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Abstract

We define and study A-strict ideals in Banach spaces, which for A = 1 means strict ideals. Strict u-ideals
in their biduals are known to have the unique ideal property; we prove that so also do A-strict u-ideals in
their biduals, at least for A > 1/2. An open question, posed by Godefroy et al. [‘Unconditional ideals in
Banach spaces’, Studia Math. 104 (1993), 13-59] is whether the Banach space X is a u-ideal in Ba(X),
the Baire-one functions in X**, exactly when «, (X) = 1; we prove that if «,(X) = 1 then X is a strict
u-ideal in Ba(X), and we establish the converse in the separable case.
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1. Introduction

In this paper we restrict ourself to working with real Banach spaces, although many
of the results will also hold in the complex case. Let Y be a Banach space. Recall
that a (not necessarily) closed subspace X of Y is called an ideal if there is a norm-
one projection P on Y* with kernel X (such a P is called an ideal projection on
Y*). When X is an ideal in ¥ we have Y* = X @ P(Y*), where the range of P is
isometrically isomorphic to X*. The concept of an ideal was introduced by Godefroy
et al. in their seminal paper [5].

Let X be a closed subspace of a Banach space Y. Given a projection P on Y* with
kernel X, then we can define an operator T : ¥ — X** by

(Ty, (ix)*y*) = (Py*, y)

where y € Y, y* € Y*, and where ix : X — Y is the natural embedding operator. The
fact that T is well defined follows since the kernel of P is X=. Since P is linear, T also
is, and ||T'|| < || P] so T is bounded. Note also that Tx = x for every x € X. Hence
T is an extension of ky, the canonical embedding of X into its bidual. Note that T is
one-to-one if and only if P(Y™*) is weak® dense in Y*.

Let 0 <A <1 and X be an ideal in Y with an ideal projection P on Y*. If P(Y*)
is weak* dense in Y*, we will say that X is a A-strict ideal in Y if P(Y*) is A-norming
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for Y, that is,
sup [Py*()I = Allyll forally Y.
yrey®, | Py*|=1
When X is a 1-strict ideal in Y we simply call X a strict ideal in Y, as in [5] and later
papers. In [5, 10] it is observed that X is a strict ideal in Y if and only if T is isometric.
Thus kx extends to an isometry on Y exactly when X is a strict ideal in Y.

The paper is organized as follows. In Section 2 we study A-strict ideals in general.
We will show that when X is a A-strict ideal in Y for some A > 0, kx extends to
an isomorphism on Y and P(Y*) automatically gets a slightly stronger property than
being A-norming (namely weak™ thickness) (Proposition 2.1). An application of this
result (Corollary 2.2) is also given. Then we let ¥ = X** and show, in Theorem 2.5,
that if every norm-preserving extension T of kx to X™* is injective, then the only
possible norm-preserving extension of ky to X** is the identity on X**,

In Section 3 we turn our attention to A-strict u-ideals. Recall that a space X is called
au-ideal in Y if X is an ideal in Y with an ideal projection P on Y* with || — 2P| = 1.
If in addition the range of this P is A-norming for Y, X is called a A-strict u-ideal in Y.
First we extend the known result that proper strict u-ideals contain a copy of ¢g to
A-strict u-ideals, for A > 0. Then we turn to the special case when ¥ = X** and show
that three known results valid for strict u-ideals are valid for A-strict u-ideals as well,
as soon as A > 1/2 (Proposition 3.3, Theorem 3.5 and Corollary 3.6).

In many cases (typically when £ is involved) it is interesting to let ¥ = Ba(X),
the Baire-one functions in X**. In Section 4 we concentrate on studying when X is
a strict u-ideal in Ba(X). Building on arguments of Godefroy et al. and combining
with one of the results that we extended in Section 3, we examine [5, Question 9]
(Theorem 4.2). As a consequence of this we obtain, in Corollary 4.4, a sufficient
condition for a separable X to be a strict u-ideal in Ba(X) when X is a u-ideal in Ba(X).

Our notation is mostly standard. When some notation or term is used which we do
not think is standard or self-explanatory, we explain its meaning there and then.

The reader will surely observe that some of our proofs could have been simplified
and some results could have been strengthened by using [2, Proposition 2.26(b)]. How-
ever, it seems that there is a gap in the proof of that result, and thus we have not used it.

2. A-strict ideals

Let X be a closed subspace of a Banach space Y with P(Y*) weak® dense in Y'™.
Recall that we call X a A-strict ideal in Y if P(Y*) is A-norming for Y, 0 <A < 1.

Recall (see, for example, the survey paper [12]) that a set A in Y™* is weak™ thick if
it has the following boundedness deciding property: whenever a sequence (y,) C Y is
pointwise bounded on A, it is bounded in norm in Y.

PROPOSITION 2.1. Let X be a closed subspace of Y and P a projection on Y* with
kernel X. Then the following conditions are equivalent.

(@) P(Y™) is A-norming for some 0 < A < 1.
(b)  P(Y™*) is weak™* thick.
(¢) T is anisomorphism.
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PROOF. (a) < (c). Statement (a) holds if and only if there exists 0 < A < 1 such that,
for every y € Sy,

A< sup [(Py",p)= sup  [@@x)"y*, Tyl
I Py*|=1 1Gx)*y*lI=1
This again is equivalent to 7 being an isomorphism.
(b) = (a). This is clear from the definition of weak™® thickness.
(c) = (b). Suppose that (y,) C Y is pointwise bounded on P(Y™*) N Byx, that is,

00 > sup [(Py™, yu)| = sup [{((ix)*y*, Tyl
n n

for every y* € Y* with |Py*| = 1. Then (Ty,) is pointwise bounded on Bx+ and
from the uniform boundedness principle (T'y,) has to be bounded in X**. Since T is
an isomorphism, (y,) must also be bounded. O

Let us give an application. Recall first that a Banach space X is co-reflexive if the
quotient X**/ X is reflexive.

PROPOSITION 2.2. Let X be a A-strict ideal in Y for some L > 0. If X is co-reflexive,
then Y/ X is reflexive.

PROOF. From Proposition 2.1 the operator T : ¥ — X** corresponding to the ideal
projection on Y* in this case is an isomorphism. Now introduce a mapping S : Y/ X —
X**/X by S[y] =[Ty] for all cosets [y] in Y/X. S is well defined and linear. It is
also straightforward to show that S is an isomorphism. Thus Y /X is reflexive since
S(Y/X) is a subspace of X**/ X, which is reflexive by the co-reflexivity of X. O

REMARK 2.3. In the proof of Proposition 2.2 we used the fact that the operator S is
an isomorphism. Actually, it is straightforward to show that § is an isomorphism if
and only if T is.

Let X be a closed subspace of ¥ and L(Y, X**) the space of bounded linear
operators from Y to X**. Denote by £(Y, X**) the set

(TeLlY, X*™) :Tx=xVxeX, |T|=1}

of norm-preserving extensions to Y of the canonical embedding kx of X into its bidual.
Note that the connection

(Ty, (ix)*y*) = (Py*, y)

forall y € Y, y* € Y*, where P is an ideal projection on Y*, puts £(Y, X**) in a one-
to-one correspondence with the set of all ideal projections on Y*.

From now on, and throughout the section, we study the particular case when
Y = X**. Define an order relation < on £(X™**, X**) by U < V if ||[Ux™*| < || Vx*¥||
for every x** € X**. Elements of minimal order in (£(X**, X**), <) are denoted by
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The following result and argument are implicit in [4, Theorem III.1].
PROPOSITION 2.4. The set M(X™**, X**) is nonempty and consists of projections.

PROOF. By using Zorn’s lemma one can verify that (£(X™*, X**), <) contains a
minimal element P, so M(X**, X**) is nonempty. Since P is minimal and |U|| =1
for all U € £(X™**, X**) we have |[UPx**| = ||Px**| for all U € £(X™*, X**) and
all x** € X™*. Applying this observation to

which by convexity is in £(X**, X**), gives

I(Un P? = Un P)x™|| = ||Uy P(Px™ — x™)|
= |P(Px™ —x™)|
= || P2x™* — Px™|].

Since 1
UpP? — U, P = —(P""? — P?),
n

we get that || P2x** — Px**|| <2/n for all n > 1. It follows that P is a projection. O
Using Proposition 2.4, we now easily obtain the following result.

THEOREM 2.5. Ifevery T € E(X™*, X**) is one-to-one, then £(X**, X**) = {Ix},
where Ix+ is the identity on X**.

PROOF. Since a projection is one-to-one only if it is the identity, M (X**, X**) =
{Ix+}. Thus we are done if we can show that £(X**, X**) = M(X** X**). To
this end let S, T € £(X**, X™*) and suppose that S < T. Now, since || STyx=x**| <
| Ix+x**| for all x** € X** we have ||Sx**| = [|x**|| by minimality of Ix+. Thus
|17 x**| < ||x**] = ||Sx™*|| for all x** € X** so § > T, and we are done. O

In other words, if whenever X is placed in X** as an ideal and it sits there as a
A-strict ideal, then the natural way (using the Dixmier projection) is the only way.
A similar result will be obtained in Corollary 3.6.

3. A-strict u-ideals

Recall that X is a u-summand in Y if X is the range of a norm-one projection P
on Y with ||[I — 2P| = 1. If the range of an ideal projection P on Y* is a u-summand
in Y*, then X is a u-ideal in Y. We call such an ideal projection P on Y* a u-projection
and the corresponding 7' € £(Y, X**) an unconditional extension operator. Note that
a u-projection is always unique [5, Lemma 3.1] (see also [1, Proposition 4.2]). An
equivalent formulation of an operator P being a u-projection is that, whenever z* € X+
and y* € Y*, then ||z* + Py*|| = ||z* — Py*|.
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We start with a result on A-strict u-ideals which is known for strict u-ideals (see [10,
Theorem 2.7]).

PROPOSITION 3.1. Let 0 <A < 1. Proper A-strict u-ideals must contain an iso-
morphic copy of cy.

PROOF. Let X be a proper A-strict u-ideal in Y with u-projection P and Suppose that
X does not contain a copy of c¢g. Since X is a u-ideal in Y, by [5, Theorem 3.5],
X has to be a u-summand in Y. Thus P is weak™ continuous, hence onto Y* since X
is A-strict. This contradicts the assumption that X is a proper subspace of Y. O

In the remaining part of this section we will make use of another equivalent
formulation of an ideal: let X be an ideal in Y with corresponding projection P :
Y* — Y*. Then Py* is a norm-preserving extension of the restriction y*|x € X*. This
induces a linear extension operator (a Hahn—Banach extension operator) ¢ : X* — Y*,
depending on P. Conversely, if ¢ : X* — Y* is a Hahn—Banach extension operator,
then ¢ induces an ideal projection P,. The correspondence ¢ <> P, is given by
P, =@(ix)*. It is helpful to observe that (ix)* is simply the linear operator from
Y* to X* that restricts y* € Y* to X.

Let BB(X, Y) (as usual) denote the set of norm-preserving linear extension operators
from X* into Y*. Of course, X is an ideal in Y if and only if BB(X, Y) #@. If
¢ € BB(X, Y) corresponds to a projection P, which makes X a A-strict ideal in ¥, we
call ¢ A-strict. Moreover, if the ideal projection P, in addition makes X a u-idealin Y,
¢ is called unconditional A-strict.

Here is another result known for strict u-ideals that extends to A-strict u-ideals.

PROPOSITION 3.2. Let X be a u-ideal in Y and 0 <A <1. Then X is a A-strict
u-ideal in Y if and only if X is a A-strict u-ideal in Z = span(X, {y}) for every y € Y.

PROOF. Since X is a u-ideal in Y, X is a u-ideal in Z by local characterization of
u-ideals [5, Proposition 3.6]. Denote by Pz and Py respectively the u-projections
on Z* and Y*, and by Tz € £(Z, X**) and Ty € £(Y, X™*) the corresponding
unconditional extension operators. Now, from [9, Lemmas 2.2 and 3.1], Ty|z = T%.
By Proposition 2.1, the result follows for A > 0. For A =0 one only needs to recall
from the introduction that the range of an ideal projection is weak™ dense if and only
if the corresponding extension operator is one-to-one. O

When X is a u-ideal in Y there is a unique ideal projection making it a u-ideal,
but there may very well be other ideal projections for which X is an ideal. The
next proposition shows that in some cases, the possible other ideal projections at
least do not make X a 1-complemented subspace in Y. This result is similar to [10,
Proposition 2.5]; we state it in the more general setting of A-strict u-ideals.

PROPOSITION 3.3. If X is a proper A-strict u-ideal in Y for some % <A <1, then

every T € E(Y, X**) is one-to-one. In particular, if P is a projection of Y onto X,
then || P| > 1.
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PROOF. Let ¢ € BB(X, Y) be unconditional with corresponding unconditional 7, €
E(Y, X**). Choose ¥ € BB(X, Y) with corresponding Ty, € £(Y, X**). Then, by [1,
Proposition 2.2], ¢ is the center of symmetry in BB(X, Y), so 2¢ — ¢y e BB(X, Y).
Thus |27, — Ty || < 1. Let0# y € Y. Then

ITy DI = 21Ty DIl = 12T, — Ty) I = 22 = Dlly[ > 0.

Hence Ty € £(Y, X**) is one-to-one and thus not onto X. The last part follows
since left composition of every norm-one projection P on Y onto X with kx is in
EX, X*). a

Using Proposition 3.3 we can observe that the known result (see [10,
Proposition 2.5] and the remark thereafter) that dual spaces never can be strict u-ideals
in their biduals can be pushed further to conclude that they never can be A-strict
u-ideals for A > 1/2. Similar to [10, Corollary 2.6], we actually get that a dual space
never can be a A-strict u-ideal for 1/2 < A <1 in any superspace.

COROLLARY 3.4. If X is a u-ideal in Y and X is 1-complemented in its bidual, then
X is not a A-strict u-ideal in Y forany 1/2 < A < 1.

PROOF. The argument is similar to the proof of [10, Corollary 2.6] except that
Propositions 3.3 and 3.2 are used instead of [10, Propositions 2.5 and 2.1]. O

An ideal X in Y has the unique ideal property in Y if BB(X, Y) consists of a
singleton, that is, there is only one ideal projection for which X is an ideal in Y.
A subspace X of a Banach space Y is said to be a very nonconstrained subspace
(VN-subspace) in Y if, forall y € Y,

) Brx, Iy —xI) ={y}.

xeX

The notion of a VN-subspace was introduced in [2] where it is shown (see [2,
Theorem 2.12]) that the above definition is equivalent to the condition that, for all
yel\X,

() Bx(x, lly —x|)=2.

xeX

It is known that strict u-ideals in their biduals have the unique ideal property [10,

Remark 2.1]. A consequence of Proposition 3.3, Theorem 2.5, and the following result
is that this is also true for A-strict u-ideals in their biduals whenever A > 1/2 (see
Corollary 3.6).

THEOREM 3.5. Let % < A < 1. Then A-strict u-ideals are VN-subspaces.

PROOF. Let X be a closed subspace of Y and yeY\ X. Now, XN
MNyex Bx=(x, [ly — x|)) =¥. Otherwise this would define a norm-one projection P
on span(X, {y}) onto X by P(ay +x) =aPy + x, where Py is some element in
X N(Nyex Bx#(x, [ly — x||). But this contradicts Proposition 3.3. It follows that
Myex Bx(x, ly — x|l) =, and thus X is a VN-subspace of Y. O
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COROLLARY 3.6. Let X be a Banach space and let the Dixmier projection on X***
be denoted by 7.

(@) If, whenever P : X*** — X*** is an ideal projection on X*** with ker P = X,
P X*** is weak™ dense in X***, then X has the unique ideal property in X**.

(b) Let % <A <1 If X is a A-strict u-ideal in X**, then X has the unique ideal
property in X**; moreover, || Ix+ — 2| = 1.

Note that (a) can be used in combination with Proposition 3.3 to obtain (b).

4. When X is a u-ideal in Ba(X)

Let Ba(X) denote, as usual, the Banach space of elements in X** of the first Baire
class, that is, the set of x™* € X™* which are weak™ limits of sequences from X.

The number «, (X) is defined on [5, pp. 22-23]. We repeat the definition here for
convenience: for each x** € X** define «,, (x**) to be the infimum over all a such that
x** =73 x, in the weak™ topology of X**, with x, € X and such that for any n € N
and 6 = £1 for 1 <k <n, we have ||>_;_; Okxkll < a. Put k,(x™*) = oo if no such a
exists. Recall that X has property (u) if every x** € Ba(X) has «, (x**) < oo. In this
case it follows from the closed graph theorem that there exists a constant C such that
K (X)) < C||x**|| for all x** € Ba(X). The smallest such constant is «;, (X).

The following proposition will be used to prove Theorem 4.2.

PROPOSITION 4.1. Let X be a separable u-ideal in Ba(X) with corresponding
unconditional T € £Ba(X), X**). Assume that X is also a VN-subspace in Ba(X).
Then T (Ba(X)) C Ba(X). In fact, T =idx+|Ba(x)-

PROOF. Since X is separable there is a sequence (x;){2, C Sy« such that M =
span{x} is 1-norming for X. Let x** € Ba(X) with [x™*|| = 1 and put

1
A, = {xeX:lTx**(x;")—x(x;k)l < —,i=1,2,...,n}.
n

Note that A, is convex and nonempty and that Tx** € H,, the weak™* closure of A, in
X** for each n. Since X is a u-ideal in Ba(X), by [5, Lemma 3.4], for every ¢ > 0
there exists x € (), Hy such that «, (x) < ||x**|| 4+ ¢. In particular, x € Ba(X). Since
X €Ny Hn, x(f) =Tx**(f) forall feM.

Now take an arbitrary x* € X* and put N = span{M, {x*}}. The same argument
as above produces a Baire-one function x; € (), H, with x1(f) = Tx™(f) for all
feMand xi(x*) = Tx*(x*).

We now use the fact that X is a VN-subspace of Ba(X). By [2, Theorem 2.12,
Lemma 2.10] x; = x since ker(x — x1)|x C X™ contains the norming subspace M.
Since x; = x for x* € X™* we obtain Tx** = x € Ba(X).

The final part of the proposition follows by [2, Proposition 2.26(a)]. O
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Godefroy et al. [5, Question 9, p. 56] ask whether «,(X) =1 if and only if X is
a u-ideal in Ba(X). Note that if this is true, then it follows from the argument of the
following theorem that X is a strict u-ideal in Ba(X) whenever it is a u-ideal in Ba(X).

THEOREM 4.2. Let X be a Banach space. If k,(X) =1, then X is a strict u-ideal in
Ba(X). If X is separable and X is a A-strict u-ideal in Ba(X) for some % <A<,
then ik, (X) = 1.

PROOF. Suppose that «,(X) = 1 and let x** € Ba(X). Now choose a sequence (x,)
in X such that s, := )y _; xx — x™ is weak™ in X** and ||>_}_; Oexi|l < [x*] + &
for all n and 6, = &1. Then

n

m
Zxk —ZZxk
k=1

k=1

|x™ — 2s,] < lim inf = lim inf
m m

m
Z Xi — 28y
k=1

m
Z Orxk

k=1

< lim inf < Ix™| + .
m

Since the above inequality holds for every n, we get lim sup,, ||x** — 2s, || < ||x™*| +
2¢. Now, since the natural embedding iga(x) of Ba(X) into X** is in £(Ba(X), X**),
it follows from the above inequality in combination with [5, Lemma 2.2], that X is
a u-ideal in Ba(X). Moreover, ig,(x) is isometric, so X is indeed a strict u-ideal in
Ba(X).

Assume that % < X <1 and that X is a separable A-strict u-ideal in Ba(X). Then, by
Theorem 3.5, X is a VN-subspace in Ba(X). From the proof of 4.1 it follows directly
that «,(X) = 1. O

Our next result gives a condition for X to be a VN-subspace in Ba(X).

THEOREM 4.3. Let X be a Banach space. If k,,(X) < 2, then X is a VN subspace in
Ba(X).

PROOF. From [5, Lemma 6.3] it follows that ker x** cannot be a 1-norming subspace
of X* for any 0 # x™* € Ba(X). Using [2, Lemma 2.10, Theorem 2.12] it follows that
the ortho-complement O(X, Ba(X)), of X in Ba(X), is {0}. Thus X is a VN subspace
of Ba(X). O

The following result should be compared with [5, Theorem 7.5].

COROLLARY 4.4. Let X be a separable u-ideal in Ba(X) such that k,,(X) < 2. Then
ky(X) =1 and X is a strict u-ideal in Ba(X).

PROOF. This follows from Theorem 4.3 and by an argument similar to the proof of
Proposition 4.1. O

REMARK 4.5. From [5, Theorem 7.5] (see also [10, Corollary 2.10]) we know that
strict u-ideals in their biduals do not contain copies of £1. However, this is not the
case for strict u-ideals in general. Indeed, let X = £| @ co. Since £ has the Schur
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property, Ba(£1) = £, and therefore Ba(X) = | @« €oo. Thus «, (X) = ky(cg) =1,
and X is therefore a strict u-ideal in Ba(X) by Theorem 4.2. Note that X is a u-ideal,
but not a strict u-ideal, in its bidual.

Note that if, in addition to the assumptions in Theorem 4.3, we assume that X does
not contain a copy of £1 we get that Ix=« is the unique extension of kx to X**. Indeed,
by combining [5, Proposition 2.7, Lemma 5.3] with [6, Proposition 2.5] we arrive at
the following result.

THEOREM 4.6. Let X be a Banach space which contains no copies of £1 and with
ky(X) < 2. Then X is a VN-subspace in X**. In particular, £(X™*, X**) = {Ix+}.

REMARK 4.7. Both the James space J and the James tree space JT are separable
dual spaces which contain no copies of £ [7, 8]. Thus, by a result of Belobrov [3,
Corollary 1], both £(J**, J**) and E(JT**, JT**) contain more than one element
and from Theorem 4.6 it follows that both «,,(J) > 2 and «,(JT) > 2.

In [5, Proposition 7.1] it is proven that if X contains no copies of | and is a u-ideal
in its bidual with u-projection P on X***, then V = P (X***) is weak™® dense in X***,
In Corollary 4.10 we will see that for a separable u-ideal in its bidual this happens
exactly when £ is not present.

PROPOSITION 4.8. Let X be a u-ideal in Y with u-projection P on Y*. If X
is a u-summand in Z = span(X, {y}) for some y € Y \ X, then the unconditional
T € E(Y, X™*) corresponding to P is not one-to-one.

PROOF. By [9, Lemmas 2.2 and 3.1], the unconditional 7z € £(Z, X**) is given by
T|z. Since X is a u-summand in Z and the u-projection is unique, 7z must be a
projection. Thus Ty cannot be one-to-one. O

COROLLARY 4.9. Let X be separable u-ideal in its bidual containing a copy of £1.
Then T € E(X™*, X**) corresponding to the u-projection on X** is not one-to-one.

PROOF. By aresult of Maurey [11], there is x** € X** such that ||x** — x| = ||x™* +
x| for all x € X. Thus X is a u-summand in Z = span(X, {x**}). Indeed, let P be the
natural projection from Z onto X. Then

I =2P)(rx™ 4+ ) || = [lrx™ — x|l = [rx™ + x],
so P is a u-projection. Using Proposition 4.8, T' cannot be one-to-one. O

COROLLARY 4.10. Let X be a separable u-ideal in its bidual with u-projection P.
Then the following statements are equivalent.

(@) V= P(X**)isweak® dense in X***.
(b) X does not contain a copy of €.

PROOF. (a) < (b) follows from Corollary 4.9 and [5, Proposition 7.1]. d
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Note that u-ideals in their biduals always contain a copy of ¢g or ¢;. Indeed,
suppose that X is a u-ideal in X** and does not contain a copy of cp. Then,
by [5, Theorem 3.5], X is a u-summand in X**. Thus, for every x** € X**, we
have ||x** — x| = |[x** 4+ x|. By a result of Maurey, X then contains a copy of ¢;
(see [L1]).

[9]

(10]
(11]

[12]
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