplained notation is that of Sections 2-3 of 
this chapter. 

THEOREM (i) Suppose that the terms M(w, f), w G Up>eip\ W(M, M') 
associated to the Eisenstein series E(g, $, f) can be analytically continued 
over a region D. Then E(g, 3>, f ) can itself be analytically continued over this 
region, and if P' £ {P} then Ep' (g, 3>, f) is given by (3.3.2). 

(ii) Suppose that M(w, f) satisfies the functional equation 

M(wi,f)Af(w2,f) = M(wiW2,f) 

aperce region .D'. 
rfeew E(g, $, f) satisfies the functional equation 

is(g,M(w,r)$,Mr) = £(g, *,r) 
oyer Jfte same region. 

(iii) Suppose finally that the operator valued function M(w, f) is rational 
(see 3.5 for a definition). Then E(g, 3>, f ) is a/so rational as a function of f. 

Of course in (iii) it is supposed that il/f(w, f) has been analytically 
continued over all of DM(£). 

4.9. The final task of this section is to make some estimates on the 
partition constructed in 1.7. These estimates will be used in just one place 
(3.3.2), in an argument similar to one used by Langlands ([13], p. 131); 
perhaps the reader should skip what follows until it is necessary to refer 
to it. 

Let {P} be an associate class of parabolics of rank 1. If z Ç C*, let 
<&(z) C i f ({P}, K', £) be the space of functions <t> such that 

(a) the cuspidal component of 4>p is zero if P (? {P} 
(b)<t>p<(g) = T^i{z))^Hg), 

for some ¥ = (*i, . . . , *s) € & ii Pt € {P} (notation as in 3.3.2). 
It will be shown in loc. cit. that i f (s) is finite dimensional. We shall 

suppose that 0 7^ <t>n £ <̂ f 0&») is a sequence with zn Ç R + and zn —> 1. 
It is easily seen, by the kind of arguments employed in 1.7.2, that given 

Po(ci, £2), we can find t\, t2 such that 

Po(cl9 c2) Q{g£ ©|g'i £ \ai(pt)\ S <Z<2, g = Pike Pai{A)K 

for each at £ A} ^ complement (U ©at(^2)), ©«(0 

as in 1.7.2. We can always enlarge h to ensure that the conditions of 
Lemma 7.4 are satisfied. Observe that the image of Po(ci, c2)K in G(F)\ 
G (A) is compact modulo Z(A). 
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The spaces ̂ {zn) are orthogonal to each other for different z. We shall 
suppose therefore that {<t>n) is an orthonormal sequence. Let C denote 
the image of Po(c1} c2)K in G(F)Z(A)\G(A), then if Ft is the image of 

1 = I A <t>n$n + X I <fci<ft», F = complement ( U P*) 

^ C i U Fi 

We can suppose that c2 is chosen so that if \oti(po)\ è QC2 (for g = pok, 
p e Po(ci)) then <t>n(g) = 0n

p<(g). Thus 

From this it follows that cn ^ 1. On the other hand if we write F{ for 
the image of @«,-(*2) in P(F)Z(A)\G(A) then 

f l*.P'fe)P=f l0/2fe)|2 (by (1.7.4)). 
Fi " Fi 

This latter integral is at least 
—2«nC2 

_ 2 „ Ivfr («I 2 
„—2sn "-n * t t | 1 - 2 " 

where 2„ = qSn (this is calculated as in 2.2, for example). Here 

an = mfu {e(-2^(zn),HM(U))} 

where U runs through a set of coset representatives of L Z M * \ L M * , SO that 
an —> 1 as sn —> 0. Summing, we find 

—^5nC2 
2 1 = ^ + 1 _ a-'^n * (hi ' \*n\ • 

This implies that ^n —» 0, and hence, by 4.6 that #w —» 0. Since this is true 
for arbitrary sequences 4>n, and since the spaces ££ (zn) are finite dimen­
sional, it follows that there can only be finitely many such=£f (zw) ^ {0}, 
with zn real, \zn\ > 1 (we assumed that zn > 1, but the same argument 
works if \zn\ > 1). We formulate this as a lemma. 

LEMMA. There are only finitely many of the spaces ££ (z) ^ {0} for 
\z\ > 1 and real. 

3. Some Functional Equations. 

1. Applications of some functional analysis. 

1.1. Let r be a real number, r > 1. If P = NM G {P}, write 

XM(&)r = interior {convex linear hull {«/ • ôP/ • r| 

w e W(M',M),P' e {P}}} 

xM(C)r = {r e x„(C)| Rer e -^(R),}. 
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Then XM(C)T gives rise to an open complex submanifold DM{£) r of DM(t), 

and XM(C)r r\ (Sp + CP) is non empty, cf. 2.3.9. Let 

f:xLZM\XM(C)r-+C 

be holomorphic. T h e n / can be viewed as an element of r(DM(£) r , ûM)-
We define &(P, r) to be the set of these / which are bounded, and set 

®({P),r) = 0 w , S ( P , r ) . 

Suppose Pi, . . . , Ps € \P\ are the distinct elements of {P\. If / = 
(A, • • - , / . ) G 0 ( { P } , r ) , we write 

ll/IU = maxfsupfexM,.(C) |/<(f)l-

As in 2.3.9, letJf?(P, J?', r) be the space of holomorphic functions 

*(D : iLZM\XM(C)r - > © , „ , ^ o ( P , if', wop). 
Put 

jf({P\,K',r) = éjtr(P,K',r). 

We write Jt?(r) if there is no confusion. As in 2.3.9 one can extend the map 

Q:V«{P,K',l-)-*&{iP},i) 
A 

if —» <p 

to a map 

e^p . t f ' . fO- i fUPU) . 
If $ = ( $ ! , . . . , $,) eJf(r) ,set 

*A = *!A + . . . + *S
A

 6 ^ ( { P } > ? ) . 

The inner product formula for (<£ , ^ ) then reads 

($A ^A) = y . v r<^(w,r<)^(f*),^(-wff)>dri 

as follows from a simple continuity argument, using the functions <p , 
<p e &o(P, K\ £). We shall also write this as ($ , * ) . 

1.2. The next result is proved as in [12] Lemma 4. 

LEMMA, (i) Let f £ <^({P}, r) 6c invariant by all W(M, M') for P , 
Pf G {P}. 77*ew /fe r̂e exists a unique bounded linear operator AfonJ^({P}, 

*)• 
(ii) P o r / as in (i) set f*(x) ~ f( — x)- Then f = /* implies that Af is 

s elf-adjoint. 
(iii) Pfe spectrum of Af lies in the closure of 

image (/) : = U i iwage (/*) 
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Proof. Let $ 6 tf(r). If $ = ($1, . . . , $,), then 

also. Applying the 0 map above then gives existence. To prove bounded-
ness, choose N > \\f\\œ- The inner product formula implies that (/<£, SF) = 
( $ , / * ¥ ) . For each 1 £ i ^ s,let ht = N2 - /,*/,. The definition of N 
readily implies that {hi)112 = gt exists as a holomorphic, bounded func­
tion on the domain of fit and gt = gt*. Furthermore one can always 
arrange the square root so that g = (gi, . . . , gs) is invariant by all 
W(M, M'). Thus g satisfies the same conditions a s / . Therefore, as 

0 ^ (Af<pA,Af<pA) = (f*,f*) = (f*/*, *) 

= (7V2$, $) - (g$, g$) ^ N2($, $) = N 2 | | / | | 2 

we see that ^4/ defines a bounded operator. Finally, the last part follows 
by applying the preceding to the function 

/ _ x = (f, - X, . . . , / , - X) for X ? U image (ft). 

1.3. Until further notice we shall confine our attention to a class {P} 
of associate parabolic subgroups of rank 1: if ? G j ^ J then rank 
HM{ZM{h)) = 1. Proposition 1.3.3 implies that {P} consists of at most 
2 elements. If {P} consists of 1 element, then W{M, M) consists of 
2 elements; we shall refer to this as case (i). If [P] consists of 2 elements 
P, P' then W(M, Mf) and W(M, M) each have 1 element; we shall refer 
to this as case (ii). 

Choose so € ZM(A) generating the lattice L*ZM. Given z 6 C* let 
f (z) be that element of XM(G) such that 

Z = q(HM(z0),Uz))t 

In this way we obtain an isomorphism of groups 

C*^XLZM\XM(C). 

We can always suppose, after changing z0 if necessary, that 

<5POO) = Zpp' > 1, PP € R. 

Write pP = PP'//X where JU > 0 satisfies 

(<5P, eP) = /x(ôp, a*). 

Here eP is the element dual to the root a corresponding to P. With the 
same convention, one defines 

and then 1.1.8 implies wf(z) = — f'(z) for w £ W(M, M'), for w non 
trivial (because 

<ffjr.(ao'), "«> = -(Hu(z0),a) < 0, 
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by our assumption on 5P(z0) above. Here a is the unique simple root 
corresponding to P ) . 

1.4. In case (i) set *% = 0{W} ^ o ( P , -K7, wôP), where as usual the sum 
on the right is finite. One can suppose that if co G {co}, then wœ £ {co} for 
w € W(M,M). Let M(z) = M(w,f(s)) . 

In case (ii) set 

^ o = 0 { W } # c ( P , # ' , coôp), # 0 ' = 0 { « M # o ( P ' , # ' , CO'ÔPO-

Of course these sums are finite and we suppose that W(M, M'){w\ C {w'}. 
Set 

and 

v ' \M(w, f (2)) 0 / 

We write $(z) for an element ($i(z), $2(2)) G ^ . If 3>, ̂  G ^ , then 
we define 

E(g,*,z) = E ^ f e . *<.f(i)(*))» * = ( * i , . . . , * , ) , * = l o r 2 

i 

and 

<$,*> = £<***<>• 
i 

Let 

Then the inner product formula (2.3.3.2) becomes 

(cA ^A) = f {<*(*), ^o*-1)) + <M(s)<*>(*), *(*)>} 
J \z\=co 

where $(2) = ( ^ ( ^ ( z ) ) , . . . $,(f(s>(s))) etc. 
Under these identifications, Af(z) is an analytic function for |z| > 

max (qpp, qpp') = qp, say. 
The domain of definition for the elements of Jtif(r) etc. is simply a tube 

whose axis lies along the real axis in C, and which has width p on either 
side of the imaginary axis. 

1.5. For case (i) define an analytic function 

* : XLZM\XM{C) -> C 

via 

h(z) = z + z~\ 
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The remark above implies that this really defines an analytic function on 
\LZM\XM(C), which we also denote by h. 

For case (ii) set h = (hi, h2), where hi, h2 are as for case (i). 
In both cases h = h*, and satisfies the conditions of Lemma 1.2. Thus 

we obtain abounded self-adjoint operator acting on^({P}, £). 

LEMMA. The spectrum ofAn is contained in the interval 

[-(qp + q~>), (°p + 2~p)]-

Proof. Set X + iY=w = z + z~l. Then Lemma 1.2 implies that the 
spectrum of Ah lies inside the ellipse 

X2 , F2 

i~ / or - p r \ 2 — 1 

which is the image of {z : q~pT < \z\ < qpr] under the map z —» z + z~l 

where r > 1. Since Ah is self-ad joint one need only consider the intersec­
tion of the real axis with this ellipse, and this is just the closed interval 

[-(qPr + a?'), (qpr + q-Pr)l 

Since r > 1 is arbitrary, the result follows. 

1.6. Next, we consider the resolvent R(X, Ah) of Ah. Fix X = ql so that 
|X| > qpr > qp, and put [x = X + X"1. Then we can apply Lemma 1.2 to 
the functions 

(\x — h(z))~l in case (i) 

and 
(G* - hi(z))~l, 0 - h2(z))~1) in case (ii). 

In each case we see that these functions correspond to the resolvent 
R(\ + X-1, Ah). Choose qpTl > |X|. Set w(z) = z + z~l\ according to the 
inner product formula, 

(R(„, An)<S,\ ^) = 

1 
/„ (<*(*), ¥ ( 0 > + <M(s)*(s), ¥(*)>}&. 

\z\=qPr fi — W(Z) 

Of course r > 1 in this expression. If we use our remarks on approxima­
tion, we may replace <pA by 3>A, <£> G Jf({P}, K', r); similarly for ^ A . In 
particular take $(z) to be the function 

z$, $ £ <% 

and similarly for ^(z). The formula above becomes 

1 J z\=qPr M w(z) 
[($,*> + (M(z)Q, *)}dz. 
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Now (R(\ + X-1, Ah)<pA, ^A) is an analytic function of X provided 

X £ {JU| \n\ ^ 1} U {M| Im M = 0, 1 ^ Re M ^ gp 

or — qp ^ Rejit ^ — 1}. 

This follows from our knowledge of the spectrum of Ahl and the properties 
of the conformai mapping w = n + /x-1. 

On the other hand, one may shift the contour in the integral above, 
and use the calculus of residues. Indeed, let rx > r and write V for the 
circle \z\ = qpTl. If qpn > |X| > qpr, then the inner product formula and 
the calculus of residues yield 

(1.6.1) (R(\ + \~\A„)<pA,iA) 

= fT (x + x - V H » - 1 ) { < * ' * > + {Mm'*)dx 

+ {<$,*> + <M(X) $ ,* )} • g (X) 
where 

s(x) = ï { ( x T v ^ i r + i r 1 ) • <* - x>} - ^ - ^"1r1-
Now (i£(X + X-1, Ah)<p , SF ) is holomorphic whenever 

X (? {n\ |M| ^ 1} U {M| Im M = 0, 1 g Re /x ^ <?' 
or -g» ^ Re M ^ - 1 } = B, 

say, as remarked earlier. Moreover the integral over T is holomorphic as 
a function of X, and so is the function g( \ ) . From this we see that M(X) 
can be analytically continued over the complement of B. 

Consequently we obtain the following result. 

PROPOSITION. The operator valued function M(z) can be analytically 
continued as a holomorphic function outside the region 

{z\ \z\ ^ 1} VJ {z\ Imz = 0, 1 ^ Res ^ qp or -qp ^ Rez ^ - 1 } . 

1.7. To extend the results obtained on M(z) to the function E(g, 3>, z) 
one applies 2.4.8. Thus E(g, <ï>, z) = E(g, <£, f (z)) can be continued to 
an analytic function over the region above. 

—g" —11 —g-' g~" 1 + 1 q" 
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2. Truncated Eisenstein series. 
2.1. In Section 1 we constructed the generator HM(zo) for L%M. Since 

L*ZM 0 R = XM*(R) there is a unique element of XM(R)} which we 
denote by K, such that 

(HMM,K) = 1. 

From these remarks, we construct a function 0^, for each integer N, 
as follows: 

M g ) " (0 o otherwise. 

Thus @N: P(F)N(A)\G(A) —> R is a locally constant function. 

2.2. Now let $ = ®$i; 6 ^ (notation as in Section 1). We write 

F(g, *<, *) = <Z<r(2) '*«'» ^ite) where #,(*) = #* , (*)• 

Define the function F' by 

ffe, *„*) =fcfe)%^2) 
and the function F" by 

F"te, *„* ) = (1 - fa(g))F(g, (M(z)*)t,*-i). 

Let Xi € Djififâ ; the first thing we want to do is compute the Fourier 
transform of F ' , F" evaluated at xfin- For the moment we consider Fr. 
By definition, if %t = («*> ^t) £ -Djw.-(ê)> the Fourier transform is just 

/ . 
F'(xg, $i,z)(<ai\i$pi)

 1(x)dx. 
ZM(F)Z(A)\ZM(A) 

Write <î>j = ©{W} $iw as usual, then the integral becomes 

(inner integral taken over Z/ji/v (F)Z(A)\ZMi° and 

e{z,Hi{xg)) = g< *<<«>'*«*'»). 

The integral in braces is zero unless coco*-1! ZjVfo = 1, and then it is equal 
to one. Moreover in this case, œ = w7, by our choice of orbit representa­
tives (cf. 2.1.2)* Thus the integral reduces to 

ZM 

eAxgrf'^*^'"*'^*^)**. 
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Set Hi(x) = nHi{zo) to obtain 
N-(K,Hi(g)) . _ 

(2.2.1) Z g ^ ( ^ ^ ( - ) > n g < P ( 2 ) ^ ( , ) > # ^ ( g ) 
n=—oz 

(£Hz),Hi(g)) , 2 -<*,».• (0)><r«(2)-X,-,tf» (2o) > 

(f*(2),i/i((/)>_ / . __2 . +(-ti(z)+*i,Hi(g)) 

= 5 $««.-(g) 1 _ ~<r*(z)-Xi,irt(8o)>S 

^iV<f*'(2)-Xi,^t(2o)> 
g &i,Hi (g)) , v 

— j __ -<r*'(z)-Xt,tf;(2o)> ' g 3>*o>a(g)-

The operations performed above are valid provided that 

which follows from assuming 

(HM^ZQ^), Re f*(«)) > rp p, r > 1 as in Section 1 

(2.2.2) KiJM t .(2 o
( i )),ReX,)| < r P . 

In particular, if we set ^i(i)(\i, g) equal to the expression (2.2.1) it 
follows that the function 

(cf. 2.2.6) is an element of the space ̂ ( P „ i£', r) (1.1). 
The Fourier transform of F"(g, <£*, z) is readily obtained by means of 

similar manipulations; the result is the expression below, denoted by 
^ ( X , g), where we have dropped the subscript i as much as possible: 

-(iV+l)(f(2)+X,^Af(20)> 

(2.2.3) *,(x,g) = Y 3 ^ F ^ ^ ^ > g X ' f f M < 0 ) <*M*)i.,fe). 

The operations that one performs are certainly valid if one has 

Re({(z) + \HM(zo))>0 

which follows from assuming (2.2.2) above. 
In particular, it follows that 

*i = ©* Txr
lW>(K g) and *2 = 0 rxr^2( i) 

are elements of Jt?({P}, K',r) so that the functions ^ i A — ^2
A (2.3.9) are 

defined. 
There is another expression for * i A - * 2

A which we shall find useful. 
Let <p be a function on G(F)\G(A) such that if G ?* P is not a maximal 
parabolic then pp = 0. Given N as above, define 

A%(g) = #>(«) - £ Z / ( 7 « ) ( 1 - M 7 « ) ) . 
P maximal P(F)\G(F) 
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An argument similar to that used in 2.2.4 implies that each inner sum 
converges uniformly on compact sets, and, for a given g is a finite sum 
in fact. Applying the operator A^ to E(g, $>, f (s)) one sees by a small 
computation that 

A ,T , A 
ANE(g, $ ,$• (*)) = * i A - ¥• 

2.3. The next step is to compute 

using the inner product formula 2.3.3.2. To do this one shifts the contour 
of integration and computes residues. Since the method is carried out in 
some detail in [13] p. 134 we give only the final result: In the following, 
z = qx, z2 = gM. 

(2.3.1) (ANE(g, * , * ) , ANE(g,*,z2)) 
N(\+H) -(i\r+i)(X+û) 

N(fT-\) (N+1)(\-J1) 

We observe in passing, the occurrence of (N + 1) in the exponent. 
Set X = M = a + \T, and choose $ = * so that ($ , $ ) = 1 and 

||M(X)*|| = ||M(X)||. Then (2.3.1) reduces to 

tr^-f^T-n^)ii2} 
-2\NT 2i(AT+l)r 

The second expression in braces may be expressed as 

YTq^{(q-2iNTM(\)*, #> - g*lT<<f,lWTJlf(X)*,*>}. 

A moment's reflection and the Cauchy-Schwartz inequality shows that 
the modulus of this is at most 

2 \\M(\)\\ 

|i_g**l IW)*- *>l ̂  2 |i _ g l | • 

Since (2.3.1) is evidently non negative, one deduces that 

! _ g - - 7^7=5 IIW)|| + 2 ^ T 7 ^ ^ 0 . 
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Thus 

(2.3.2) ||M(X)|| ̂  {|;L _2
g2iT| + y ^ Z 7 ^ + - ( i _ g - ^ / ^ p ™ 

-, - 2 c r 
^ + ~ ff 2<AT+l)<r. 

g ™ | * l 1 - q 
-, —2(T 

— s ^ 2(iV+l)<r i ~ g (2iV+l)<r 
~ ) 2 < Z M _ . 2 i r , + g 

(In deriving this, one uses the inequality v ( x 2 + y2) ^ x + y for 
x, 3> ̂  0.) 

2.4. The expressions (2.3.1), (2.3.2) were derived assuming the con­
ditions (2.2.2). On the other hand, if we write 

E(g, $, z) = E(g, $, X) for z = g\ 

we have 

A»E(g, <*>, X) = Z ANEn{l\ * ' Xo) (X - Xo)" 

where 
~ n\ 

ANEn(g, *, Xo) = ~£n ^NE(g, $, X)|X-xo 

if ANE(g, $, X) is analytic at X = X0. Hence 

\\ANE(g, $, x)n2 ^ £ i i A ^ y . M i 2
 ) x _ Xo|2*_ 

Denote the expression (2.3.1) by co(X, /Z; $, ^ ) ; if we expand 
(ANE(g, 3>, X), A"E(g, $, X)) at X = X0, we find 

~2n 

\\ANEn{g, *, Xo)||2 = ^ Î ^ « ( X , M ; *, * ) f â . 

From this we see that ANE(g, $, X) can be analytically continued about 
Xo whenever that for co(X, X; <ï>, <£) is analytic at (X0, Xo). From the 
expression (2.3.1) and the region in which M(X) has been extended in 
Section 1, we see that (2.3.1), and hence ANE(g, $, X), can be extended 
as an analytic function over the same region. Consequently the formula 
(2.3.1) will persist in the same region as well. Setting X = a + tr, r ^ 0 
and using (2.3.2) we find 

limsup||M(o- + tr)|| S 1. 
<ri0 

It follows from 2.4.8 that \E(g, 3>, X)| also remains uniformly bounded 
as a I 0, for g £ C a compact subset of ©. The definition of ANE(g, <ï>, X) 
then implies that it also remains uniformly bounded. 
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If we return to the expression (2.3.2) and multiply it by (1 — q~2a)/q2N<T
} 

we see that 

lim M*(\)M(\) = id = lim M(\)M(\) 
ffiO 

since M*(X) = M(\) (2.3.7, and analytic continuation). In particular 
M{\T), T 9e 0, is unitary, hence invertible. Arguing now as in [11], p. 139, 
we define Af(X), Re X < 0 by M(X) = M'^-X). 

This is a meromorphic function, since det M(\) ^ 0 (Re X ^ 0), so 
long as we keep away from the region depicted in 1.7, and its reflection 
with respect to the unit circle (z = qx in that figure). 

The results of 2.4.8 readily imply that E(g, <£, z) can be continued 
analytically to the same region, and that its behaviour is at least as good 
as that of M(z). 

We summarize our results in the following 

PROPOSITION, (i) The operator valued function M(z) can be analytically 
continued to a meromorphic function over the complement of the region 

[-qr, -q-*]\J [q~p,qp] 

and satisfies the functional equation 

M(z)M(z~l) = id. 

(ii) The function E(g, 3>, z) can be analytically continued as a mero­
morphic function over the same region as in (i), and satisfies the functional 
equation 

E(g,M(z)$,z-i) = E(g, * , * ) . 

The last assertion follows from 2.4.8, and the fact that M(z) satisfies 
the functional equation M(z)M{z~l) = id. 

3. Some applications of Stone's formula. 

3.1. The results of the preceding sections have enabled us to continue 
M(z), and hence E(g, $, z), over the complement of the set 

D = [~qp, -q-p]V [g-p,qpl 

In this section we shall prove that M{z) can be analytically continued 
over Z>\{ + 1}, and that on [ — qp, —1) W (1, qp] it has at worst a finite 
number of simple poles. In the next it will be shown that M (z) is 
analytic at z = + 1 . Since the behaviour of E(g, <ï>, z) is no worse than 
that of M(z) (2.4), the same results hold true for it as well. The first 
step is to prove that there is a finite number of points in [—qp, —1) W 
(1, qp] so that M (z) is analytic for \z\ > 1, except perhaps at these points. 
Then we use Stone's formula from spectral theory to see that these points 
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can be at worst simple poles for M(z). Finally we use Stone's formula and 
elementary analysis to see that M(z) is analytic at z = + 1 ; it is defined 
on ( — 1, — q~p] U [q~p

y 1) by reflection. 

3.2. LEMMA. There is a finite number of points z\, . . . , zn in 
R = [ — qp, — 1) U (1, qp] such that M(z) is analytic for \z\ > 1, except 
possibly at these points. 

Proof. We need only investigate the behaviour of M(z) as z approaches 
an element of the set mentioned in the statement of the lemma. 

To begin, suppose z0 Ç P , and suppose either 
(i) there is a sequence zn —» z0, and a sequence { 3>n}, <£n Ç ^ , || $n|| = 1 

such that {|M(zn)<ï>n|} is unbounded, or 
(ii) there are sequences {zn}, {zm'\ converging to z0, and an element 

$ £ &, such that 

lim M(zn)$ •£ lim M(zm')$. 
Zn->ZQ Zm ->20 

If (i) holds, set pn = ||ikf(zw)<i>w|| and choose a subsequence vn~
lM(zn)$n 

which converges to <J>0 in the (normed) space *%. Then we can apply the 
results of 2.4.6 to E(g, vn~

l$n, zn) to deduce that it converges to a function 
0o say. Moreover, 0O G S£ (£) (cf. 2.4.5). 

In case (ii) we consider 

M(sn)$ - M ( 0 * - > * < ) , 

to get 

£(g, S, zw) - E(g, S, zn
f) -> 0O ç i f ({). 

In either case write <J>0 = ($o (1\ • • • , ^>o(s))> s = 1 or 2. Then 

(a) *«*(«) = 0 iiPi [P\ 

(b)«„^(g) = r(_,«(t)) $<«>(*) npte {P} 

which follows by a well trodden path. 
From this we see that <f>o must be an element of jSf ({P\, K', £) in fact. 

In particular </>0 G -Sf (s), where jSf (z) C &({P}, K', £) is the space 
consisting of functions ^ such that 

(a )* p (g) - 0 i f P ^ {P} 

(b) *p<(g) = r(_r.-(l))¥<*>(g), some * £ <^, if P* G {P}. 

Since ^ —> (Tci(z)\pPi) is infective, we see thatJèf(z) is finite dimen­
sional. Moreover if 2 is real, we find 

( / , *) = (*(*), ¥ ) , any *> £ ^ 0 ( £ , X', J). 

An easy approximation argument implies that if A is the operator in 
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Section 1, then 

( / , A*) = (A<p\ *) = (* + s"1) (*(*), * ) = (* + ^ ) ( / , *) 

if 3>(z) 6 «^(r) (cf. Section 1). Thus if z is an element of i? in the state­
ment of the lemma, then ££(z) is an eigenspace for A, and.jSf(zi) is 
orthogonal toc^ffe) if 21 5̂  z2. One now argues (2.4.9) as in Langlands 
p. 131 to deduce that the set of points in R for which J£ (z) ^ 0 is a 
discrete set. If z does not belong to this set, then M(s) is bounded (on 
C*\R*) in a neighbourhood of z} and lims^z M(s) exists. 

Case (ii) above shows that M(z) thus defined is continous, whence 
analytic by Riemann's theorem on removable singularities. 

We shall be done if we show that the set of z Ç R for which «if (s) 9^ 0 
does not have + 1 as limit point; but this is Lemma 2.4.9. 

3.3. For the next stage of the argument we shall recall Stone's formula, 
as applied to the operator A. It tells us that if E(x) is the resolution of 
the identity for the (bounded) self-adjoint operator A, and that if 
b > a, c positive, then 

(3.3.1) i[ (E(b)A *A) + (E(b - 0)<p\ *A)\ 

- H(E(a)v
A, *A) + (E(a - 0)<p\ ^A)) 

= - l i m ^ r f (R(\,A)<p\tA)d\ 

where C(a, b, c, ô) is the contour depicted below 

For a proof of this fact, we refer the reader to [15], Theorem 5.10 (cf. 
also Reed and Simon: Functional Analysis vol. I p. 237). 

3.4. Now we return to the points zi, . . . , zn in Lemma 3.2. Choose 
small closed discs of radius e > 0 around Zi and + 1 which do not overlap 
and let d be the circle of radius e about zit traversed in the anticlockwise 
sense, and let C be the contour which consists of the unit circle traversed 
in the anticlockwise sense, indented at dbl by those parts of the small 
circles described above with centres ± 1 which lie in \z\ ^ 1. 
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In view of what we now know about M(z), we may replace the contour 
in the inner product formula for (<p , \p ) to get 

2irt J , 
(3.4.1) (^, ^ ) = ~ <*(8), ^ ( r 1 ) ) + <Jlf (*)#(*), *(!)>& 

Z7TI •/ (7 

i=\ 2iri J Ci 

— l 

î = l Z7TI •/ C i 

3.5. LEMMA. The points zu . . . , zn are simple poles for M(z). 

Proof. We shall first show that zt + zf1, i = 1, . . . , n, is an isolated 
point in the spectrum of A, and then that zt is a simple pole for i?(X + X-1, 
4̂ ). An argument like that of 1.6 then implies that s z must be a simple pole 

for M(z). 
First, choose a < b so close that just one of the numbers zt + zt~

l lies 
in the interval [a, 6]. If we substitute (3.4.1) into (3.3.1) using this a 
and b, we can interchange the integrals and then use the calculus of 
residues, provided e is suitably small, and c is suitably large (one requires 
the image of d under z —» z + z~l to be wholly inside the interior of the 
contour C(a, 6, c, 5)). The result is that (3.3.1) is equal to 

(3.4.2) ^ r j c (M(z)*(z), *(z))dz. 

This is true for any such a' and b''; if we let a', b' tend to a, 6 from below 
we see that E(b) — E(a) must be equal to (3.4.2). It follows that zt + 
zt~

l must be an isolated point for the spectrum of A. 
On the other hand, if we compare the estimates for ||M(z)|| given by 

(2.3.2) with the formula (1.6.1), we see that R(\ + \~\ A) is of order 
I NVI^2I ~ X2|. Thus the points s j must be simple poles fori?! (X + X"1, ̂ 4). 
Applying (1.6.1) again, we see that they must also be simple poles for 
M(\). 

3.6. Remark. The above proof indicates the close relation between M(z) 
and R(z + s -1 , A), for |z| > 1. It shows that the points zu which are 
precisely the points for which ££(z) 9^ 0 in |z| > 1 (soJz?(z) is an eigen-
space for A), are exactly the points for which M(z) is singular, with a 
simple pole, in \z\ > 1. If we had applied (2.3.2) directly, the exactness 
part of this statement would have been lost, and we would know only 
that they are at worst simple poles. 

3.7. The next step is to examine the behaviour of M(z) as x —> ± 1 . 
Since the treatment in each case is parallel, we shall consider only the 
case z —» + 1 . 

In what follows, E(x) is as in 3.3; recall that the spectrum of the 
operator A lies between — (qp + q~p) and (qp + q~p). 
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LEMMA, (i) If x & {zi + zr1, . . . , zn + zn~
l, +2, —2}, then 

( E ( x ) / , *A) - (E(x - 0 ) / , *A) = 0, 

and (E( • )<p y\f/ ) is continuous at x. 

(ii) (£(2)^A, ^A) - (E(2 - 0)<A VA) 

= lim 75-7 I <M(z)$(s), *(§))<& 
C(«) 

where C(e) w / t o £ar/ of \z — 1| = e which lies in \z\ ^ 1, traversed in the 
anticlockwise sense. 

Proof. In both cases we shall use Stone's formula (3.3.1), and the 
expression (3.4.1). 

Proof of (i). Suppose first that x Ç R, and \x\ > 2. Then it is clear that 
(E( - )<p ,\p ) is continuous at x, provided x is not one of the points listed 
in the statement of the lemma. Indeed, one can compute directly using 
Stone's formula and (3.4.1): for y < x and sufficiently close, one has 

((*(£(*) + E(x - 0)) - *(£(y) + E(y - 0 ) ) / , ^A) = 0 

("sufficiently close" means here that [y, x] does not meet the images of 
the small circles Ct under the mapping z —> z + z~l). This follows as in 
3.5. Letting y approach x, we find 

(£(*) - E(x - 0 ) / , iAA) = 0. 

Since (E(x)(p , yp ) is always right continuous, the result follows. 
Next, suppose that \x\ < 2 and x real; let y be as before. We must 

compute 

lim 77-7 I 
«JO ^TTt •/ C(v,x,c,ô) 

If we regard (3.4.1) for a moment, we see that we can easily dispose of 
the terms coming from J c. by using previous arguments, so we limit our 
attention to the limit, as ô J, 0, of 

(37-1} U S fx—Àr?*» <*<*>'*<rl>> 
L-K\ J C(y,x,c,6) J C A — [Z -f- Z ) 

+ (M(z)*(s),¥(z))dzd\. 

For a given 5 > 0, we can certainly interchange the integrals, and then 
the first thing to do is to compute 

1 
/ , C(v,x,c,B) A — [Z + Z ) 

We first observe that we need only compute this integral for those z such 
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that z + z~l = w G [a> b] D [y, z], say. Indeed, if we consider (3.7.1) with 
Jc replaced by J uecit^ia.ô]} w e s e e by previous techniques that the con­
tribution is zero; of course we are supposing a < y < x < b. Write 
C(a, b) for the set of z mentioned above. In general, 

/ . 
7 dX, w = z + z 

C(y,x,c,6) A — W 

— dfx 
w 

= f* l f ' i_ 
J y fJL + XÔ — W J y fi — \8 

= tan"1 (5/0* - w))\x
v - t a i T ^ - V O * ~ «0)|î, 

w = 2 + z~ is real, 

2((f)x(w) — <t>y(w))y if <kc(w) = tan - 1 (6/x — w), etc. As ô j 0 we see that 

(<px(w) - 0y(w)) -» 0 if w g [y, x] 
(**(«>) - 0„(«O) -> 7T if w Ç (y, x) 

'^x(^) — <l>v(w) —» 7r/2 if w = x or y. 

From this we see that (3.7.1) is equal to 

^ r J^TTJ <S(S), ^ ( r 1 ) ) + <M(s)*(«), ¥(*)>}& 

(integral over {s G C|w(z) $ [y, x]} ). If we let y f x we see as before that 
E(x) = E(x - 0). 

(ii) Finally, we must consider the point 1 + l - 1 = 2. Since the compu­
tations are similar to several made before, and we are tired, we shall be 
brief. Let y < 2 < x, and |x — y\ small. Our previous results imply that 
Stone's formula reduces to (E(x) — E(y)<pA, \f/A) (by continuity). A 
(what is by now) straight forward computation shows that 

(lim E(x) - E(y)<p\ A 

= 1T1 f <*(*), *(2-1)) + <M(*)*(«), *(«)> 
Z7Tt •/ C(e) 

with 

C(e) = {z\ \z - 1| = e} n{z\ \z\ > 1}, 

and e I 0 as y f 2. The result then follows by letting y Î 2, and observing 
that 

lim (E(x)<pA, ^A) = (£(2)^A, ^A) 

by right continuity. 
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3.8. LEMMA. 

( £ ( 2 ) / \ ^A) - (£(2 - 0)^A, rPA) = <Jlf*(l),¥(D> 

(M(z)$( l ) ,*( l ) )dz = 0. = — T lim I 
Z7Tt € | o J C C(0 

Proof. We know that 

(£(2)^A, ^A) - (£(2 - 0)^A, ^A) 

= lim T^T I (M(z) $ (z), * (z) >dz, 

by Lemma 3.7. In view of the définition of £(2) — £(2 — 0), the right 
side defines a positive definite Hermitian symmetric form on34? (r). It is 
however defined when $(z), ^(z) are defined and analytic only in a 
neighbourhood of z = 1, and an approximation argument shows that it is 
still positive definite on this new space of functions. In particular let 
h(z) be scalar valued, analytic near z = 1 ; then 

(3.8.1) lim I h(z)h(i)(M(z)*(z), *(«)> è 0. 
«i0 «̂  C(e) 

We can take A(2) = (5 ± (z - 1))1/2, so that fe(z)ft(I) is just b =fc (z — 1), 
where 5 > 0. Since Stone's formula implies 

/ , 
(M(z)$(z), $(*)><& = 0(1) a s e - ^ 0 , 

C(e ) 

so for <5 ̂  6 we infer 

^ ^ C(e) 
l)(M(z)Q(z), ${z))dz = 0(e). 

Applying this to ^ , then $ + ^ , we see that 

(3.8.2) lim ^ I (z - l)(M(z)$(z),*(z))dz = 0. 

Applying the result just obtained to ($(z) — <ï>(l))/(z — 1), we arrive 
at the first equality of the lemma. 

To obtain the second, let tp' = (£(2) - £ (2 - 0 ) ) / . Noting that 
XK'*(<P ) = (XK'*<P)A where XK is the characteristic function for K'', and 
* denotes convolution, we see that if <pA is locally constant then so is 
A(pA, and E(x)<pA, all x. Consequently (£(2) - £ (2 - 0))<pA is continu­
ous. One can now show that </>' = 0. Namely the constant term <j>fP = 0 
unless P Ç {P}, in which case it is given by 

(3.8.3) (M$(l))< 
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where P = Pt £ {P} (i = 1 or 2). The expression (3.8.3) must be square 
integrable on © (cf. 1.5.9). On the other hand, a short computation shows 
that this is impossible because ôP.(g) is not L2 on ©, (cf. [13] p. 144). 

4. Behaviour at z = dbl. 

4.1. Let C be the unit circle \z\ = 1, taken in the clockwise direction. 
Let r be a circle of radius 1 + e, centre the origin, with e such that none 
of the points Z\,. . . , zn lie in the closed disc bounded by T; we shall take r 
in the anticlockwise direction. 

LEMMA. For f inside the region bounded by T and C\ one has 

Proof. According to the theory of residues 

M(* = J_ f M&dz . _i_ f ^ ( g ) & 

^ ; 27Tt J c z - f "^ 27Tt J r z - f 

where C is just the contour of 3.4 taken clockwise. 

y 
Because of 3.8 however, we may replace C by C. Moreover, f_1 lies inside 
the unit circle, so that 

2TT\ J c, z — I 2iri J r z — f 
Thus 

The result follows since 

= £Qr kl = 1. 

4.2. Set s = qt+ie, f = gff+ir, r = g*, a = log g, co = 27r/a. Then, from 
Lemma 4.1, one can write 

(43.1) if m - i f . <:' - » f <*'°>f+ , + x f if W( . . .)*. 
co »/ o 1 — 2r cosa(r — 9) + r 27rt J r 
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LEMMA. Suppose limT^0 M(qÏT) = M (I) exists. Then 

lim M{q+ir) = M (I). 
<riO 
r-,0 

Proof. Set 

2 _ -, 

P r ( 9 ) = 1 -2rcosaO + r2 ' 

This is a Poisson kernel, so that 

-1- I PT(e)de = 1. 
CO J 0 

Thus 

ilf(f) - M(l) = M( • )*Pr(G) - M(l)*P r(9) + f 
i / r 

= (M( • ) - M(l))*PT(Q) + I 
using obvious notation. As f approaches 1, the integral over T approaches 
zero, and the result follows. 

4.3. We pause to make two remarks. Suppose c2ie is an eigenvalue of 
multiplicity m for M{qXT) ; it is a known fact which follows from the 
theory of algebraic functions that if \r — T'\ is sufficiently small, there are 
m eigenvalues (counted according to multiplicities) of M{qXT') close to 
qie. For this we refer the reader to e.g. Reed and Simon, Functional 
Analysis vol. IV Chapter XII .1. 

Secondly, we know that | |£( . , $, gir)|| is bounded for 0 < r ^ T, if T 
is given; this follows from the remarks made in 2.4. Now take N = 0, 
and let a j 0 in the formula 2.3.1. The result is readily computed to be 

(4.3.1) ( A 0 £ ( - , # , 2
i T ) , A ° £ ( • , * , < / ' ) ) 

= <*, *> - Ç (M-\qlT)M'(alT)*, *> 

In particular, if we take B(qlT) to be equal to 

/ - Ç M-\qir)M'(q") + J ^ ; {M(qir) - q^M^iq")} 

then we know that ||^(g iT)|| is bounded for T è r > 0, T given. 
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4.4. The next stage of the argument is to prove that limT^0 M(qXT) = 
M (I) described in Lemma 4.2 does actually exist. For this, we shall study 
the behaviour of the eigenvalues of M{qXT) as r varies. 

To this end, let $j (j = 1, . . . , n) be an orthonormal basis of eigen­
vectors corresponding to eigenvalues qi9](j = 1, . . . , n) for the unitary 
transformation M(qÏT). Let $ Ç ^ \ | |$| | = 1; then $ = £ aj$3 and 
£ \a.j\2 = 1. We can write 

(M(giT)$,$)=i:2iej|a,|2 

and, from the definition of B, 

(4.4.1) (M'(qiT)*, *> = 2 < r { | : \a,\*(qiei 

+ T^{q2iei -q2iT) - <WT)5(s ,r)*. *>)} 
= E 2<TiT M*{ffie' - - ^ - sin a (0 , - r) £a I s inar 

- <M(<f )£(gir)«*>, * > } 
with a = log #. 

Write 

M(qiT') = M(g i r) + ta J T qivM,{qiv)dy 

and suppose |£(ç iT)| ^ 6 for 0 < r ^ 7\ If |T' — r\ is so small that 

\M'(qir') - M'(qXT)\ ^ b 

then (4.4.1) implies 

<M(g i T ' ) $ ,$ )= Ê | « , | Y 9 i 

X { l + 2(S
J« - l ) ( l - S i n a . ( e - ~ T ) ) + 0(0 } 

v \ s in OLT J ) 

where t = T — r and \fl(t)\ ^ 2b \q[t — 1|. This expression is equal to 

n 

£ h l Y e ' U + 2(gU - 1) ( - s in «9 , cot or) 

+ 2(çu - l ) ( l + c o s a e , ) + |8(0}. 

If we set 

d1(t) = 2(ç i ( - 1)(1 + cosaG,) + 0(t) 
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then 
|«!(/)| ^ (4 + 2b)\qil - 1| = 2c\qu - 1|, c = 2 + 6. 

Let 

^•(0 = 2eiv<t){\qit - 1 | (± s i n a 0 , c o t a r - c) 

+ (c|ff** — 1|=F 0(0)} 
and 

«,(*) = (1 =F Vj{t)W*> 
where 

gi« - 1 = gi"(0|3 i« _ 1| 

and 

5(0 = 1 / 2 ^ ^ ^ 1 ( 0 . 

The upper or lower sign is taken according as sin aOj ^ 0 or sin aQj ^ 0. 
We note that for t small and negative, the angle v(t) lies in the third 
quadrant, and v{t) —» 37r/2 as t —> 0. 

If 
| s ina0, | cot ar ^ c + 1/2 

then, in the expression for ^(2), we see that the first expression in paren­
theses is positive, while the second lies in the sector 

{z\ |arg z\ ^ 7r/4}. 

LEMMA. Suppose qie is an eigenvalue of M(qÏT) of multiplicity m, with 
I sin aG| cotar ^ c + 1/2. If t = T' — T is negative and sufficiently small, 
then the m eigenvalues of M(qÏT) which are close to qie all lie in 

X(t) = {g i0(l =F 2e{^t)\qu - 1 |(± sin aO cot ar - c + z))\ 

\SLTgz\ ^ 7T/3}. 

Proof. First, a careful look at the diagrams below shows that if x, y g 
X(t), then ax + (1 — a)y (? X(t), provided x, y G {s| |z| = 1}. 

Suppose qlQ is an eigenvalue of multiplicity m. Write qiQl = # i02 = 
. . . = gi0m = Çie. If 

m 

$ = Z) <*^ 
satisfies 

l* l 2 =ZW 2 = i, 
then 

m 

<iif(2,(,+T))*, *> = £«*( ' )kl ' -

The remarks before the lemma imply that %(/) £ X(t), if t is small 
enough (we are assuming \M'(qXT') — M'(qXT)\ ^ b); 
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sin aO > 0 A ^ * ^ / 5 

sin aO < 0 

-iex(t) 

• outside unit circk 

l-ql 

1-1 

- outside unit circle 
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since X{t) is convex it follows that (M(q{{t+T))$, $ ) does also. If it were 
not the case that X(t) contained m eigenvalues then by counting the 
dimensions of the eigenspaces involved, we see that we could choose # 
to be the linear combination of eigenvectors of M(qi(T+i)) belonging to 
eigenvalues which lie in the complement of X(t), and the remarks at the 
beginning of the proof would then imply that (M(qi(>T+t))$, <£) must also 
lie in the complement of X(t). This is a contradiction. 

4.5. If |sin a9|cot ar ^ c + 1/2, then Lemma 4.4 implies that if 
qiQf is one of the m eigenvalues of M(qir') close to qie (an eigenvalue of 
multiplicity m of M(qiT)), then 

giO'-e) _ i = =p 2eiv^\qlt - l | ( | s ina9 | cotar - c + z) 

with |arg z\ ^ TT/3. It also follows from contemplating the diagrams that 
in case 

|sin aQ\ cotar ^ c + 1/2, 

then =F (9 — 9') ^ 0 where the sign is taken according as sin «9 > 0 
or sin a 9 < 0. Of course z depends on r' — r. 

4.6. For the next lemma we must elaborate on the first remark made in 
4.3. Let 12 be a region where M(z) is analytic and f 6 12; set 

f(w, f ) = det (M(f ) - wl) with w £ C. 

Then 

/(w, r) = wn + a i ( r ) ^ 1 + . . . + a„(f). 

If z = giT is the point in 4.4-4.5 and we suppose, as we may, that z Ç fl, 
then /(w, z) = 0. It follows as in the theory of algebraic functions that 
the roots w(f) of the polynomial /^ , f ) are branches of analytic functions 
with at worst algebraic singularities; the set of algebraic singularities 
constitutes a discrete set. It follows that the number of eigenvalues of 
M(Ç) is a constant, except at this discrete set of "exceptional" (or 
"critical") points; it is not the case however that this constant is neces­
sarily equal to n. It also follows by taking Puiseux expansions that the 
branches of the analytic functions representing the roots have finite limits 
at the critical points. 

4.7. LEMMA. Suppose z = qir is not a critical point. Then in the notation 
of±A, 

| s ina9 | ^ (c + 1/2) tan ar. 

Proof. Suppose |sin a 9 | > (c + 1/2) tan ar. Then each root w(Ç) above 
is differentiate at z. From 4.4 we have 

giO'-e) _ i = T 2eiv^\qu - l | ( | s ina6 | cot ar - c + z(t)) 
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where z(t) = x(t) + iy(t), x(t) ^ 0, and w(f) = gie'(T,) for f = g i r\ 
That is 

g - t e g i r ( ç i 9 ' _ ç i 6 ) = T 2 ( g i r ' - g*'){ | S i n C*9| COt «T - C + Z (0} 

or 

q x qlT — = =F 2{ |s ina9| cotar — c + z(£)}. 

Let Af —> 0, then 

= =F 2{ |sin aQ | cot ar — c + x + xy] - i e ir dw 

where x + ty = l im^i r z(/) exists because dw/dÇ exists at f = gir. The 
left hand side is simply 

dG' 
dr7 = =F2,4 

where 

4̂ = |sin a 9 | co ta r — c + x + ry. 

Since everything else is real, we infer that y = 0. On the other hand x ^ 0 
because each x(/) §: 0. The equation 

dr 
= =F 24, ^ > 0 

now says that 0' is a decreasing function if sin aQ > 0, and that it is an 
increasing function if sin aQ < 0. Referring to remarks in 4.5 concerning 
=F(6 — 6') ^ 0 we see that this is a contradiction. 

4.8. We now deal with the critical points. If z = qlT is critical, then we 
may choose a neighbourhood A about z so that z is the only critical point 
in A. Let w(f), as above, correspond to O ' ( T ' ) . As remarked in 4.6, the 
function w(X) has a finite limit as f —> z. On the other hand, 4.7 says 

IsinaG'l ^ (c + 1/2) tan ar' 

for all z ?£ f = g i r ' in A; hence by continuity 

|sin<x0| ^ (c + 1/2) t ana r . 

4.9. The preceding sequence of arguments has shown that if qlQ is an 
eigenvalue of M(qÏT) then 

|sin aQ\ = 0 (tan ar) 

when r > 0. This is just what we want for the next lemma. 

LEMMA. limTi0 M(qiT) exists, and equals limTi0 M~l(qXT). 
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Proof. Since 

/(M(f)-qr"M-\g")) 

\ 1 - t 
we see that 

$, 3> = -£ sin a(Qj — r) • ,2 

sinar 

M(qlT) -2qlTM-1(qlT) 

1 - g2iT 

is bounded as r j 0, and referring to (4.4.1) we see that [|M,(grtT)|| is as 
well. Using anew the formula 

M(qiT')-M(qiT) = iajr M'{qlT)dr 

we see that for r [ 0, the limit of M(qir) exists. Differentiating the func­
tional equation for M(z) we find 

M'Cer1) = z2M-1(z)M,(z)M(z-1) 

hence M'(qÏT) is bounded for r < 0. Repeating the argument above, we 
find that limTÎ0 M(qir) exists. Since 

|sin aQ\ = 0 (tan OLT) each 9, 

we see that 

H-W*) - M-'iq^W -> 0 as r -> 0 

so that 

limTio W ' ) = limTîo M{grir) = ^ ( 1 ) , 

and we are finished. 

4.10. PROPOSITION. The points Z = ± 1 are removable singularities for 
M(z). 

Proof. We know that 

l imMte0 4*) = M(l) = lim ilffe1*). 
<r|0 T->0 

On the other hand Mil) must be unitary, hence invertible, so from the 
functional equation 

M(l)limM-V+i r) = /• 
<ri0 

From this it follows from its definition for |z| < 1 that M (z) is uniformly 
bounded in a neighbourhood of z = 1, and we are done. The argument 
for z = — 1 is the same. 
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5. Rationality. 

5.1. Let <p(z) : C —» V be a function with values in a finite dimensional 
complex vector space. We shall say that <p is rational if there is a poly­
nomial p(z) such that p(z)<p(z) can be written in the form a0 + a,\Z + . . . 
+ anz

n where at £ V. If V comes equipped with an inner product, then 
it is equivalent to saying (<t>(z), v) is a rational function of 2 for each 
v Ç V. In particular if <p : C —•> Endc(W), W finite dimensional, then 
<p(z) is rational if and only if all its matrix coefficients <Pij(z) (with respect 
to some basis of W) are rational functions of z. 

Our preceding results tell us that M(z) can be analytically continued 
to a meromorphic function on C* = C\{0}. 

PROPOSITION. The meromorphic function M(z) defined on C* can be 
continued to a rational function on C. 

Proof. From 2.3.8 we know that ||M(z)|| is bounded by a rational func­
tion of z as \z| —» oo . From the functional equation for M{z) this implies 
that [|ikr-1(2)|| is bounded by a rational function of z as z —» 0, hence 
that M~l{z) has at worst a pole at z = 0 (more precisely: M~l(z) can be 
extended to a function which has at worst a pole at z = 0). We can also 
infer from this that det M~l(z) cannot vanish identically in a neighbour­
hood of z = 0 (because none of the matrix coefficients of M~1(z) do). 
Hence 

M{z) = Adj M-1 (z)/'det M~l(z) 

can also be extended to a function which has at worst a pole at z = 0. 
This means that ikf (z) is a meromorphic function on all of C, bounded by 
a rational function as \z\ —> oo , hence must be rational. 

5.2. Combining the results of this chapter with 2.4.8 again, we have the 
following theorem. 

THEOREM (i) The endomorphism valued function M(z), which is initially 
defined and analytic for \z\ > qp, can be analytically continued to a rational 
function in z which satisfies the functional equation 

M(z)M(z~1) = I. 

It is analytic on the set [ — qp, — 1) W (1, qp] except possibly for simple poles, 
and it is analytic at z = ± 1 . 

(ii) The function E(g, <i>, z), which is initially defined and analytic for 
\z\ > qp, can be analytically continued to a rational function in z which 
satisfies the functional equation 

E(g,M(z)3>yz-i) = £(g, $,z) . 

// is analytic on the set [ — qp, — 1) U (1, qp] except possibly for simple poles, 
and it is analytic at z = ± 1 . 
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4. The General Cuspidal Case. 

In Chapter 3 we showed that the Eisenstein series defined in Chapter 2, 
together with their constant terms, could be analytically continued over 
all of DM (£) in case P = NM was a maximal parabolic. In addition they 
were shown to satisfy certain functional equations. We shall use these 
results in this chapter to show that Eisenstein series of the most general 
type defined in Chapter 2 enjoy similar properties; of course similar 
results will be deduced for their constant terms. The results of this paper 
will be used in the next paper to show that more general Eisenstein series, 
not necessarily arising from cusp forms on ikf°, also enjoy the requisite 
properties, and this will enable us to give a spectral decomposition for 

The method used in this chapter is, modulo semantics, one due to 
Langlands (cf. [13], p. 151-160, and also [12] for an example). Since 
the details are sometimes the same, we shall be brief in places. 

1. Some identifications. 

1.1. Let P = NM be a parabolic corresponding to 9 C A (1.1). If a is 
one of the simple roots in A\9, then there is a unique parabolic of rank 
one less than P and containing P which corresponds to the maximal split 
torus Pl/^e ker fi P\ ker a; we shall denote it by P ' , or if necessary, by Pa­
in this case P r\ M' is then a parabolic subgroup of the group M', of 
rank 1, which we denote by *P. 

1.2. Suppose K is the maximal compact subgroup of G (A), chosen 
long ago. If we consider the group G (A) X K then it is apparent that 
the apparatus we have developed in earlier chapters can easily be adapted 
to this group. Here G{F) X {1} is the discrete group, and for "parabolics" 
we take subgroups of the form P(A) X K\ all the relevant function 
spaces can be defined much as before. This however will become more 
evident as the discussion proceeds. 

Let P' be as above, then G (A) = P'(A)K. If 0 is a function on G (A) 
we can define a function <£ on P' (A) X K by 

which of course defines a function $ on M'(A) X K; this function is right 
invariant by the group 

Ko = {(*', k)\k G P ' l A J H Z , k' = image of k in M '(A)}. 

Conversely a function <£ invariant under right translations by Ko gives 
rise to a function on iV /(A)\G(A). Now suppose that 

0 G ^o(P,iT,cofôP) . 

Then the function $ constructed above has the following properties. 
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(i) 0 is a measurable function on *N(A)*P(F) X {1}\M'(A) X K. 
(ii) For each (z, 1)2 € Z+M(A), 

0((ra, k)(z, 1) = cofoP(s)0(w, k). 

We observe here that *M = Af. 
(Hi) If k, Ç f W ^ ^ _ 1 ^ M'(A), &2 G f W ^ , ^ ~ 1 then 

f(mki, kk2) = #(w, k) each (ra, fe) G AT (A) X X. 

We observe here that D^K kK'k~l is a subgroup of finite index in K. 
(iv) There is an analogous cusp form condition on M° X K 

(v) I I |<f(w',*)|2«p"2(w')|r2 |(w /)rfw /d*<oo. 
•/ x J ^N(K)^P(F) ZM(A)\M' (A) 

Conversely, such a function <£ satisfying conditions (i)-(v) above gives 
rise to a function cf> Ç ^o(-F\ .K7, cofôp). 

2. The case of a reflection. 

2.1. Let P, 9 be as above, and P' the parabolic subgroup corresponding 
to 9 \J {a} = ^ as before. In 1.1.8 we constructed an element 5 = w0 = 
î^^^eî the proof of Proposition 1.1.8 implies that s (9) > 0 but s (a) < 0. 
Moreover in Proposition 1.3.3 we showed that if 9 ' was arbitrary then 
any w £ W(Q, 9') could be written (not necessarily uniquely) in the form 
snsn-i . . . 5i where each st was a w0 with respect to some ^ . Let us call 
such St reflections, by analogy with the usual case. We are going to show 
in this section that if 5 is a reflection then E(g, <£$•) is meromorphic on a 
certain convex hull related to 5 and that on this same set 

(2.1.1) E(g,N(s,t)*t) = E(g, * r ) . 

Moreover we shall show that the constant term EQ(g, <£>$•) is given by the 
expression in (2.3.1) on this set, and that if t £ W(Q, 9') is any element, 
then 

M(t,st)M(s,t) = M(/5,f). 

The general case will be shown to follow easily from such reflections in 
Section 3. 

2.2. We begin with some remarks of a general nature, which will be 
formalized in the sequel. Let P be a parabolic, P = NM, and let P Ç Q == 
NQMQ; then P C\ MQ is a parabolic subgroup of the group MQ. Let us 
write *P for this last parabolic subgroup so that +P = *N*M. The group 
XM (R) can be identified with the homomorphisms 

X:Z(A)ZM(F)\ZM(A)-*R+*. 

Similarly the group Xx{/M(R) can be identified with the group of quasi-
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characters 

X : ZMQ(A)Z,M(F)\Z,M(A) -+R+*. 

The group XMQ(R) = XM'(R) can be identified in the same way as 
XM(R). By means of these identifications we get a projection 

p:XM(R)->+XM'(R). 

If j : XM'(R) X XM(K) is the natural injection mentioned in 1.2.3, then 
p .j = id, and the complement of ^ ^ ' ( R ) in XM(K) can be identified 
with Xj,M(R) in a natural way. We write f = *f + f to denote this 
splitting. Note that 

<X,j*HM,(g)) = (jx,HM,(g)). 

2.3. Now fix P , 9, P ' , a, ^ as in 2.1. We shall need a lemma which is a 
simple variant of 2.2.2. To avoid unnecessary notation we shall write 
e(x) for the expression exp ((log q)x). We also write *W(P, Q) for the set 
of elements of Mr{F) which send MP = M+p to MQ = M^Q\ in particular 
an element of ^W(P, Q) fixes ZM>(A) pointwise. 

LEMMA, (i) Let <f> : N' (A)P' (F)\G(A) —> C fre a function which satisfies 

\<t>{m'k)\ g <*«#*(*»'), *X» 

whenever m' Ç *©, k (z K, where *© w a Siegel domain for Mf (A) with 
respect to *P0 = P 0 H .M'. P/zew /&e ^r iw 

converges absolutely provided that Re X Ç CP + 25 P. 
(ii) Suppose that <t> is as above except that 

\4>(m'k)\ ^ c{e((HM(m'), *X + *8P)) 

+ e((HMQ(m'),s+\+ *BQ))} 
Q G jP},5 e *W(P,(?). rfeen 

£ 0(7g)e«#M<(7g), X' + V » 
P'(F)\(?(F) 

converges absolutely provided that Re X belongs to the convex hull of 

(S-^CQ + 2ôQ) - dP) H s~l(CQ + 5Q) and 

{CP + op) C\ (CP + 2ôp - S-'ÔQ). 

Proof. Of course we may suppose that the constant c = 1 for the pur­
pose of argument, and that X is real. 

(i) If m' e *©,& G X t h e n 

|0(ro'*)| £e((HM(m'),*\)) 
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implies that if g = yn'm'h with y € M'(F), ri € iV'(A), m' 6 *&, then 

|*(g)| £ e«ffM(g), *X» 

because HM (g) = HM(m'). Now 

7€P(F)\P ' (F) 

so that 

e « f ^ ( g ) , X' + *X» ^ e « ^ ( g ) , X')) D e((HM(yg), *X». 
P(F) \P ' (F) 

It follows that 

y£P'(F)\G(F) Ô£P(F)\G(F) 

because 

<ffM'(7g), V> = (HM(yg), V) and X = *X + X'. 

Since the right hand side converges by 2.2.2, the result follows. 
(ii) Our framework implies that the inequality in the lemma can be 

written 

|*(m'*)| S e((HM(m'), *X + +5P)) + e((HMQ(m'), s*\ + *ôQ)) 

where Q is the parabolic subgroup of G such that Q P\ M' corresponds to 
the conjugate oi P C\ M' (see 1.1.8 for the terminology) ; thus +W(P, Q) 
= {s}, +W{P) = {1}. Suppose first that 

X G s~l(CQ + 2bQ) - bP. 

Write 

sX = v + 2b Q — sôP; 

the first term on the right hand side of the inequality can be written 

e(HMQ(m'), *v + 2bfQ) 

and summing twice over successive cosets we find 

E e((HM.(ôg),\' + ÔP,)) E e((HJtQ(ydg),*v + 2SfQ)) 
6ÇP'(F)\G(F) Q(F)\P'(F) W 

= E e((HM (yg), v' + 2hP, + *v + 28* » , (X' = v' + «,,) 
Q(F)\G(F) 

for the same reasons as in (i). The quasicharacter on the right hand side 
is just v + 25 Q, so the series converges by 2.2.2 again. As for the second 
term on the right hand side of the inequality, if X G s~l{CQ + bQ) it 
follows easily as in (i) that proceeding as above we obtain a series which 
converges by 2.2.2. Thus if 

X G (S-^CQ + 2bQ) - dp) H s-l(CQ + ÔQ) * 0 
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then the series in the statement of the lemma part (ii) will converge 
absolutely. Similarly if 

x e (cP + ÔP) n ((cP + 2ÔP) - S-'ÔQ) ^ 0 

the statement in the lemma holds true, and using convexity of the 
exponential function the general case follows. 

2.4. Let $ £ &o(P, K', cof5P) ; we may write this in the form 

with 

*'(g) =e(HM,(g),-Ç' -ôP,)$(g)-

The function <£' is again a function on Nf (A)P' (F)\G(A) and it trans­
forms on ZM>(A) via the character co. The Eisenstein series E(g, $) can 
be written 

(2.4.1) £ ( g , * ) = £ «<ff* ' (*g),f+ *P'> E *'(7««). 
P'(F)\G(F) P(F)\P'(F) 

The second sum on the right can be identified with an Eisenstein series 
E(m', k), «I') arising from 

|>> : (*P(F)*JV(A)\M'(A)) X I - ^ C 

which transforms via the character co on ZM>{A) X {1}. We are going 
to apply 2.3 (ii) to the function E(g, $') on N'(A)P'(F)\G(A) which 
corresponds to E((ra', fe), <£'); we know that {*P) consists of just two 
elements *P, *Q, and *W(P, Q) consists of a unique element, namely s. 
We also know that on the Siegel domain *©, any reasonable function 
becomes equal to the appropriate constant term if one goes far enough 
in the appropriate direction (1.5.9). 

Let ĉo = o)\z, (A), and co' = co|z (A) SO that *œ is a character of 
Z^M{A) which prolongs co': there is a connected component of Z)^M(co') 
in which ĉo lies. In view of what we know about the Eisenstein series in 
one variable, we can choose a polynomial p{*Ç) so that 

p(*Ç)E(m',k), «I') and 

p(^)E^Q((m,
1 k), !>'), p(n)E*p({rn', k), !>') 

are holomorphic on this connected component of D^M(œf) (in fact, on 
each connected component of D+M(œ')). Let U be a bounded subset of 
this component, then 2.4.8 and the results of 3.5.2 together with the 
above remarks imply that for *f £ U, m! G *@ and k £ K, we have 

(2.4.2) | £ ( * ( f ) ) £ ( « *), l>')| ^ c(xi + e(HM(m'), *Ç + *ôP) 

+ e(HMQ(rn'),sn+ **Q) 

where c is some positive constant and xi is the characteristic function of 
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a set of the form S X K where S C ^© is compact modulo ZM>(A). We 
can ignore xi in the application of 2.3 (ii) because of this last property; 
applying the lemma we find that the expression (2.4.1) multiplied by 
p(*Ç) converges absolutely provided f lies in the convex hull alluded to 
in 2.3 (ii). This implies that E(g, <£) is meromorphic on this set. In fact, 
we can do better: if f belongs to the convex hull of 2.3 (ii) and if M(s, *f ) 
is analytic at *f, then the expression on the right hand side of (2.4.1) will 
converge absolutely. This is simply because we shall obtain the estimate 
(2.4.2) without p{*Ç) in this case, by using the same arguments. It is a 
straightforward matter to verify that for Re f £ CP + 8P we have 

N(s, r ) $ r = e(HMQ( ) , r' + 8P.)N(s, *f)$ r ' ; 

for this we refer the reader to e.g. [11] Lemma 108. This provides us with 
an analytic continuation of M(s, f). Moreover, on the convex hull of 
2.3 (ii) we have the functional equation 

£(&#(*, r)*, 'f) = E(g, *r) 

simply because this relation holds in the one variable case. 
Finally, we note that by uniqueness of analytic continuation all our 

functions are invariant by the lattice \LZM. 

2.5. Let $ £ ^ 0 ( P , K', coop), and let R be any element of {P\ ; if 
Re f G CP + op, then E*(g, $f) is equal to 

E e(HMR(g), wC)M(w, f)$(g) = £ N(w, f)* r(g). 

By analytic continuation this relation persists on the convex hull of 
2.3 (ii). Substitute the functional equation that we have into EB(g, $$•) 
to obtain 

£ N(w, sÇ)N(s, r)<E>r = E N(ws, f ) $ f . 

This means that 7V(w, sf) N(s, f) = N(ws, f), and we have now proved 
everything claimed in 2.1. 

3. The general case. 

3.1. Let w be any element of W(P,R),R £ {P}. In 1.3.3 we showed that 
w = wn . . . Wi where each wt had the form given in the preceding sec­
tion. Suppose n — \ for the moment. In 2.4 we observed that 

N(w, f)$ r = e(HMQ( ), f + «p-W», *f)#r'; 

consequently, M(ze/, f) "depends" only on a single variable, and extends 
to a rational function. Moreover, we now know that on the convex hull 
in 2.3 (ii), that for n > 1, 

M(w, r) = M(wn, . . . , w2j Wif)M(wi, f). 
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By induction, both expressions on the right are meromorphic functions 
on iLzM\XM(C), so that the left side admits an analytic continuation. 

To obtain the functional equation, proceed by induction again: 

M(tw, f) = M{twn . . . wlt r) = M{twn . . . w2, wif )M(wi, f) 

from Section 2. Now 

M(twn . . . w2l wtf) = M(t, wn. . . w2w^)M{wn . . . w2l Wif), 

by induction so that 

M O , f) = M(t, w£)M(wn . . . ^2, Wif)M(wi, f) 

= M(*, wf)Af(w, f), 
by Section 2 again. 

3.2. Let us agree to define a hyperplane to be the image in ILZM\XM(C) 

of a hyperplane in XM(C)\ we shall now show that the singularities of 
M(w, f ) lie along a finite number of hyperplanes. If w = wTO . . . Wi as 
above and « = 1, this is certainly true. In general, 

M O , f) = M(wn • • • w2, Wif)M(wi, r) 

and we conclude by induction. 

3.3. Suppose t h a t / : XLZM\XM(C) —> V is a function with values in a 
finite dimensional complex inner product space, whose singularity set is 
contained in a finite set of hyperplanes. Let us say t h a t / is rational if we 
can find coordinates Si, . . . , sn for XM(C) such that 

(su . . . , $ „ ) - » (q81, . • • , gSw) 

is a isomorphism of LZM\XM(C) onto (C*)n, and a polynomial 
p(zi, . . . , zn) where zt = qSi such that for each v, w Ç W, the map 

(zi, . . . , zB) ->p(zu . . . , 2n) (/Oi, . . . , 2n)»f w) 

is a polynomial. It is evident that if/ is rational for one basis of XM(C), 
it is rational for any other. 

Write 

M(w, f) = M ( w > i f ) ¥ ( w i , f ) 

where w = w'^i as above. Let us indicate how to choose coordinates so 
that M(w, f ) is rational. Suppose w = w2Wi, where the wt are reflections. 
Suppose that W\ corresponds to the root a, and w2 to the root ft, and write 

M(w, f ) = M(w2, wrf )M(«/i, f). 

We know that wtf = f' + Wi*f (using the notation of Section 2). 
From 3.1 we see that we can pick a variable si so that *f corresponds to 
si and Wî i = — si. From this we see that M(w2j w^) is a rational func-
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tion for a suitable choice of coordinates, and that M(wh f ) is a rational 
function for another choice of coordinates. The remark above concerning 
preservation of rationality under change of basis then implies M(w, f ) is 
also a rational function. In general, if w = wn . . . Wi, we write 

M(w, f) = M(wn, wn_x . . . w2wif )M(wn_u wn_2 • • • wif ) 

• . . M(wlf f ) 
and argue as above to show that Af (w, f ) is rational. 

3.4. Finally, we argue as Harder does in [10] Theorem 1.6.6 (see 2.4.8) 
to see that the analytic behaviour of E(g, <£$•) is no worse than that of 
M(w, f), that E(g, 3>f) can be analytically continued to a rational func­
tion on each component of DM(£), and that it satisfies the requisite 
functional equations. 
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