Bull. Aust. Math. Soc. **83** (2011), 231–240 doi:10.1017/S0004972710001735

ON λ-STRICT IDEALS IN BANACH SPACES

TROND A. ABRAHAMSEN[™] and OLAV NYGAARD

(Received 10 May 2010)

Abstract

We define and study λ -strict ideals in Banach spaces, which for $\lambda = 1$ means strict ideals. Strict u-ideals in their biduals are known to have the unique ideal property; we prove that so also do λ -strict u-ideals in their biduals, at least for $\lambda > 1/2$. An open question, posed by Godefroy *et al.* ['Unconditional ideals in Banach spaces', *Studia Math.* **104** (1993), 13–59] is whether the Banach space X is a u-ideal in Ba(X), the Baire-one functions in X^{**}, exactly when $\kappa_u(X) = 1$; we prove that if $\kappa_u(X) = 1$ then X is a strict u-ideal in Ba(X), and we establish the converse in the separable case.

2000 *Mathematics subject classification*: primary 46B20. *Keywords and phrases*: strict ideal, u-ideal, *VN*-subspace.

1. Introduction

In this paper we restrict ourself to working with real Banach spaces, although many of the results will also hold in the complex case. Let *Y* be a Banach space. Recall that a (not necessarily) closed subspace *X* of *Y* is called an ideal if there is a normone projection *P* on *Y*^{*} with kernel X^{\perp} (such a *P* is called an ideal projection on *Y*^{*}). When *X* is an ideal in *Y* we have $Y^* = X^{\perp} \oplus P(Y^*)$, where the range of *P* is isometrically isomorphic to *X*^{*}. The concept of an ideal was introduced by Godefroy *et al.* in their seminal paper [5].

Let *X* be a closed subspace of a Banach space *Y*. Given a projection *P* on *Y*^{*} with kernel X^{\perp} , then we can define an operator $T: Y \to X^{**}$ by

$$\langle Ty, (i_X)^*y^* \rangle = \langle Py^*, y \rangle$$

where $y \in Y$, $y^* \in Y^*$, and where $i_X : X \to Y$ is the natural embedding operator. The fact that *T* is well defined follows since the kernel of *P* is X^{\perp} . Since *P* is linear, *T* also is, and $||T|| \le ||P||$ so *T* is bounded. Note also that Tx = x for every $x \in X$. Hence *T* is an extension of k_X , the canonical embedding of *X* into its bidual. Note that *T* is one-to-one if and only if $P(Y^*)$ is weak* dense in Y^* .

Let $0 \le \lambda \le 1$ and X be an ideal in Y with an ideal projection P on Y^{*}. If $P(Y^*)$ is weak^{*} dense in Y^{*}, we will say that X is a λ -strict ideal in Y if $P(Y^*)$ is λ -norming

^{© 2010} Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

for *Y*, that is,

$$\sup_{y^* \in Y^*, \|Py^*\|=1} |Py^*(y)| \ge \lambda \|y\| \quad \text{for all } y \in Y.$$

When X is a 1-strict ideal in Y we simply call X a strict ideal in Y, as in [5] and later papers. In [5, 10] it is observed that X is a strict ideal in Y if and only if T is isometric. Thus k_X extends to an isometry on Y exactly when X is a strict ideal in Y.

The paper is organized as follows. In Section 2 we study λ -strict ideals in general. We will show that when X is a λ -strict ideal in Y for some $\lambda > 0$, k_X extends to an isomorphism on Y and $P(Y^*)$ automatically gets a slightly stronger property than being λ -norming (namely weak* thickness) (Proposition 2.1). An application of this result (Corollary 2.2) is also given. Then we let $Y = X^{**}$ and show, in Theorem 2.5, that if every norm-preserving extension T of k_X to X^{**} is injective, then the only possible norm-preserving extension of k_X to X^{**} is the identity on X^{**} .

In Section 3 we turn our attention to λ -strict u-ideals. Recall that a space X is called a u-ideal in Y if X is an ideal in Y with an ideal projection P on Y* with ||I - 2P|| = 1. If in addition the range of this P is λ -norming for Y, X is called a λ -strict u-ideal in Y. First we extend the known result that proper strict u-ideals contain a copy of c_0 to λ -strict u-ideals, for $\lambda \ge 0$. Then we turn to the special case when $Y = X^{**}$ and show that three known results valid for strict u-ideals are valid for λ -strict u-ideals as well, as soon as $\lambda > 1/2$ (Proposition 3.3, Theorem 3.5 and Corollary 3.6).

In many cases (typically when ℓ_1 is involved) it is interesting to let Y = Ba(X), the Baire-one functions in X^{**} . In Section 4 we concentrate on studying when X is a strict u-ideal in Ba(X). Building on arguments of Godefroy *et al.* and combining with one of the results that we extended in Section 3, we examine [5, Question 9] (Theorem 4.2). As a consequence of this we obtain, in Corollary 4.4, a sufficient condition for a separable X to be a strict u-ideal in Ba(X) when X is a u-ideal in Ba(X).

Our notation is mostly standard. When some notation or term is used which we do not think is standard or self-explanatory, we explain its meaning there and then.

The reader will surely observe that some of our proofs could have been simplified and some results could have been strengthened by using [2, Proposition 2.26(b)]. However, it seems that there is a gap in the proof of that result, and thus we have not used it.

2. λ -strict ideals

Let X be a closed subspace of a Banach space Y with $P(Y^*)$ weak* dense in Y*. Recall that we call X a λ -strict ideal in Y if $P(Y^*)$ is λ -norming for Y, $0 \le \lambda \le 1$.

Recall (see, for example, the survey paper [12]) that a set A in Y^* is weak^{*} thick if it has the following boundedness deciding property: whenever a sequence $(y_n) \subset Y$ is pointwise bounded on A, it is bounded in norm in Y.

PROPOSITION 2.1. Let X be a closed subspace of Y and P a projection on Y^* with kernel X^{\perp} . Then the following conditions are equivalent.

- (a) $P(Y^*)$ is λ -norming for some $0 < \lambda \le 1$.
- (b) $P(Y^*)$ is weak^{*} thick.
- (c) *T* is an isomorphism.

PROOF. (a) \Leftrightarrow (c). Statement (a) holds if and only if there exists $0 < \lambda \le 1$ such that, for every $y \in S_Y$,

$$\lambda < \sup_{\|Py^*\|=1} |\langle Py^*, y \rangle| = \sup_{\|(i_X)^*y^*\|=1} |\langle (i_X)^*y^*, Ty \rangle|.$$

This again is equivalent to T being an isomorphism.

(b) \Rightarrow (a). This is clear from the definition of weak^{*} thickness.

(c) \Rightarrow (b). Suppose that $(y_n) \subset Y$ is pointwise bounded on $P(Y^*) \cap B_{Y^*}$, that is,

$$\infty > \sup_{n} |\langle Py^*, y_n \rangle| = \sup_{n} |\langle (i_X)^*y^*, Ty_n \rangle|$$

for every $y^* \in Y^*$ with $||Py^*|| = 1$. Then (Ty_n) is pointwise bounded on B_{X^*} and from the uniform boundedness principle (Ty_n) has to be bounded in X^{**} . Since *T* is an isomorphism, (y_n) must also be bounded.

Let us give an application. Recall first that a Banach space X is co-reflexive if the quotient X^{**}/X is reflexive.

PROPOSITION 2.2. Let X be a λ -strict ideal in Y for some $\lambda > 0$. If X is co-reflexive, then Y/X is reflexive.

PROOF. From Proposition 2.1 the operator $T : Y \to X^{**}$ corresponding to the ideal projection on Y^* in this case is an isomorphism. Now introduce a mapping $S : Y/X \to X^{**}/X$ by S[y] = [Ty] for all cosets [y] in Y/X. *S* is well defined and linear. It is also straightforward to show that *S* is an isomorphism. Thus Y/X is reflexive since S(Y/X) is a subspace of X^{**}/X , which is reflexive by the co-reflexivity of *X*. \Box

REMARK 2.3. In the proof of Proposition 2.2 we used the fact that the operator S is an isomorphism. Actually, it is straightforward to show that S is an isomorphism if and only if T is.

Let X be a closed subspace of Y and $\mathcal{L}(Y, X^{**})$ the space of bounded linear operators from Y to X^{**} . Denote by $\mathcal{E}(Y, X^{**})$ the set

$$\{T \in \mathcal{L}(Y, X^{**}) : Tx = x \ \forall x \in X, \|T\| = 1\}$$

of norm-preserving extensions to *Y* of the canonical embedding k_X of *X* into its bidual. Note that the connection

$$\langle Ty, (i_X)^* y^* \rangle = \langle Py^*, y \rangle$$

for all $y \in Y$, $y^* \in Y^*$, where *P* is an ideal projection on Y^* , puts $\mathcal{E}(Y, X^{**})$ in a one-to-one correspondence with the set of all ideal projections on Y^* .

From now on, and throughout the section, we study the particular case when $Y = X^{**}$. Define an order relation \leq on $\mathcal{E}(X^{**}, X^{**})$ by $U \leq V$ if $||Ux^{**}|| \leq ||Vx^{**}||$ for every $x^{**} \in X^{**}$. Elements of minimal order in $(\mathcal{E}(X^{**}, X^{**}), \leq)$ are denoted by $\mathcal{M}(X^{**}, X^{**})$.

The following result and argument are implicit in [4, Theorem III.1].

PROPOSITION 2.4. The set $\mathcal{M}(X^{**}, X^{**})$ is nonempty and consists of projections.

PROOF. By using Zorn's lemma one can verify that $(\mathcal{E}(X^{**}, X^{**}), \leq)$ contains a minimal element *P*, so $\mathcal{M}(X^{**}, X^{**})$ is nonempty. Since *P* is minimal and ||U|| = 1 for all $U \in \mathcal{E}(X^{**}, X^{**})$ we have $||UPx^{**}|| = ||Px^{**}||$ for all $U \in \mathcal{E}(X^{**}, X^{**})$ and all $x^{**} \in X^{**}$. Applying this observation to

$$U_n = \frac{1}{n} \left(\sum_{i=1}^n P^i \right),$$

which by convexity is in $\mathcal{E}(X^{**}, X^{**})$, gives

$$\|(U_n P^2 - U_n P)x^{**}\| = \|U_n P(Px^{**} - x^{**})\|$$

= $\|P(Px^{**} - x^{**})\|$
= $\|P^2x^{**} - Px^{**}\|.$

Since

$$U_n P^2 - U_n P = \frac{1}{n} (P^{n+2} - P^2),$$

we get that $||P^2x^{**} - Px^{**}|| \le 2/n$ for all $n \ge 1$. It follows that P is a projection. \Box

Using Proposition 2.4, we now easily obtain the following result.

THEOREM 2.5. If every $T \in \mathcal{E}(X^{**}, X^{**})$ is one-to-one, then $\mathcal{E}(X^{**}, X^{**}) = \{I_{X^{**}}\}$, where $I_{X^{**}}$ is the identity on X^{**} .

PROOF. Since a projection is one-to-one only if it is the identity, $\mathcal{M}(X^{**}, X^{**}) = \{I_{X^{**}}\}$. Thus we are done if we can show that $\mathcal{E}(X^{**}, X^{**}) = \mathcal{M}(X^{**}, X^{**})$. To this end let $S, T \in \mathcal{E}(X^{**}, X^{**})$ and suppose that $S \leq T$. Now, since $||SI_{X^{**}}x^{**}|| \leq ||I_{X^{**}}x^{**}||$ for all $x^{**} \in X^{**}$, we have $||Sx^{**}|| = ||x^{**}||$ by minimality of $I_{X^{**}}$. Thus $||Tx^{**}|| \leq ||x^{**}|| = ||Sx^{**}||$ for all $x^{**} \in X^{**}$ so $S \geq T$, and we are done.

In other words, if whenever X is placed in X^{**} as an ideal and it sits there as a λ -strict ideal, then the natural way (using the Dixmier projection) is the only way. A similar result will be obtained in Corollary 3.6.

3. λ -strict u-ideals

Recall that X is a u-summand in Y if X is the range of a norm-one projection P on Y with ||I - 2P|| = 1. If the range of an ideal projection P on Y* is a u-summand in Y*, then X is a u-ideal in Y. We call such an ideal projection P on Y* a u-projection and the corresponding $T \in \mathcal{E}(Y, X^{**})$ an unconditional extension operator. Note that a u-projection is always unique [5, Lemma 3.1] (see also [1, Proposition 4.2]). An equivalent formulation of an operator P being a u-projection is that, whenever $z^* \in X^{\perp}$ and $y^* \in Y^*$, then $||z^* + Py^*|| = ||z^* - Py^*||$.

235

We start with a result on λ -strict u-ideals which is known for strict u-ideals (see [10, Theorem 2.7]).

PROPOSITION 3.1. Let $0 \le \lambda \le 1$. Proper λ -strict u-ideals must contain an isomorphic copy of c_0 .

PROOF. Let X be a proper λ -strict u-ideal in Y with u-projection P and Suppose that X does not contain a copy of c_0 . Since X is a u-ideal in Y, by [5, Theorem 3.5], X has to be a u-summand in Y. Thus P is weak* continuous, hence onto Y* since X is λ -strict. This contradicts the assumption that X is a proper subspace of Y.

In the remaining part of this section we will make use of another equivalent formulation of an ideal: let X be an ideal in Y with corresponding projection P: $Y^* \to Y^*$. Then Py^* is a norm-preserving extension of the restriction $y^*|_X \in X^*$. This induces a linear extension operator (a Hahn–Banach extension operator) $\varphi : X^* \to Y^*$, depending on P. Conversely, if $\varphi : X^* \to Y^*$ is a Hahn–Banach extension operator, then φ induces an ideal projection P_{φ} . The correspondence $\varphi \leftrightarrow P_{\varphi}$ is given by $P_{\varphi} = \varphi(i_X)^*$. It is helpful to observe that $(i_X)^*$ is simply the linear operator from Y^* to X^* that restricts $y^* \in Y^*$ to X.

Let $\mathbb{B}(X, Y)$ (as usual) denote the set of norm-preserving linear extension operators from X^* into Y^* . Of course, X is an ideal in Y if and only if $\mathbb{B}(X, Y) \neq \emptyset$. If $\varphi \in \mathbb{B}(X, Y)$ corresponds to a projection P_{φ} which makes X a λ -strict ideal in Y, we call $\varphi \lambda$ -strict. Moreover, if the ideal projection P_{φ} in addition makes X a u-ideal in Y, φ is called unconditional λ -strict.

Here is another result known for strict u-ideals that extends to λ -strict u-ideals.

PROPOSITION 3.2. Let X be a u-ideal in Y and $0 \le \lambda \le 1$. Then X is a λ -strict u-ideal in Y if and only if X is a λ -strict u-ideal in $Z = \text{span}(X, \{y\})$ for every $y \in Y$.

PROOF. Since *X* is a u-ideal in *Y*, *X* is a u-ideal in *Z* by local characterization of u-ideals [5, Proposition 3.6]. Denote by P_Z and P_Y respectively the u-projections on Z^* and Y^* , and by $T_Z \in \mathcal{E}(Z, X^{**})$ and $T_Y \in \mathcal{E}(Y, X^{**})$ the corresponding unconditional extension operators. Now, from [9, Lemmas 2.2 and 3.1], $T_Y|_Z = T_Z$. By Proposition 2.1, the result follows for $\lambda > 0$. For $\lambda = 0$ one only needs to recall from the introduction that the range of an ideal projection is weak* dense if and only if the corresponding extension operator is one-to-one.

When X is a u-ideal in Y there is a unique ideal projection making it a u-ideal, but there may very well be other ideal projections for which X is an ideal. The next proposition shows that in some cases, the possible other ideal projections at least do not make X a 1-complemented subspace in Y. This result is similar to [10, Proposition 2.5]; we state it in the more general setting of λ -strict u-ideals.

PROPOSITION 3.3. If X is a proper λ -strict u-ideal in Y for some $\frac{1}{2} < \lambda \leq 1$, then every $T \in \mathcal{E}(Y, X^{**})$ is one-to-one. In particular, if P is a projection of Y onto X, then ||P|| > 1.

PROOF. Let $\varphi \in \mathbb{B}(X, Y)$ be unconditional with corresponding unconditional $T_{\varphi} \in \mathcal{E}(Y, X^{**})$. Choose $\psi \in \mathbb{B}(X, Y)$ with corresponding $T_{\psi} \in \mathcal{E}(Y, X^{**})$. Then, by [1, Proposition 2.2], φ is the center of symmetry in $\mathbb{B}(X, Y)$, so $2\varphi - \psi \in \mathbb{B}(X, Y)$. Thus $||2T_{\varphi} - T_{\psi}|| \le 1$. Let $0 \ne y \in Y$. Then

$$||T_{\psi}(y)|| \ge 2||T_{\varphi}(y)|| - ||(2T_{\varphi} - T_{\psi})(y)|| \ge (2\lambda - 1)||y|| > 0.$$

Hence $T_{\psi} \in \mathcal{E}(Y, X^{**})$ is one-to-one and thus not onto X. The last part follows since left composition of every norm-one projection P on Y onto X with k_X is in $\mathcal{E}(Y, X^{**})$.

Using Proposition 3.3 we can observe that the known result (see [10, Proposition 2.5] and the remark thereafter) that dual spaces never can be strict u-ideals in their biduals can be pushed further to conclude that they never can be λ -strict u-ideals for $\lambda > 1/2$. Similar to [10, Corollary 2.6], we actually get that a dual space never can be a λ -strict u-ideal for $1/2 < \lambda \le 1$ in any superspace.

COROLLARY 3.4. If X is a u-ideal in Y and X is 1-complemented in its bidual, then X is not a λ -strict u-ideal in Y for any $1/2 < \lambda \leq 1$.

PROOF. The argument is similar to the proof of [10, Corollary 2.6] except that Propositions 3.3 and 3.2 are used instead of [10, Propositions 2.5 and 2.1]. \Box

An ideal X in Y has the *unique ideal property* in Y if $\operatorname{IB}(X, Y)$ consists of a singleton, that is, there is only one ideal projection for which X is an ideal in Y. A subspace X of a Banach space Y is said to be a *very nonconstrained subspace* (*VN*-subspace) in Y if, for all $y \in Y$,

$$\bigcap_{x \in X} B_Y(x, ||y - x||) = \{y\}.$$

The notion of a *VN*-subspace was introduced in [2] where it is shown (see [2, Theorem 2.12]) that the above definition is equivalent to the condition that, for all $y \in Y \setminus X$,

$$\bigcap_{x\in X} B_X(x, \|y-x\|) = \emptyset.$$

It is known that strict u-ideals in their biduals have the unique ideal property [10, Remark 2.1]. A consequence of Proposition 3.3, Theorem 2.5, and the following result is that this is also true for λ -strict u-ideals in their biduals whenever $\lambda > 1/2$ (see Corollary 3.6).

THEOREM 3.5. Let $\frac{1}{2} < \lambda \leq 1$. Then λ -strict u-ideals are VN-subspaces.

PROOF. Let X be a closed subspace of Y and $y \in Y \setminus X$. Now, $X \cap \bigcap_{x \in X} B_{X^{**}}(x, ||y - x||) = \emptyset$. Otherwise this would define a norm-one projection P on span(X, {y}) onto X by P(ay + x) = aPy + x, where Py is some element in $X \cap \bigcap_{x \in X} B_{X^{**}}(x, ||y - x||)$. But this contradicts Proposition 3.3. It follows that $\bigcap_{x \in X} B_X(x, ||y - x||) = \emptyset$, and thus X is a VN-subspace of Y.

COROLLARY 3.6. Let X be a Banach space and let the Dixmier projection on X^{***} be denoted by π .

- (a) If, whenever $P: X^{***} \to X^{***}$ is an ideal projection on X^{***} with ker $P = X^{\perp}$, PX^{***} is weak* dense in X^{***} , then X has the unique ideal property in X^{**} .
- (b) Let $\frac{1}{2} < \lambda \le 1$. If X is a λ -strict u-ideal in X^{**}, then X has the unique ideal property in X^{**}; moreover, $||I_{X^{***}} 2\pi|| = 1$.

Note that (a) can be used in combination with Proposition 3.3 to obtain (b).

4. When X is a u-ideal in Ba(X)

Let Ba(X) denote, as usual, the Banach space of elements in X^{**} of the first Baire class, that is, the set of $x^{**} \in X^{**}$ which are weak^{*} limits of sequences from X.

The number $\kappa_u(X)$ is defined on [5, pp. 22–23]. We repeat the definition here for convenience: for each $x^{**} \in X^{**}$ define $\kappa_u(x^{**})$ to be the infimum over all *a* such that $x^{**} = \sum_n x_n$ in the weak* topology of X^{**} , with $x_n \in X$ and such that for any $n \in \mathbb{N}$ and $\theta_k = \pm 1$ for $1 \le k \le n$, we have $\|\sum_{k=1}^n \theta_k x_k\| \le a$. Put $\kappa_u(x^{**}) = \infty$ if no such *a* exists. Recall that *X* has property (u) if every $x^{**} \in Ba(X)$ has $\kappa_u(x^{**}) < \infty$. In this case it follows from the closed graph theorem that there exists a constant *C* such that $\kappa_u(x^{**}) \le C \|x^{**}\|$ for all $x^{**} \in Ba(X)$. The smallest such constant is $\kappa_u(X)$.

The following proposition will be used to prove Theorem 4.2.

PROPOSITION 4.1. Let X be a separable u-ideal in Ba(X) with corresponding unconditional $T \in \mathcal{E}(Ba(X), X^{**})$. Assume that X is also a VN-subspace in Ba(X). Then $T(Ba(X)) \subset Ba(X)$. In fact, $T = id_{X^{**}}|_{Ba(X)}$.

PROOF. Since X is separable there is a sequence $(x_i^*)_{i=1}^{\infty} \subset S_{X^*}$ such that $M = \overline{\text{span}}\{x_i^*\}$ is 1-norming for X. Let $x^{**} \in \text{Ba}(X)$ with $||x^{**}|| = 1$ and put

$$A_n = \left\{ x \in X : |Tx^{**}(x_i^*) - x(x_i^*)| < \frac{1}{n}, i = 1, 2, \dots, n \right\}.$$

Note that A_n is convex and nonempty and that $Tx^{**} \in H_n$, the weak* closure of A_n in X^{**} , for each *n*. Since *X* is a u-ideal in Ba(*X*), by [5, Lemma 3.4], for every $\varepsilon > 0$ there exists $\chi \in \bigcap_n H_n$ such that $\kappa_u(\chi) \leq ||x^{**}|| + \varepsilon$. In particular, $\chi \in Ba(X)$. Since $\chi \in \bigcap_n H_n$, $\chi(f) = Tx^{**}(f)$ for all $f \in M$.

Now take an arbitrary $x^* \in X^*$ and put $N = \text{span}\{M, \{x^*\}\}$. The same argument as above produces a Baire-one function $\chi_1 \in \bigcap_n H_n$ with $\chi_1(f) = Tx^{**}(f)$ for all $f \in M$ and $\chi_1(x^*) = Tx^{**}(x^*)$.

We now use the fact that X is a VN-subspace of Ba(X). By [2, Theorem 2.12, Lemma 2.10] $\chi_1 = \chi$ since ker $(\chi - \chi_1)|_X \subset X^*$ contains the norming subspace M. Since $\chi_1 = \chi$ for $x^* \in X^*$ we obtain $Tx^{**} = \chi \in Ba(X)$.

The final part of the proposition follows by [2, Proposition 2.26(a)].

Godefroy *et al.* [5, Question 9, p. 56] ask whether $\kappa_u(X) = 1$ if and only if X is a u-ideal in Ba(X). Note that if this is true, then it follows from the argument of the following theorem that X is a strict u-ideal in Ba(X) whenever it is a u-ideal in Ba(X).

THEOREM 4.2. Let X be a Banach space. If $\kappa_u(X) = 1$, then X is a strict u-ideal in Ba(X). If X is separable and X is a λ -strict u-ideal in Ba(X) for some $\frac{1}{2} < \lambda \leq 1$, then $\kappa_u(X) = 1$.

PROOF. Suppose that $\kappa_u(X) = 1$ and let $x^{**} \in Ba(X)$. Now choose a sequence (x_n) in X such that $s_n := \sum_{k=1}^n x_k \to x^{**}$ is weak* in X** and $\|\sum_{k=1}^n \theta_k x_k\| < \|x^{**}\| + \varepsilon$ for all *n* and $\theta_k = \pm 1$. Then

$$\|x^{**} - 2s_n\| \le \liminf_m \left\| \sum_{k=1}^m x_k - 2s_n \right\| = \liminf_m \left\| \sum_{k=1}^m x_k - 2\sum_{k=1}^n x_k \right\|$$

$$\le \liminf_m \left\| \sum_{k=1}^m \theta_k x_k \right\| \le \|x^{**}\| + \varepsilon.$$

Since the above inequality holds for every *n*, we get $\limsup_n \|x^{**} - 2s_n\| < \|x^{**}\| + 2\varepsilon$. Now, since the natural embedding $i_{Ba(X)}$ of Ba(X) into X^{**} is in $\mathcal{E}(Ba(X), X^{**})$, it follows from the above inequality in combination with [5, Lemma 2.2], that *X* is a u-ideal in Ba(X). Moreover, $i_{Ba(X)}$ is isometric, so *X* is indeed a strict u-ideal in Ba(X).

Assume that $\frac{1}{2} < \lambda \le 1$ and that *X* is a separable λ -strict u-ideal in Ba(*X*). Then, by Theorem 3.5, *X* is a *VN*-subspace in Ba(*X*). From the proof of 4.1 it follows directly that $\kappa_u(X) = 1$.

Our next result gives a condition for X to be a VN-subspace in Ba(X).

THEOREM 4.3. Let X be a Banach space. If $\kappa_u(X) < 2$, then X is a VN subspace in Ba(X).

PROOF. From [5, Lemma 6.3] it follows that ker x^{**} cannot be a 1-norming subspace of X^* for any $0 \neq x^{**} \in Ba(X)$. Using [2, Lemma 2.10, Theorem 2.12] it follows that the ortho-complement $\mathcal{O}(X, Ba(X))$, of X in Ba(X), is {0}. Thus X is a VN subspace of Ba(X).

The following result should be compared with [5, Theorem 7.5].

COROLLARY 4.4. Let X be a separable u-ideal in Ba(X) such that $\kappa_u(X) < 2$. Then $\kappa_u(X) = 1$ and X is a strict u-ideal in Ba(X).

PROOF. This follows from Theorem 4.3 and by an argument similar to the proof of Proposition 4.1. \Box

REMARK 4.5. From [5, Theorem 7.5] (see also [10, Corollary 2.10]) we know that strict u-ideals in their biduals do not contain copies of ℓ_1 . However, this is not the case for strict u-ideals in general. Indeed, let $X = \ell_1 \oplus_{\infty} c_0$. Since ℓ_1 has the Schur

239

property, $Ba(\ell_1) = \ell_1$, and therefore $Ba(X) = \ell_1 \oplus_{\infty} \ell_{\infty}$. Thus $\kappa_u(X) = \kappa_u(c_0) = 1$, and X is therefore a strict u-ideal in Ba(X) by Theorem 4.2. Note that X is a u-ideal, but not a strict u-ideal, in its bidual.

Note that if, in addition to the assumptions in Theorem 4.3, we assume that X does not contain a copy of ℓ_1 we get that $I_{X^{**}}$ is the unique extension of k_X to X^{**} . Indeed, by combining [5, Proposition 2.7, Lemma 5.3] with [6, Proposition 2.5] we arrive at the following result.

THEOREM 4.6. Let X be a Banach space which contains no copies of ℓ_1 and with $\kappa_u(X) < 2$. Then X is a VN-subspace in X^{**} . In particular, $\mathcal{E}(X^{**}, X^{**}) = \{I_{X^{**}}\}$.

REMARK 4.7. Both the James space *J* and the James tree space *JT* are separable dual spaces which contain no copies of ℓ_1 [7, 8]. Thus, by a result of Belobrov [3, Corollary 1], both $\mathcal{E}(J^{**}, J^{**})$ and $\mathcal{E}(JT^{**}, JT^{**})$ contain more than one element and from Theorem 4.6 it follows that both $\kappa_u(J) \ge 2$ and $\kappa_u(JT) \ge 2$.

In [5, Proposition 7.1] it is proven that if X contains no copies of ℓ_1 and is a u-ideal in its bidual with u-projection P on X^{***} , then $V = P(X^{***})$ is weak* dense in X^{***} . In Corollary 4.10 we will see that for a separable u-ideal in its bidual this happens exactly when ℓ_1 is not present.

PROPOSITION 4.8. Let X be a u-ideal in Y with u-projection P on Y^{*}. If X is a u-summand in $Z = \text{span}(X, \{y\})$ for some $y \in Y \setminus X$, then the unconditional $T \in \mathcal{E}(Y, X^{**})$ corresponding to P is not one-to-one.

PROOF. By [9, Lemmas 2.2 and 3.1], the unconditional $T_Z \in \mathcal{E}(Z, X^{**})$ is given by $T|_Z$. Since X is a u-summand in Z and the u-projection is unique, T_Z must be a projection. Thus T_Y cannot be one-to-one.

COROLLARY 4.9. Let X be separable u-ideal in its bidual containing a copy of ℓ_1 . Then $T \in \mathcal{E}(X^{**}, X^{**})$ corresponding to the u-projection on X^{**} is not one-to-one.

PROOF. By a result of Maurey [11], there is $x^{**} \in X^{**}$ such that $||x^{**} - x|| = ||x^{**} + x||$ for all $x \in X$. Thus X is a u-summand in $Z = \text{span}(X, \{x^{**}\})$. Indeed, let P be the natural projection from Z onto X. Then

$$||(I-2P)(rx^{**}+x)|| = ||rx^{**}-x|| = ||rx^{**}+x||,$$

so P is a u-projection. Using Proposition 4.8, T cannot be one-to-one.

COROLLARY 4.10. Let X be a separable u-ideal in its bidual with u-projection P. Then the following statements are equivalent.

- (a) $V = P(X^{***})$ is weak* dense in X^{***} .
- (b) *X* does not contain a copy of ℓ_1 .

PROOF. (a) \Leftrightarrow (b) follows from Corollary 4.9 and [5, Proposition 7.1].

Note that u-ideals in their biduals always contain a copy of c_0 or ℓ_1 . Indeed, suppose that X is a u-ideal in X^{**} and does not contain a copy of c_0 . Then, by [5, Theorem 3.5], X is a u-summand in X^{**} . Thus, for every $x^{**} \in X^{**}$, we have $||x^{**} - x|| = ||x^{**} + x||$. By a result of Maurey, X then contains a copy of ℓ_1 (see [11]).

References

- T. A. Abrahamsen, V. Lima and Å. Lima, 'Unconditional ideals of finite rank operators', *Czechoslovak Math. J.* 58 (2008), 1257–1278.
- [2] P. Bandyopadhyay, S. Basu, S. Dutta and B.-L. Lin, 'Very non-constrained subspaces of Banach spaces', *Extracta Math.* 18(2) (2003), 161–185.
- P. K. Belobrov, 'Minimal extension of linear functionals to second dual spaces', *Mat. Zametki* 27(3) (1980), 439–445 (in Russian); English translation in: *Math. Notes* 27(3–4) (1980), 218–221.
- [4] G. Godefroy and N. J. Kalton, 'Approximating sequences and bidual projections', Q. J. Math. Oxford Series (2) 48(190) (1997), 179–202.
- [5] G. Godefroy, N. J. Kalton and P. D. Saphar, 'Unconditional ideals in Banach spaces', *Studia Math.* 104 (1993), 13–59.
- [6] G. Godefroy and P. Saphar, 'Duality in spaces of operators and smooth norms on Banach spaces', *Illinois J. Math.* 32 (1988), 672–695.
- [7] R. C. James, 'A non-reflexive Banach space isometric with its second conjugate space', Proc. Natl. Acad. Sci. USA 37 (1951), 174–177.
- [8] R. C. James, 'A separable somewhat reflexive space with non-separable dual', Bull. Amer. Math. Soc. 80 (1974), 738–743.
- [9] V. Lima and Å. Lima, 'A three-ball intersection property for u-ideals', J. Funct. Anal. 252(1) (2007), 220–232.
- [10] V. Lima and Å. Lima, 'Strict u-ideals in Banach spaces', Studia Math. 195(3) (2009), 275–285.
- [11] B. Maurey, 'Types and l₁-subspaces', in: *Texas Functional Analysis Seminar*, Longhorn Notes (eds. E. Odell and H. P. Rosenthal) (The University of Texas at Austin, 1982–1983), pp. 123–137.
- [12] O. Nygaard, 'Thick sets in Banach spaces and their properties', Quaest. Math. 29 (2006), 59–72.

TROND A. ABRAHAMSEN, Department of Mathematics, University of Agder, Postbox 422, 4604 Kristiansand, Norway e-mail: Trond.A.Abrahamsen@uia.no

OLAV NYGAARD, Department of Mathematics, University of Agder, Postbox 422, 4604 Kristiansand, Norway e-mail: Olav.Nygaard@uia.no