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Abstract

We define and study λ-strict ideals in Banach spaces, which for λ= 1 means strict ideals. Strict u-ideals
in their biduals are known to have the unique ideal property; we prove that so also do λ-strict u-ideals in
their biduals, at least for λ > 1/2. An open question, posed by Godefroy et al. [‘Unconditional ideals in
Banach spaces’, Studia Math. 104 (1993), 13–59] is whether the Banach space X is a u-ideal in Ba(X),
the Baire-one functions in X∗∗, exactly when κu(X)= 1; we prove that if κu(X)= 1 then X is a strict
u-ideal in Ba(X), and we establish the converse in the separable case.
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1. Introduction

In this paper we restrict ourself to working with real Banach spaces, although many
of the results will also hold in the complex case. Let Y be a Banach space. Recall
that a (not necessarily) closed subspace X of Y is called an ideal if there is a norm-
one projection P on Y ∗ with kernel X⊥ (such a P is called an ideal projection on
Y ∗). When X is an ideal in Y we have Y ∗ = X⊥ ⊕ P(Y ∗), where the range of P is
isometrically isomorphic to X∗. The concept of an ideal was introduced by Godefroy
et al. in their seminal paper [5].

Let X be a closed subspace of a Banach space Y . Given a projection P on Y ∗ with
kernel X⊥, then we can define an operator T : Y → X∗∗ by

〈T y, (iX )
∗y∗〉 = 〈Py∗, y〉

where y ∈ Y , y∗ ∈ Y ∗, and where iX : X→ Y is the natural embedding operator. The
fact that T is well defined follows since the kernel of P is X⊥. Since P is linear, T also
is, and ‖T ‖ ≤ ‖P‖ so T is bounded. Note also that T x = x for every x ∈ X . Hence
T is an extension of kX , the canonical embedding of X into its bidual. Note that T is
one-to-one if and only if P(Y ∗) is weak∗ dense in Y ∗.

Let 0≤ λ≤ 1 and X be an ideal in Y with an ideal projection P on Y ∗. If P(Y ∗)
is weak∗ dense in Y ∗, we will say that X is a λ-strict ideal in Y if P(Y ∗) is λ-norming
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for Y , that is,
sup

y∗∈Y ∗,‖Py∗‖=1
|Py∗(y)| ≥ λ‖y‖ for all y ∈ Y.

When X is a 1-strict ideal in Y we simply call X a strict ideal in Y , as in [5] and later
papers. In [5, 10] it is observed that X is a strict ideal in Y if and only if T is isometric.
Thus kX extends to an isometry on Y exactly when X is a strict ideal in Y .

The paper is organized as follows. In Section 2 we study λ-strict ideals in general.
We will show that when X is a λ-strict ideal in Y for some λ > 0, kX extends to
an isomorphism on Y and P(Y ∗) automatically gets a slightly stronger property than
being λ-norming (namely weak∗ thickness) (Proposition 2.1). An application of this
result (Corollary 2.2) is also given. Then we let Y = X∗∗ and show, in Theorem 2.5,
that if every norm-preserving extension T of kX to X∗∗ is injective, then the only
possible norm-preserving extension of kX to X∗∗ is the identity on X∗∗.

In Section 3 we turn our attention to λ-strict u-ideals. Recall that a space X is called
a u-ideal in Y if X is an ideal in Y with an ideal projection P on Y ∗ with ‖I − 2P‖ = 1.
If in addition the range of this P is λ-norming for Y , X is called a λ-strict u-ideal in Y .
First we extend the known result that proper strict u-ideals contain a copy of c0 to
λ-strict u-ideals, for λ≥ 0. Then we turn to the special case when Y = X∗∗ and show
that three known results valid for strict u-ideals are valid for λ-strict u-ideals as well,
as soon as λ > 1/2 (Proposition 3.3, Theorem 3.5 and Corollary 3.6).

In many cases (typically when `1 is involved) it is interesting to let Y = Ba(X),
the Baire-one functions in X∗∗. In Section 4 we concentrate on studying when X is
a strict u-ideal in Ba(X). Building on arguments of Godefroy et al. and combining
with one of the results that we extended in Section 3, we examine [5, Question 9]
(Theorem 4.2). As a consequence of this we obtain, in Corollary 4.4, a sufficient
condition for a separable X to be a strict u-ideal in Ba(X)when X is a u-ideal in Ba(X).

Our notation is mostly standard. When some notation or term is used which we do
not think is standard or self-explanatory, we explain its meaning there and then.

The reader will surely observe that some of our proofs could have been simplified
and some results could have been strengthened by using [2, Proposition 2.26(b)]. How-
ever, it seems that there is a gap in the proof of that result, and thus we have not used it.

2. λ-strict ideals

Let X be a closed subspace of a Banach space Y with P(Y ∗) weak∗ dense in Y ∗.
Recall that we call X a λ-strict ideal in Y if P(Y ∗) is λ-norming for Y , 0≤ λ≤ 1.

Recall (see, for example, the survey paper [12]) that a set A in Y ∗ is weak∗ thick if
it has the following boundedness deciding property: whenever a sequence (yn)⊂ Y is
pointwise bounded on A, it is bounded in norm in Y .

PROPOSITION 2.1. Let X be a closed subspace of Y and P a projection on Y ∗ with
kernel X⊥. Then the following conditions are equivalent.

(a) P(Y ∗) is λ-norming for some 0< λ≤ 1.
(b) P(Y ∗) is weak∗ thick.
(c) T is an isomorphism.

https://doi.org/10.1017/S0004972710001735 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001735


[3] On λ-strict ideals in Banach spaces 233

PROOF. (a)⇔ (c). Statement (a) holds if and only if there exists 0< λ≤ 1 such that,
for every y ∈ SY ,

λ < sup
‖Py∗‖=1

|〈Py∗, y〉| = sup
‖(iX )

∗y∗‖=1
|〈(iX )

∗y∗, T y〉|.

This again is equivalent to T being an isomorphism.
(b)⇒ (a). This is clear from the definition of weak∗ thickness.
(c)⇒ (b). Suppose that (yn)⊂ Y is pointwise bounded on P(Y ∗) ∩ BY ∗ , that is,

∞> sup
n
|〈Py∗, yn〉| = sup

n
|〈(iX )

∗y∗, T yn〉|

for every y∗ ∈ Y ∗ with ‖Py∗‖ = 1. Then (T yn) is pointwise bounded on BX∗ and
from the uniform boundedness principle (T yn) has to be bounded in X∗∗. Since T is
an isomorphism, (yn) must also be bounded. 2

Let us give an application. Recall first that a Banach space X is co-reflexive if the
quotient X∗∗/X is reflexive.

PROPOSITION 2.2. Let X be a λ-strict ideal in Y for some λ > 0. If X is co-reflexive,
then Y/X is reflexive.

PROOF. From Proposition 2.1 the operator T : Y → X∗∗ corresponding to the ideal
projection on Y ∗ in this case is an isomorphism. Now introduce a mapping S : Y/X→
X∗∗/X by S[y] = [T y] for all cosets [y] in Y/X . S is well defined and linear. It is
also straightforward to show that S is an isomorphism. Thus Y/X is reflexive since
S(Y/X) is a subspace of X∗∗/X , which is reflexive by the co-reflexivity of X . 2

REMARK 2.3. In the proof of Proposition 2.2 we used the fact that the operator S is
an isomorphism. Actually, it is straightforward to show that S is an isomorphism if
and only if T is.

Let X be a closed subspace of Y and L(Y, X∗∗) the space of bounded linear
operators from Y to X∗∗. Denote by E(Y, X∗∗) the set

{T ∈ L(Y, X∗∗) : T x = x ∀x ∈ X, ‖T ‖ = 1}

of norm-preserving extensions to Y of the canonical embedding kX of X into its bidual.
Note that the connection

〈T y, (iX )
∗y∗〉 = 〈Py∗, y〉

for all y ∈ Y, y∗ ∈ Y ∗, where P is an ideal projection on Y ∗, puts E(Y, X∗∗) in a one-
to-one correspondence with the set of all ideal projections on Y ∗.

From now on, and throughout the section, we study the particular case when
Y = X∗∗. Define an order relation ≤ on E(X∗∗, X∗∗) by U ≤ V if ‖U x∗∗‖ ≤ ‖V x∗∗‖
for every x∗∗ ∈ X∗∗. Elements of minimal order in (E(X∗∗, X∗∗),≤) are denoted by
M(X∗∗, X∗∗).
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The following result and argument are implicit in [4, Theorem III.1].

PROPOSITION 2.4. The set M(X∗∗, X∗∗) is nonempty and consists of projections.

PROOF. By using Zorn’s lemma one can verify that (E(X∗∗, X∗∗),≤) contains a
minimal element P , so M(X∗∗, X∗∗) is nonempty. Since P is minimal and ‖U‖ = 1
for all U ∈ E(X∗∗, X∗∗) we have ‖UPx∗∗‖ = ‖Px∗∗‖ for all U ∈ E(X∗∗, X∗∗) and
all x∗∗ ∈ X∗∗. Applying this observation to

Un =
1
n

( n∑
i=1

P i
)
,

which by convexity is in E(X∗∗, X∗∗), gives

‖(Un P2
−Un P)x∗∗‖ = ‖Un P(Px∗∗ − x∗∗)‖

= ‖P(Px∗∗ − x∗∗)‖

= ‖P2x∗∗ − Px∗∗‖.

Since

Un P2
−Un P =

1
n
(Pn+2

− P2),

we get that ‖P2x∗∗ − Px∗∗‖ ≤ 2/n for all n ≥ 1. It follows that P is a projection. 2

Using Proposition 2.4, we now easily obtain the following result.

THEOREM 2.5. If every T ∈ E(X∗∗, X∗∗) is one-to-one, then E(X∗∗, X∗∗)= {IX∗∗},
where IX∗∗ is the identity on X∗∗.

PROOF. Since a projection is one-to-one only if it is the identity, M(X∗∗, X∗∗)=
{IX∗∗}. Thus we are done if we can show that E(X∗∗, X∗∗)=M(X∗∗, X∗∗). To
this end let S, T ∈ E(X∗∗, X∗∗) and suppose that S ≤ T . Now, since ‖SIX∗∗x∗∗‖ ≤
‖IX∗∗x∗∗‖ for all x∗∗ ∈ X∗∗, we have ‖Sx∗∗‖ = ‖x∗∗‖ by minimality of IX∗∗ . Thus
‖T x∗∗‖ ≤ ‖x∗∗‖ = ‖Sx∗∗‖ for all x∗∗ ∈ X∗∗ so S ≥ T , and we are done. 2

In other words, if whenever X is placed in X∗∗ as an ideal and it sits there as a
λ-strict ideal, then the natural way (using the Dixmier projection) is the only way.
A similar result will be obtained in Corollary 3.6.

3. λ-strict u-ideals

Recall that X is a u-summand in Y if X is the range of a norm-one projection P
on Y with ‖I − 2P‖ = 1. If the range of an ideal projection P on Y ∗ is a u-summand
in Y ∗, then X is a u-ideal in Y . We call such an ideal projection P on Y ∗ a u-projection
and the corresponding T ∈ E(Y, X∗∗) an unconditional extension operator. Note that
a u-projection is always unique [5, Lemma 3.1] (see also [1, Proposition 4.2]). An
equivalent formulation of an operator P being a u-projection is that, whenever z∗ ∈ X⊥

and y∗ ∈ Y ∗, then ‖z∗ + Py∗‖ = ‖z∗ − Py∗‖.
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We start with a result on λ-strict u-ideals which is known for strict u-ideals (see [10,
Theorem 2.7]).

PROPOSITION 3.1. Let 0≤ λ≤ 1. Proper λ-strict u-ideals must contain an iso-
morphic copy of c0.

PROOF. Let X be a proper λ-strict u-ideal in Y with u-projection P and Suppose that
X does not contain a copy of c0. Since X is a u-ideal in Y , by [5, Theorem 3.5],
X has to be a u-summand in Y . Thus P is weak∗ continuous, hence onto Y ∗ since X
is λ-strict. This contradicts the assumption that X is a proper subspace of Y . 2

In the remaining part of this section we will make use of another equivalent
formulation of an ideal: let X be an ideal in Y with corresponding projection P :
Y ∗→ Y ∗. Then Py∗ is a norm-preserving extension of the restriction y∗|X ∈ X∗. This
induces a linear extension operator (a Hahn–Banach extension operator) ϕ : X∗→ Y ∗,
depending on P . Conversely, if ϕ : X∗→ Y ∗ is a Hahn–Banach extension operator,
then ϕ induces an ideal projection Pϕ . The correspondence ϕ↔ Pϕ is given by
Pϕ = ϕ(iX )

∗. It is helpful to observe that (iX )
∗ is simply the linear operator from

Y ∗ to X∗ that restricts y∗ ∈ Y ∗ to X .
Let HB(X, Y ) (as usual) denote the set of norm-preserving linear extension operators

from X∗ into Y ∗. Of course, X is an ideal in Y if and only if HB(X, Y ) 6= ∅. If
ϕ ∈ HB(X, Y ) corresponds to a projection Pϕ which makes X a λ-strict ideal in Y , we
call ϕ λ-strict. Moreover, if the ideal projection Pϕ in addition makes X a u-ideal in Y ,
ϕ is called unconditional λ-strict.

Here is another result known for strict u-ideals that extends to λ-strict u-ideals.

PROPOSITION 3.2. Let X be a u-ideal in Y and 0≤ λ≤ 1. Then X is a λ-strict
u-ideal in Y if and only if X is a λ-strict u-ideal in Z = span(X, {y}) for every y ∈ Y .

PROOF. Since X is a u-ideal in Y , X is a u-ideal in Z by local characterization of
u-ideals [5, Proposition 3.6]. Denote by PZ and PY respectively the u-projections
on Z∗ and Y ∗, and by TZ ∈ E(Z , X∗∗) and TY ∈ E(Y, X∗∗) the corresponding
unconditional extension operators. Now, from [9, Lemmas 2.2 and 3.1], TY |Z = TZ .
By Proposition 2.1, the result follows for λ > 0. For λ= 0 one only needs to recall
from the introduction that the range of an ideal projection is weak∗ dense if and only
if the corresponding extension operator is one-to-one. 2

When X is a u-ideal in Y there is a unique ideal projection making it a u-ideal,
but there may very well be other ideal projections for which X is an ideal. The
next proposition shows that in some cases, the possible other ideal projections at
least do not make X a 1-complemented subspace in Y . This result is similar to [10,
Proposition 2.5]; we state it in the more general setting of λ-strict u-ideals.

PROPOSITION 3.3. If X is a proper λ-strict u-ideal in Y for some 1
2 < λ≤ 1, then

every T ∈ E(Y, X∗∗) is one-to-one. In particular, if P is a projection of Y onto X,
then ‖P‖> 1.
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PROOF. Let ϕ ∈ HB(X, Y ) be unconditional with corresponding unconditional Tϕ ∈
E(Y, X∗∗). Choose ψ ∈ HB(X, Y ) with corresponding Tψ ∈ E(Y, X∗∗). Then, by [1,
Proposition 2.2], ϕ is the center of symmetry in HB(X, Y ), so 2ϕ − ψ ∈ HB(X, Y ).
Thus ‖2Tϕ − Tψ‖ ≤ 1. Let 0 6= y ∈ Y . Then

‖Tψ (y)‖ ≥ 2‖Tϕ(y)‖ − ‖(2Tϕ − Tψ )(y)‖ ≥ (2λ− 1)‖y‖> 0.

Hence Tψ ∈ E(Y, X∗∗) is one-to-one and thus not onto X . The last part follows
since left composition of every norm-one projection P on Y onto X with kX is in
E(Y, X∗∗). 2

Using Proposition 3.3 we can observe that the known result (see [10,
Proposition 2.5] and the remark thereafter) that dual spaces never can be strict u-ideals
in their biduals can be pushed further to conclude that they never can be λ-strict
u-ideals for λ > 1/2. Similar to [10, Corollary 2.6], we actually get that a dual space
never can be a λ-strict u-ideal for 1/2< λ≤ 1 in any superspace.

COROLLARY 3.4. If X is a u-ideal in Y and X is 1-complemented in its bidual, then
X is not a λ-strict u-ideal in Y for any 1/2< λ≤ 1.

PROOF. The argument is similar to the proof of [10, Corollary 2.6] except that
Propositions 3.3 and 3.2 are used instead of [10, Propositions 2.5 and 2.1]. 2

An ideal X in Y has the unique ideal property in Y if HB(X, Y ) consists of a
singleton, that is, there is only one ideal projection for which X is an ideal in Y .
A subspace X of a Banach space Y is said to be a very nonconstrained subspace
(VN-subspace) in Y if, for all y ∈ Y ,⋂

x∈X

BY (x, ‖y − x‖)= {y}.

The notion of a VN-subspace was introduced in [2] where it is shown (see [2,
Theorem 2.12]) that the above definition is equivalent to the condition that, for all
y ∈ Y \ X , ⋂

x∈X

BX (x, ‖y − x‖)= ∅.

It is known that strict u-ideals in their biduals have the unique ideal property [10,
Remark 2.1]. A consequence of Proposition 3.3, Theorem 2.5, and the following result
is that this is also true for λ-strict u-ideals in their biduals whenever λ > 1/2 (see
Corollary 3.6).

THEOREM 3.5. Let 1
2 < λ≤ 1. Then λ-strict u-ideals are VN-subspaces.

PROOF. Let X be a closed subspace of Y and y ∈ Y \ X . Now, X ∩⋂
x∈X BX∗∗(x, ‖y − x‖)= ∅. Otherwise this would define a norm-one projection P

on span(X, {y}) onto X by P(ay + x)= a Py + x , where Py is some element in
X ∩

⋂
x∈X BX∗∗(x, ‖y − x‖). But this contradicts Proposition 3.3. It follows that⋂

x∈X BX (x, ‖y − x‖)= ∅, and thus X is a VN-subspace of Y . 2
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COROLLARY 3.6. Let X be a Banach space and let the Dixmier projection on X∗∗∗

be denoted by π .

(a) If, whenever P : X∗∗∗→ X∗∗∗ is an ideal projection on X∗∗∗ with ker P = X⊥,
P X∗∗∗ is weak∗ dense in X∗∗∗, then X has the unique ideal property in X∗∗.

(b) Let 1
2 < λ≤ 1. If X is a λ-strict u-ideal in X∗∗, then X has the unique ideal

property in X∗∗; moreover, ‖IX∗∗∗ − 2π‖ = 1.

Note that (a) can be used in combination with Proposition 3.3 to obtain (b).

4. When X is a u-ideal in Ba(X)

Let Ba(X) denote, as usual, the Banach space of elements in X∗∗ of the first Baire
class, that is, the set of x∗∗ ∈ X∗∗ which are weak∗ limits of sequences from X .

The number κu(X) is defined on [5, pp. 22–23]. We repeat the definition here for
convenience: for each x∗∗ ∈ X∗∗ define κu(x∗∗) to be the infimum over all a such that
x∗∗ =

∑
n xn in the weak∗ topology of X∗∗, with xn ∈ X and such that for any n ∈ N

and θk =±1 for 1≤ k ≤ n, we have ‖
∑n

k=1 θk xk‖ ≤ a. Put κu(x∗∗)=∞ if no such a
exists. Recall that X has property (u) if every x∗∗ ∈ Ba(X) has κu(x∗∗) <∞. In this
case it follows from the closed graph theorem that there exists a constant C such that
κu(x∗∗)≤ C‖x∗∗‖ for all x∗∗ ∈ Ba(X). The smallest such constant is κu(X).

The following proposition will be used to prove Theorem 4.2.

PROPOSITION 4.1. Let X be a separable u-ideal in Ba(X) with corresponding
unconditional T ∈ E(Ba(X), X∗∗). Assume that X is also a VN-subspace in Ba(X).
Then T (Ba(X))⊂ Ba(X). In fact, T = idX∗∗ |Ba(X).

PROOF. Since X is separable there is a sequence (x∗i )
∞

i=1 ⊂ SX∗ such that M =
span{x∗i } is 1-norming for X . Let x∗∗ ∈ Ba(X) with ‖x∗∗‖ = 1 and put

An =

{
x ∈ X : |T x∗∗(x∗i )− x(x∗i )|<

1
n
, i = 1, 2, . . . , n

}
.

Note that An is convex and nonempty and that T x∗∗ ∈ Hn , the weak∗ closure of An in
X∗∗, for each n. Since X is a u-ideal in Ba(X), by [5, Lemma 3.4], for every ε > 0
there exists χ ∈

⋂
n Hn such that κu(χ)≤ ‖x∗∗‖ + ε. In particular, χ ∈ Ba(X). Since

χ ∈
⋂

n Hn , χ( f )= T x∗∗( f ) for all f ∈ M .
Now take an arbitrary x∗ ∈ X∗ and put N = span{M, {x∗}}. The same argument

as above produces a Baire-one function χ1 ∈
⋂

n Hn with χ1( f )= T x∗∗( f ) for all
f ∈ M and χ1(x∗)= T x∗∗(x∗).

We now use the fact that X is a VN-subspace of Ba(X). By [2, Theorem 2.12,
Lemma 2.10] χ1 = χ since ker(χ − χ1)|X ⊂ X∗ contains the norming subspace M .
Since χ1 = χ for x∗ ∈ X∗ we obtain T x∗∗ = χ ∈ Ba(X).

The final part of the proposition follows by [2, Proposition 2.26(a)]. 2
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Godefroy et al. [5, Question 9, p. 56] ask whether κu(X)= 1 if and only if X is
a u-ideal in Ba(X). Note that if this is true, then it follows from the argument of the
following theorem that X is a strict u-ideal in Ba(X) whenever it is a u-ideal in Ba(X).

THEOREM 4.2. Let X be a Banach space. If κu(X)= 1, then X is a strict u-ideal in
Ba(X). If X is separable and X is a λ-strict u-ideal in Ba(X) for some 1

2 < λ≤ 1,
then κu(X)= 1.

PROOF. Suppose that κu(X)= 1 and let x∗∗ ∈ Ba(X). Now choose a sequence (xn)

in X such that sn :=
∑n

k=1 xk→ x∗∗ is weak∗ in X∗∗ and ‖
∑n

k=1 θk xk‖< ‖x∗∗‖ + ε
for all n and θk =±1. Then

‖x∗∗ − 2sn‖ ≤ lim inf
m

∥∥∥∥ m∑
k=1

xk − 2sn

∥∥∥∥= lim inf
m

∥∥∥∥ m∑
k=1

xk − 2
n∑

k=1

xk

∥∥∥∥
≤ lim inf

m

∥∥∥∥ m∑
k=1

θk xk

∥∥∥∥≤ ‖x∗∗‖ + ε.
Since the above inequality holds for every n, we get lim supn ‖x

∗∗
− 2sn‖< ‖x∗∗‖ +

2ε. Now, since the natural embedding iBa(X) of Ba(X) into X∗∗ is in E(Ba(X), X∗∗),
it follows from the above inequality in combination with [5, Lemma 2.2], that X is
a u-ideal in Ba(X). Moreover, iBa(X) is isometric, so X is indeed a strict u-ideal in
Ba(X).

Assume that 1
2 < λ≤ 1 and that X is a separable λ-strict u-ideal in Ba(X). Then, by

Theorem 3.5, X is a VN-subspace in Ba(X). From the proof of 4.1 it follows directly
that κu(X)= 1. 2

Our next result gives a condition for X to be a VN-subspace in Ba(X).

THEOREM 4.3. Let X be a Banach space. If κu(X) < 2, then X is a VN subspace in
Ba(X).

PROOF. From [5, Lemma 6.3] it follows that ker x∗∗ cannot be a 1-norming subspace
of X∗ for any 0 6= x∗∗ ∈ Ba(X). Using [2, Lemma 2.10, Theorem 2.12] it follows that
the ortho-complement O(X, Ba(X)), of X in Ba(X), is {0}. Thus X is a VN subspace
of Ba(X). 2

The following result should be compared with [5, Theorem 7.5].

COROLLARY 4.4. Let X be a separable u-ideal in Ba(X) such that κu(X) < 2. Then
κu(X)= 1 and X is a strict u-ideal in Ba(X).

PROOF. This follows from Theorem 4.3 and by an argument similar to the proof of
Proposition 4.1. 2

REMARK 4.5. From [5, Theorem 7.5] (see also [10, Corollary 2.10]) we know that
strict u-ideals in their biduals do not contain copies of `1. However, this is not the
case for strict u-ideals in general. Indeed, let X = `1 ⊕∞ c0. Since `1 has the Schur
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property, Ba(`1)= `1, and therefore Ba(X)= `1 ⊕∞ `∞. Thus κu(X)= κu(c0)= 1,
and X is therefore a strict u-ideal in Ba(X) by Theorem 4.2. Note that X is a u-ideal,
but not a strict u-ideal, in its bidual.

Note that if, in addition to the assumptions in Theorem 4.3, we assume that X does
not contain a copy of `1 we get that IX∗∗ is the unique extension of kX to X∗∗. Indeed,
by combining [5, Proposition 2.7, Lemma 5.3] with [6, Proposition 2.5] we arrive at
the following result.

THEOREM 4.6. Let X be a Banach space which contains no copies of `1 and with
κu(X) < 2. Then X is a VN-subspace in X∗∗. In particular, E(X∗∗, X∗∗)= {IX∗∗}.

REMARK 4.7. Both the James space J and the James tree space J T are separable
dual spaces which contain no copies of `1 [7, 8]. Thus, by a result of Belobrov [3,
Corollary 1], both E(J ∗∗, J ∗∗) and E(J T ∗∗, J T ∗∗) contain more than one element
and from Theorem 4.6 it follows that both κu(J )≥ 2 and κu(J T )≥ 2.

In [5, Proposition 7.1] it is proven that if X contains no copies of `1 and is a u-ideal
in its bidual with u-projection P on X∗∗∗, then V = P(X∗∗∗) is weak∗ dense in X∗∗∗.
In Corollary 4.10 we will see that for a separable u-ideal in its bidual this happens
exactly when `1 is not present.

PROPOSITION 4.8. Let X be a u-ideal in Y with u-projection P on Y ∗. If X
is a u-summand in Z = span(X, {y}) for some y ∈ Y \ X, then the unconditional
T ∈ E(Y, X∗∗) corresponding to P is not one-to-one.

PROOF. By [9, Lemmas 2.2 and 3.1], the unconditional TZ ∈ E(Z , X∗∗) is given by
T |Z . Since X is a u-summand in Z and the u-projection is unique, TZ must be a
projection. Thus TY cannot be one-to-one. 2

COROLLARY 4.9. Let X be separable u-ideal in its bidual containing a copy of `1.
Then T ∈ E(X∗∗, X∗∗) corresponding to the u-projection on X∗∗ is not one-to-one.

PROOF. By a result of Maurey [11], there is x∗∗ ∈ X∗∗ such that ‖x∗∗ − x‖ = ‖x∗∗ +
x‖ for all x ∈ X . Thus X is a u-summand in Z = span(X, {x∗∗}). Indeed, let P be the
natural projection from Z onto X . Then

‖(I − 2P)(r x∗∗ + x)‖ = ‖r x∗∗ − x‖ = ‖r x∗∗ + x‖,

so P is a u-projection. Using Proposition 4.8, T cannot be one-to-one. 2

COROLLARY 4.10. Let X be a separable u-ideal in its bidual with u-projection P.
Then the following statements are equivalent.

(a) V = P(X∗∗∗) is weak∗ dense in X∗∗∗.
(b) X does not contain a copy of `1.

PROOF. (a)⇔ (b) follows from Corollary 4.9 and [5, Proposition 7.1]. 2
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Note that u-ideals in their biduals always contain a copy of c0 or `1. Indeed,
suppose that X is a u-ideal in X∗∗ and does not contain a copy of c0. Then,
by [5, Theorem 3.5], X is a u-summand in X∗∗. Thus, for every x∗∗ ∈ X∗∗, we
have ‖x∗∗ − x‖ = ‖x∗∗ + x‖. By a result of Maurey, X then contains a copy of `1
(see [11]).
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