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On the physical mechanisms of the two-way
coupling between a surface wave field and a

circulation consisting of a roll and streak
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The governing equations of a surface wave field and a coexisting roll–streak
circulation typical of Langmuir circulations or submesoscale frontal circulations
are derived to better describe their two-way interactions. The gradients and vertical
velocities of the roll–streak circulation induce wave refraction, amplitude modulation
and higher-order waves. These changes then produce wave–wave nonlinear forces
and divergence of the wave-induced mass transport, both of which in turn affect
the circulation. To accurately represent these processes, both a wave theory and
a wave-averaged theory are developed without relying on any extrapolation, any
spatiotemporal mapping or an approximation that treats the wave-induced mass
divergence as being concentrated at the surface. This wave theory finds seven types
of current-induced higher-order wave motions. It also determines the wave dynamics
such as the governing equation of the wave action density valid in the presence of the
complex circulation. The evolution of the wave action density is clearly affected by
the upwelling or downwelling. The new wave-averaged theory presents the governing
equations of the wave-averaged circulation which satisfies the wave-averaged mass
conservation. This circulation is different from the circulation considered to satisfy
the mass conservation in the Craik–Leibovich theory, and the difference becomes
critical when the wave field evolves due to refraction. In this case, compared to the
Craik–Leibovich theory, long waves are more important and also the rolls are more
weakly forced.

Key words: general fluid mechanics, wave–turbulence interactions, surface gravity waves

1. Background and outline
This paper is concerned with the interactions between currents and surface gravity

waves in the oceanic surface mixed layer. These interactions play a crucial role
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Two-way coupling between a wave field and a roll–streak circulation 907
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FIGURE 1. Rough illustration of a current structure having a roll (black arrows) and
an along-roll jet (grey arrows). This jet is also known as a streak. The roll is the
quasi-two-dimensional vortex formed by the spanwise and vertical velocities of the current
field. It lies along the x-axis. The streak is the streamwise flow of the current field. For a
typical Langmuir cell, its streamwise length scale is much longer than the wavelength
of the dominant wave, while its spanwise and vertical length scales can be longer or
shorter than the wavelength (e.g. Faller & Caponi 1978; Leibovich 1983; Phillips 2001).
The near-surface along-roll jet occurs on the downwelling side. Also illustrated is the
surface-following coordinate system (dashed lines) used in this paper.

in the dynamics of wave properties (e.g. Peregrine & Jonsson 1983) as well as in
the dynamics of various wave-averaged circulations. (In general, a wave-averaged
circulation refers to the circulation obtained by averaging a flow field to remove the
wave oscillations from it. The specifics of the averaging method vary between papers,
and those used in this paper are detailed in § 2.2.) Some examples of wave-averaged
circulations are Langmuir circulations (e.g. Leibovich 1983), coastal currents (e.g.
Longuet-Higgins 1970; McWilliams, Restrepo & Lane 2004), shallow-water eddies
(Bühler & McIntyre 2003) and submesoscale flows (McWilliams & Fox-Kemper
2013; Haney et al. 2015; Suzuki et al. 2016; McWilliams 2018). They are in turn
fundamental to a multitude of upper-ocean properties (e.g. ice formation: Drucker,
Martin & Moritz 2003; Dethleff & Kempema 2007).

The main circulations considered in this paper are Langmuir circulations penetrating
deep into the mixed layer. They are made of flow structures each of which consists
of a roll and an along-roll jet, also known as a streak, as shown in figure 1. Because
this structure also appears in submesoscale frontal circulations, this study also applies
to them. For a submesoscale front, the streak is the geostrophic jet, and the roll is
the ageostrophic circulation. Hereafter, the x-direction and the y-direction shown in
figure 1 are called the streamwise direction and the spanwise direction, respectively.
Importantly, this structure can have vertical velocities and (spanwise and vertical)
velocity gradients that are significant enough to affect the overlapping wave field.

The aim of the present paper (hereafter, S19) is to improve our theoretical
understanding of how this complex current structure affects the overlapping wave
field and how the modified wave field exerts forces on the wave-averaged circulations.
The seminal works by Craik & Leibovich (1976) and Leibovich (1977, 1980) have
developed the Craik–Leibovich (CL) theory, which is concerned with currents that are
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908 N. Suzuki

much slower than the wave phase speed and wave fields that do not evolve due to the
currents. S19 aims to improve the CL theory by taking account of the current-induced
evolution of the wave field such as wave refraction. In order to highlight the effect
solely due to this difference, S19 intentionally keeps the scaling conditions for the
currents the same as the CL theory. The current-induced evolution of the wave
field has been previously considered by McWilliams et al. (2004) under the scaling
conditions appropriate for coastal circulations. Compared to their study, the horizontal
gradients and vertical velocities of the current field considered in S19 are allowed
to be much more significant. As a result, the current field in S19 affects the wave
field more significantly and in several additional ways. Another related theory has
been pioneered by Craik (1982), who takes account of a spanwise (higher-order)
modulation of the wave field induced by a strong current field. Phillips (1998)
has broadened Craik’s theory to include the influence of arbitrarily strong currents,
viscosity and growing waves, and has subsequently applied the theory to the stability
analysis of vertically sheared, density-stratified and temporally evolving mean flows
beneath growing or decaying waves (Phillips 2002) and also to the analysis of the
Langmuir circulations typical in laboratory experiments (Phillips 2005). An important
difference between the Craik–Phillips theory and S19 is, among other things, that the
leading-order wave field in the former does not refract due to the current field while
it refracts in the latter. As a result, S19 finds that, when the wave refraction causes
a temporal change in the wave properties, the force that drives Langmuir circulations
can be decreased by a factor of 5–10 (§ 6.3).

Proper accounting for the effect of the wave evolution involving refraction
requires great care. This is because a temporal change in the spatial variation of
the wavenumber or amplitude affects the wave-induced mass flux and its divergence.
This, in turn, affects the wave-averaged pressure and thereby the wave-averaged
circulations (§§ 6.1 and 6.2). (Note that the wave-averaged pressure is different from
the Bernoulli head appearing in the CL theory or McWilliams et al. (2004); that is,
the Bernoulli head is independent of the mass conservation, while the wave-averaged
pressure develops due to the mass conservation.) In order to accurately represent
these processes, S19 is developed without extrapolating the water flow into the region
outside the water and also without mapping the position of a physical quantity carried
by a water parcel onto a position (such as the parcel’s mean position) different from
the parcel’s instantaneous position. This approach is different from the approaches
used in the aforementioned previous theories, but it is a standard surface-following
approach (§§ 2.2 and 2.3) used in interfacial or boundary-layer problems (e.g. Hsu,
Hsu & Street 1981).

The value of this approach becomes clear when it is compared to other theories
in terms of how the wave-induced mass divergence is treated. For example, the
original CL theory (i.e. Craik & Leibovich 1976; Leibovich 1977) is formulated
based on the Eulerian wave averaging, which either neglects the water region above
the wave-trough height or extrapolates the water flow into the air region above
the troughs. Doing so, however, makes the wave’s mean momentum (Phillips 1977,
p. 40), the wave-induced mass flux and its connection to the wave-averaged pressure
invisible. Hasselmann (1971) improves the Eulerian mean formulation by taking into
consideration the wave-induced mass divergence as a source or sink of mass at the
surface. A similar approach is used also by McWilliams et al. (2004, p. 156). This
method, however, does not represent the vertical distribution of the wave-induced
mass divergence. It is uncertain whether or not this approximation is sufficient for
the problem considered in S19. Therefore, S19 uses the surface-following formulation,
which resolves the vertical distribution of the wave-induced mass divergence.
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Two-way coupling between a wave field and a roll–streak circulation 909

Furthermore, there is another group of theories (e.g. Garrett 1976; Smith 2006)
which consider this issue by vertically integrating the governing equations from
the bottom to the instantaneous water surface. This approach can naturally show
that a time-dependent wave-induced mass divergence affects the wave-averaged
pressure. However, it does not let us see the vertical structure of the flow. Like
the aforementioned extrapolation above the wave troughs, mapping of the flow field
can also affect the representation of the mass divergence. (Readers interested in
an example of mappings and some effects on the mass divergence are referred to
McIntyre (1988), Phillips (1998) and Ardhuin, Rascle & Belibassakis (2008, 2017).)
Therefore, S19 uses no mapping and thereby makes the effect of the wave undulation
on the mass divergence explicit (§§ 4 and 6.1). In this way, S19 aims to make the
representation of the mass divergence as transparent as possible.

In order to derive the wave-averaged dynamics, it is necessary to first determine
the motion and properties of the current-affected wave field. This is done in § 5. The
waves considered are propagating roughly in the streamwise direction because this is
the typical situation for Langmuir circulations. As mentioned already, the current and
wave velocity scales used in S19 are the same as in the CL theory; that is, the wave
orbital and current velocities are, at most, of first order and second order, respectively,
where the wave phase speed is of zeroth order. Then, the largest current effects –
such as the advection of the first-order wave velocities by the current velocities –
on the wave motion occur in the third-order governing equations. At the same time,
the largest forces – such as the advection of the current velocities by the current
velocities – pertinent to the wave-averaged dynamics are of fourth order. Now, note
that some wave–wave nonlinear effects – such as the advection of the first-order wave
velocities by the current-induced (i.e. third-order) wave velocities – are of fourth order.
Therefore, although the third-order wave dynamics might seem negligible to some
readers, in fact the third-order waves are involved in the leading-order balances of
the wave-averaged dynamics.

In the literature, there are three types of approaches to dealing with the current-
induced wave–wave nonlinear effects. The first approach (Craik & Leibovich 1976;
McWilliams et al. 2004) directly evaluates the nonlinear effects by using theoretical
solutions for the current-induced wave motions. Importantly, if the nonlinear effects
are evaluated without the current-induced wave motions, as done for example by
Mellor (2016, equations 1,2, and 35b), then the forces driving Langmuir circulations
cannot be properly derived. The second approach is that of the generalised Lagrangian
mean (GLM) theory, and it takes into account the nonlinear effects by taking a
product of a wave quantity and the equations of motion, as shown in equation
(B1) of Andrews & McIntyre (1978). (This operation yields terms that contain the
current-induced wave–wave nonlinear effects such as Ξj,3ūL

1uξj,1, where the notation
of Andrews & McIntyre (1978) is used. Note that Ξj,3 contains the leading-order
wave, and ūL

1uξj,1 contains the information of a current-induced wave. This can be
seen by comparing (6.8) of S19 to ūL

1uξj,1.) The third approach (Garrett 1976; Smith
2006) utilises an equation that relates the nonlinear effects to the evolution of the
wave’s mean momentum (see equation (3.8) of Garrett (1976)) based on the wave
action density conservation (Bretherton & Garrett 1968) together with an equation
for the wavenumber. S19 takes the approach of the first type. Thus, S19 derives
the current-affected wave solutions in § 5 and directly evaluates the nonlinear effects
in § 6. The physical meanings of the derived wave solutions are analysed in § 5.2.
Crucially, if one wishes to use the approach of the third type, then one must use the
wave dynamics – such as the wave action density conservation – which is valid in
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910 N. Suzuki

the presence of the complex circulation shown in figure 1. To the author’s knowledge,
such wave dynamics is not well known, and S19 derives the dynamics from the
current-affected higher-order dynamics in §§ 5.3 and 5.4.

In passing, note that there is an interesting similarity between Langmuir circulations
and the vortex–wave interaction (Hall & Smith 1991; Hall & Sherwin 2010;
Deguchi & Hall 2014a,b) seen in flat-wall boundary-layer flows. In both cases,
a non-oscillatory flow consisting of streamwise rolls and streaks coexists with an
oscillatory flow, and the oscillatory flow drives the rolls by the wave–wave nonlinear
forces. Moreover, the oscillatory flow is crucially modified by the non-oscillatory flow.
However, the wave fields in the flat-wall boundary-layer flows are neither interfacial
waves nor gravity waves. As a result, they are quite different from the wave field
found in S19. The physical processes that produce the current-induced wave–wave
nonlinear effects in Langmuir circulations are analysed in § 6.4.

In order to develop the wave and wave-averaged theories in §§ 5 and 6, S19
first lays out the foundational formulation including the flow components, the
surface-following coordinate system and the governing equations in § 2. Then, the
conditions of the wave field and circulation considered are detailed in § 3. After that,
two effects of the wave field on the divergence of the current velocity are explained in
§ 4. The main outcomes are the governing equations for the wave properties such as
the wave action density, namely (5.45), and those for the wave-averaged circulation,
namely (6.3), (6.5) and (6.6). S19 is less than comprehensive in that it does not
present long-term consequences of the governing equations (e.g. stability analysis)
nor a comparison with observations. (These topics are currently being investigated
and will be reported elsewhere.) However, it does provide the theory necessary to
enable these further investigations.

2. Formulation
2.1. Characteristic scales

The characteristic scales used throughout S19 are k and c[0], where k is the
magnitude of the wavenumber and c[0] is the leading-order term of the intrinsic
phase speed c. Some typical example values are (c[0], k) ≈ (3 m s−1, 1 rad m−1),
(9 m s−1, 0.1 rad m−1) and (22 m s−1, 0.02 rad m−1) for a wave whose wavelength
is 5 m, 50 m and 300 m, respectively. For any variable ϕ, its perturbation series is
denoted as

ϕ =
∑

n

ϕ[n], (2.1)

where n is an integer index and the superscript [n] denotes the nth term of the series.
When the nth term is non-dimensionalised with k and c[0], it is at most of O(εn),
where ε≡ 0.1 in S19. Note that ε is defined as 0.1 for two reasons. Firstly, specifying
a value of ε is necessary to evaluate the orders of the coefficients contained in some
terms of the governing equations. Secondly, this definition keeps the notation simple
because it then allows the order of any quantity appearing in S19 to be expressed
in terms of ε. In general, one may wish to introduce multiple scaling symbols:
e.g. one for the wave amplitude and another for the current speeds. However, this is
unnecessary here because S19 considers only a (typical oceanic) condition where the
wave amplitude is of O(0.1k−1) and the current speeds are, at most, of O(0.12c[0]).
(Note that common current speeds relevant to oceanic submesoscale and Langmuir
circulations are of order of 1–10 cm s−1 (e.g. Suzuki et al. 2016), neglecting the
intermittent currents that may be produced by wave breaking.) More details are given
in § 3.1.
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Two-way coupling between a wave field and a roll–streak circulation 911

2.2. Flow components
Throughout this paper, the following subscript indices are used for the tensor indices:
H = 1, 2; h= 1, 2; i= 1, 2, 3; and `= 1, 2, 3, t. Here, 1 and 2 are for the horizontal
dimensions, 3 is for the vertical dimension, and t is for the time dimension. The
Einstein summation convention is used throughout. At any position in the water, the
fluid velocity (u1,u2,u3)≡ (u, v,w) consists solely of the current velocity (uc

1,u
c
2,u

c
3)≡

(uc, vc, wc) and the wave velocity (uw
1 , uw

2 , uw
3 ) ≡ (u

w, vw, ww): that is, ui = uc
i +

uw
i . Every point of the physical Euclidean space is given both a Cartesian coordinate
(x, y, z) and a surface-following coordinate (x, y, ζ ), as illustrated in figure 1. The
horizontal coordinate system of the surface-following coordinate system is identical to
the Cartesian one. The surface labelled with a constant value of ζ follows the vertical
displacement due to the wave motion, as detailed in § 2.3.

All velocities are measured with respect to the Cartesian coordinate system,
and the directions of u, v and w are the same as the directions of x, y and z,
respectively, even when the position of a velocity is indicated with (x, y, ζ ). That
is, ui(x, y, ζ , t) = ui(x, y, z(x, y, ζ , t), t), where z(x, y, ζ , t) is the Cartesian vertical
coordinate of the position indicated by (x, y, ζ , t). In other words, the velocity of a
fluid parcel is described using the Cartesian velocity components, and its position is
indicated using a surface-following curvilinear coordinate system. This approach is
commonly used in interfacial or boundary-layer problems (e.g. Hsu et al. 1981; Hunt,
Leibovich & Richards 1988; Belcher & Hunt 1993) involving a surface undulation,
when it is desirable to distinguish the momentum (e.g. current) extrinsic to the surface
undulation from that (e.g. wave) intrinsic to the surface undulation. This distinction
can be often most meaningfully made with respect to a Cartesian basis while taking
into account the material-surface displacement induced by the flow intrinsic to the
surface undulation. Moreover, this description facilitates interpretation of observational
data (Hsu et al. 1981). A detailed discussion on the advantages of this approach over
other coordinate systems or other velocity descriptions is given in Hsu et al. (1981).

Consider a deep-water surface gravity wave field whose leading-order displacement
of the water surface is given by a(x, y, t) cos χ . Here, a is the amplitude and χ is
defined as

χ ≡ s(x, y, t)−Θ, (2.2)

where s(x, y, t) is the phase function and Θ is the phase shift parameter. The phase
shift parameter is a real variable and is independent of the coordinate variables. The
wavenumber kk̂h and the apparent frequency k(c+ k̂huD

h ) are defined as

kk̂h ≡ ∂hs= ∂hχ, k(c+ k̂huD
h )≡−∂ts=−∂tχ, (2.3a,b)

where (k̂1, k̂2) is the unit vector of the wavenumber and (uD
1 , uD

2 ) is the Doppler shift
velocity. From these definitions, it is evident that a, k, k̂h, c and uD

h are independent of
Θ , z and ζ . The apparent frequency or equivalently c and uD

h are unknown variables
to be determined as part of the wave solutions.

The wave solutions sought correct to O(ε3) in § 5 are functions of (x, y, ζ , t, Θ)
and periodic in Θ , that is,

uw
i (x, y, ζ , t, Θ)= uw

i (x, y, ζ , t, Θ + 2π). (2.4)

Importantly, a periodicity in time or space is not required. Hence, the amplitude or
wavenumber can change in time and space. Because the wave solutions at any value of
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912 N. Suzuki

Θ satisfy the governing equations, uw
i (x, y, ζ , t, Θ) represents a one-parameter family

of solutions which are all valid at (x, y, ζ , t). Denote the averaging over this solution
family at a coordinate (x, y, ζ , t) by

〈ϕ〉(x, y, ζ , t)≡
1

2π

∫ 2π

0
ϕ(x, y, ζ , t, Θ) dΘ (2.5)

for any function ϕ. Crucially, 〈 〉 exactly commutes with the spatial and temporal
partial differentiation operators with respect to (x, y, ζ , t). (In contrast, 〈 〉 may not
commute with the partial differentiation operators with respect to (x, y, z, t) because
the averaging 〈 〉 is not done at a fixed (x, y, z, t).) Moreover, 〈 〉 is idempotent:
〈〈ϕ〉〉 = 〈ϕ〉. If ϕ is independent of Θ , then 〈ϕ〉 = ϕ. These properties are essential
for mathematical rigour. Physically, 〈 〉 represents the ensemble averaging at a given
(x, y, ζ , t) over the ensemble of states having the same current and wave properties
(i.e. a and s) but different values of the phase shift parameter Θ . This use of Θ
follows that of Hayes (1970) and Grimshaw (1984). The wave motion consists of the
ensemble average Ui ≡ 〈uw

i 〉 and the oscillatory deviations from it, that is,

uw
i (x, y, ζ , t, Θ)= Ui(x, y, ζ , t)+ [uw

i (x, y, ζ , t, Θ)− Ui(x, y, ζ , t)]. (2.6)

2.3. Coordinate systems
Let us call the surface-following coordinate system the ζ -coordinate system. Recall
that (x, y, t, Θ) are identical between the Cartesian and ζ -coordinate systems. Also
recall that the z-coordinate – i.e. the height – of a point (x, y, ζ , t,Θ) is z(x, y, ζ , t,Θ).
Hereafter, let us use the following notation: for any variable ϕ,

∂ z
`ϕ ≡

∂ϕ(x, y, z, t, Θ)
∂x`

where (x1, x2, x3, xt)≡ (x, y, z, t), (2.7)

∂
ζ
` ϕ ≡

∂ϕ(x, y, ζ , t, Θ)
∂x`

where (x1, x2, x3, xt)≡ (x, y, ζ , t). (2.8)

Multiple operations are denoted by (∂
ζ
` )

n, e.g. (∂ζ2 )2 ≡ ∂
ζ
2 ∂

ζ
2 . Because a, k, k̂h, c and

uD
h are functions only of (x, y, t), their derivatives do not have the superscript z or ζ

on ∂`.
Now, let us more precisely define the constant-ζ surfaces to be used as the ζ -

coordinates. First, let the water surface be the constant-ζ surface labelled with ζ = 0.
Then, the height of the water surface – namely, z(x, y, ζ = 0, t, Θ) – satisfies ∂ζt z=
w− uh∂

ζ
h z. This is the standard kinematic boundary condition for the free surface. In

S19, let us limit our consideration to only those currents whose vertical velocities wc

are zero at the water surface. That is, w = ww at the water surface. Therefore, the
water surface satisfies ∂ζt z= ww

− uh∂
ζ
h z. Now, let us define every constant-ζ surface

in the interior by the following equation for its z-coordinate z(x, y, ζ , t, Θ):

∂ζt z=ww
− uh∂

ζ
h z. (2.9)

Here any initial condition or constant of integration should be chosen so that the
constant-ζ surfaces become identical to the constant-z surfaces in the absence of
waves (or any other disturbances such as geostrophically balanced surface tilts, which
are negligible at the orders concerned in S19). If ww in (2.9) is replaced with w,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

75
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.752


Two-way coupling between a wave field and a roll–streak circulation 913

then the constant-ζ surfaces defined in this way are the interior material surfaces.
However, (2.9) uses ww so that the constant-ζ surfaces follow the displacement due
to the wave vertical velocities, rather than the fluid vertical velocities. Thus, current
vertical velocity wc, which may be of O(ε2c[0]) in the interior, goes through (i.e. does
not move) the constant-ζ surfaces. Note that the kinematic boundary condition for
the water surface is the same as (2.9) at ζ = 0.

In S19, the amplitude is of first order, i.e. a=O(εk−1). Therefore, the perturbation
series of z(x, y, ζ , t, Θ) is

z(x, y, ζ , t, Θ)= ζ +
∑
n>1

z[n](x, y, ζ , t, Θ), (2.10)

where z[n] 6 O(εnk−1). The value of ζ is equal to the unperturbed height and
∑

z[n]
is the perturbation.

Let us define the constant-ζ layer containing a point (x, y, ζ , t, Θ) as the layer
containing the point and bounded by two infinitesimally close constant-ζ surfaces. The
concept of a layer is useful because the wave motion undulates both the slope and
thickness of a material layer. The constant-ζ surface and layer at (x, y, ζ , t, Θ) have
the following properties:

vertical motion of the surface, St ≡ ∂
ζ
t z= ∂ζt

∑
n>1

z[n], (2.11)

slope of the surface, Sh ≡ ∂
ζ
h z= ∂ζh

∑
n>1

z[n], (2.12)

layer-thickness perturbation, S3 ≡ ∂
ζ
3

∑
n>1

z[n], (2.13)

normalised layer thickness, J ≡ ∂ζ3 z= 1+ S3. (2.14)

Here J is the layer thickness normalised with the undeformed thickness and is also the
Jacobian determinant (i.e. dx dy dz= J dx dy dζ ). The commutation of the differential
operators yields the following identities: ∂ζ` J= ∂ζ` S3 and ∂ζ` Sm= ∂

ζ
mS` for m= 1, 2, 3, t.

Since ∂ z
3x, ∂ z

3y and ∂ z
3t are all zero, the standard chain rule for ∂ z

3 yields 1= ∂ z
3z=

(∂ z
3ζ )∂

ζ
3 z. Therefore, J−1

= ∂ z
3ζ . Then, the chain rules for ∂ z

3 and ∂ζ` yield

∂ z
3ϕ = (∂

z
3ζ )∂

ζ
3ϕ = J−1∂

ζ
3ϕ and ∂ z

` = ∂
ζ
` − S`J−1∂

ζ
3 . (2.15a,b)

2.4. Equations of motion
Hereafter, consider an inviscid and incompressible fluid having a uniform density ρ0.
Thus, the equations of motion with respect to the Cartesian coordinate system are

∂ z
t ui + uh∂

z
hui +w∂ z

3ui =−∂
z
i P, (2.16)

∂ z
i ui = 0, (2.17)

where P ≡ p/ρ0 + gz, with p the pressure and g the gravitational acceleration.
According to (2.15) and w=wc

+ww, (2.16) and (2.17) are equivalent to

momentum equations, ∂ζt ui + uh∂
ζ
h ui +wcJ−1∂

ζ
3 ui =−∂

ζ
i P+ SiJ−1∂

ζ
3 P, (2.18)

incompressibility, ∂
ζ
i ui − SiJ−1∂

ζ
3 ui = 0. (2.19)
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The lower and upper boundary conditions for deep-water waves without wind forcing
are

uw
i = 0 at ζ =−∞, (2.20)

1
g
∂ζt P−ww

+ uhSh = 0 at ζ = 0, (2.21)

where wc
= 0 at ζ = 0 in S19. Equation (2.21) is the joint condition between the

kinematic upper boundary condition (i.e. ∂ζt z = w − uh∂
ζ
h z) and the dynamic upper

boundary condition (i.e. p = const. at ζ = 0). The definition of P and the dynamic
upper boundary condition give ∂ζt P= g∂ζt z at ζ = 0. Combining this and the kinematic
upper boundary condition yields (2.21).

3. Conditions of the wave field and circulation
3.1. Scaling conditions

S19 considers the following conditions: a = O(εk−1), to consider a typical non-
breaking wave field; k̂1=O(1) and k̂2 6O(ε), because the wave propagation is roughly
in the streamwise direction; Uh 6O(ε2k̂hc[0]) and U3 6O(ε4c[0]), being consistent with
a largely uniform and first-order-irrotational wave field; and uc

i 6 O(ε2c[0]), like the
CL theory. (Higher-order irrotationality of the wave motion is not assumed in S19.)
However, unlike the CL theory, S19 does not assume that the current velocity field
is non-divergent. Therefore, S19 anticipates a condition ∂

ζ
i uc

i 6 O(ε4c[0]k), being
consistent with the order of ∂ζi Ui. The orders of all other quantities are listed in
appendix A. Many of these conditions are roughly depicted in figure 1. Importantly,
S19 considers only those current structures whose spanwise widths are wider than
roughly one wavelength so that the fourth and higher spanwise derivatives of uc

and wc are insignificant compared to their lower spanwise derivatives (see table 4).
The anticipated gradients of the wave properties due to the wave–current interaction
are specified later in table 5. Note that these scaling conditions are validly possible;
that is, these scales are self-consistent with the scales implied by the equations of
the wave properties and of the wave-averaged circulation derived later in §§ 5 and
6. An example of the self-consistency conditions is O(∂`ϕ) > O([c[0]k]−1∂t∂`ϕ) for
any quantity ϕ. This is a statement that ∂`ϕ remains negligible at least during one
characteristic period (c[0]k)−1, if it is initially negligible. To achieve self-consistency,
the scales specified here and the results in §§ 5 and 6 are iteratively derived. (This,
of course, does not eliminate a possibility of having another validly possible set of
scaling conditions.)

The aforementioned scaling conditions imply an important relationship between the
current velocity and its ensemble average (see § A.2 for derivation), namely,

uc
i = 〈u

c
i 〉 +O(ε4c[0]). (3.1)

3.2. The class of the current structures assumed in § 5
In § 5, the wave solutions are obtained for a particular class of current structures
having the form uc

=
∑

n>1 uc
(n) and wc

=
∑

n>1 wc
(n) where

uc
(1) =CA(1)U(1)(x, ζ , t),

uc
(n) = BA(n) cos

(√
K2

A(n) − k2y+CA(n)

)
U(n)(x, ζ , t) for n > 2,

}
(3.2)
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Two-way coupling between a wave field and a roll–streak circulation 915

0
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-10

kΩ
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0 π 2π 3π 4π
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uc /c
[0

]

(÷ 10-2)

FIGURE 2. An example of the current structures satisfying (3.2) and (3.3). The wave
solutions in § 5 are derived assuming that the current field satisfies (3.2) and (3.3). The
background colour shows uc/c[0], and the contours show the streamfunction of (vc, wc).
The sense of rotation of each roll is indicated by the arrows. In this example, KA(2) =

KB(2) = 1.15k, uc
= uc

(1) + uc
(2) = U(1) − cos(

√
K2

A(2) − k2y + π)U(2), the streamfunction

of (vc, wc) = (vc, wc
(2)) is −(K2

B(2) − k2)−1/2 cos(
√

K2
B(2) − k2y + 0.5π)W(2), U(1) = U(2) =

1.5e0.6kζ ε2c[0] and W(2) =−3kζe0.3kζ ε2c[0].

and

wc
(1) =CB(1)W(1)(x, ζ , t),

wc
(n) = BB(n) cos

(√
K2

B(n) − k2y+CB(n)

)
W(n)(x, ζ , t) for n > 2.

}
(3.3)

The subscript indices are surrounded with parentheses to avoid possible confusion with
the tensor indices. In (3.2) and (3.3), BA(n), CA(n), BB(n) and CB(n) are real constants;
KA(n) and KB(n) (for n > 2) are real parameters in the range of k< KA(n) 6 1.15k and
k < KB(n) 6 1.15k (see § A.3 for their scaling conditions); and U(n) and W(n) may be
any functions of (x, ζ , t) as long as they satisfy the scaling conditions. The upper
bound (i.e. 1.15k) of KA(n) and KB(n) gives the narrowest (i.e. 88 % of the wavelength
2πk−1) current structure considered in S19. For theoretical consistency, uc

(n) and wc
(n)

should individually satisfy the scaling conditions. Figure 2 shows an example.

4. Two effects of the wave field on the divergence of the current velocity
According to the chain rule (2.15), the divergence of the current velocity is equal

to
∂ z

i uc
i = ∂

ζ
i uc

i − SiJ−1∂
ζ
3 uc

i . (4.1)

Note that, according to (3.1), the first term on the right-hand side is, to third order,
independent of the phase shift parameter Θ . The wave field can make this term non-
zero via the divergence of the wave-driven mass fluxes (as detailed in § 6.1).

By contrast, the second term on the right-hand side depends on Θ at third order.
This term shows that the divergence of the current velocity fluctuates with Θ when the
current field is vertically sheared and coexists with the undulation Si. Thus, hereafter,
this term is called the undulation-induced divergence of the current. Figure 3 shows
how a vertical gradient of the current yields the undulation-induced divergence when
the wave generates the layer-thickness perturbation S3 or slope Sh. The undulation-
induced divergence is crucial because it induces important higher-order wave motions.
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uc
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√c

1
2

3
4

1
2

3
4

..
..

..
..

x

z

z

(a)

(b)

FIGURE 3. The mechanism responsible for the undulation-induced divergence of the
current velocity field. The dashed lines are constant-ζ surfaces, and the arrows and � are
the currents. The currents are uniform along each constant-ζ surface. The wave motion
displaces water parcels and the current velocities carried by them. In panel (a), ∂ζ3 uc is
positive (only the relative difference from uc at the layer middle is shown). As a result,
an excess mass is incoming at contour 2 and outgoing at contour 4 due to the mass
flux ρ0uc through the tilted constant-ζ surfaces. In panel (b), ∂ζ3 wc

≈ −∂
ζ
2 v

c is positive
(only the relative difference of wc at the two surfaces is shown). As a result, an excess
mass is outgoing at contour 1 and incoming at contour 3, because wc carries out an
equal amount of water from each contour whereas vc carries in the largest amount of
water at contour 3, which has the largest sidewalls. For each panel, the sign of the
undulation-induced divergence changes if the current gradient is negative.

These higher-order wave motions cancel the undulation-induced divergence so that the
fluid remains incompressible (§ 5.2).

5. The motion and properties of the current-affected wave field
5.1. The wave solutions correct to third order

Using (2.1), the governing equations (2.9) and (2.18)–(2.21) can be written as

∞∑
m,n,q=0

(∂ζt u[m]i + u[n]h ∂
ζ
h u[m]i +wc(J−1)[q]∂

ζ
3 u[m]i + ∂

ζ
i P[m] − S[n]i (J

−1)[q]∂
ζ
3 P[m])= 0, (5.1)

∞∑
m,n,q=0

(∂
ζ
i u[m]i − S[n]i (J

−1)[q]∂
ζ
3 u[m]i )= 0, (5.2)

∞∑
m,n=0

(S[m]t −ww[m]
+ u[m]h S[n]h )= 0, (5.3)

∞∑
m=0

uw
i
[m]
= 0 at ζ =−∞, (5.4)

∞∑
m,n=0

(
1
g
∂ζt P[m] −ww[m]

+ u[m]h S[n]h

)
= 0 at ζ = 0, (5.5)
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Two-way coupling between a wave field and a roll–streak circulation 917

where m, n and q are integers, and S[n]` = (
∑n

m=1 ∂
ζ
` z[m])[n]. Note that S[0]` = 0, u[0]i = 0,

P[0] = 0 and J[0] = 1 because ak= O(ε). Also note that (J−1)[0] = 1, (J−1)[1] =−S3
[1],

(J−1)[2] = (S3
[1])2 − S3

[2] and (J−1)[3] = 2S3
[1]S3

[2]
− (S3

[1])3 − S3
[3]. This follows from

(2.14) and the fact that J−1 can be expressed in series form as J−1
= 1− S3 + S2

3 −

S3
3 + · · · because J = 1+ S3.
Now, as mentioned in § 2.2, we look for a local wave solution satisfying z[1] =

a(x, y, t) cos χ at the water surface (ζ = 0). According to the scaling conditions (§ 3),
the governing equations (5.1)–(5.5) yield the first-order equations as

∂ζt uw
i
[1]
+ ∂

ζ
i P[1] =O(ε2c[0]

2
k), (5.6a)

∂
ζ
i uw

i
[1]
=O(ε2c[0]k), (5.6b)

St
[1]
−ww[1]

=O(ε2c[0]), (5.6c)
uw

i
[1]
=O(ε2c[0]) at ζ =−∞, (5.6d)

(1/g)∂ζt P[1] −ww[1]
=O(ε2c[0]) at ζ = 0. (5.6e)

The solutions for the unknowns in (5.6) are

uw
h
[1]
= k̂hc[0]akekζ cos χ, (5.7a)

ww[1]
= c[0]akekζ sin χ, (5.7b)

P[1] = c[0]
2
akekζ cos χ, (5.7c)

z[1] = aekζ cos χ, (5.7d)

c[0]
2
= g/k. (5.7e)

One can verify these solutions by substituting (5.7) in (5.6). These solutions are
consistent with the standard (Eulerian) deep-water linear wave solutions obtained
in the Cartesian coordinate system, because they are the leading-order terms of the
standard solutions when ekz in the standard solutions is rewritten using (2.10).

Substitution of (5.7) in (5.1)–(5.5) yields the second-order equations as

∂ζt uw
h
[2]
+ ∂

ζ
h P[2] + k̂hc[0]c[1]ak2ekζ sin χ =O(ε3c[0]

2
k), (5.8a)

∂ζt ww[2]
+ ∂

ζ
3 P[2] − c[0]c[1]ak2ekζ cos χ =O(ε3c[0]

2
k), (5.8b)

∂
ζ
i uw

i
[2]
=O(ε3c[0]k), (5.8c)

∂ζt z[2] −ww[2]
+ c[1]akekζ sin χ − 1

2 c[0]a2k2e2kζ sin(2χ)=O(ε3c[0]), (5.8d)

uw
i
[2]
=O(ε3c[0]) at ζ =−∞, (5.8e)

1
g
∂ζt P[2] −ww[2]

−
1
2

c[0]a2k2 sin(2χ)+ c[1]ak sin χ =O(ε3c[0]) at ζ = 0. (5.8f )

The solutions for the unknowns in (5.8) are

uw
h
[2]
=

1
2 k̂hc[0]a2k2e2kζ cos(2χ)+ Uh, (5.9a)

ww[2]
=

1
2 c[0]a2k2e2kζ sin(2χ), (5.9b)

P[2] = 1
2 c[0]

2
a2k2e2kζ cos(2χ), (5.9c)

z[2] = 1
2 a2ke2kζ cos(2χ), (5.9d)

c[1] = 0, (5.9e)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

75
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.752


918 N. Suzuki

5.0

2.5

0

-2.5

-5.0
0 π

ç (rad)
2π
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 P

[1
] -

 P
[2

]  (c
[0

] c[0
] )

(÷ 10-3)

FIGURE 4. The second-order errors (at ζ = 0) in the first-order pressure solutions of the
Eulerian theory and of S19 are shown by the difference between Pplot and S19’s second-
order-accurate solution P[1] + P[2] shown in (5.7c) and (5.9c). For the dotted line, Pplot is
the first-order solution of the Eulerian theory, c[0]2akekz cos χ . For the dashed line, Pplot is
the first-order solution of S19, P[1]. For the solid line, Pplot is the second-order-accurate
solution of the Eulerian theory, c[0]2akekz cos χ − (1/2)c[0]2a2k2e2kz.

where Uh is so far any function that satisfies Uh = 0 at ζ = −∞ and its scaling
conditions listed in § 3. One can verify these solutions by substituting (5.9) into
(5.8). The velocity solutions (5.9a) and (5.9b) are consistent with the standard
(Eulerian) solutions of the second-order, deep-water waves if Uh is constrained to
be Uh = (1/2)c[0]a2k2e2kζ k̂h + O(ε3c[0]). This additional constraint is a result of the
wave irrotationality assumed in the standard theory. (One can verify this by applying
the chain rule (2.15) to ∇ × uw.) In contrast, Uh is not constrained at this point
because the wave irrotationality at second and higher orders is not assumed in
S19. For the pressure, the second-order-accurate solution P[1] + P[2] is consistent
with the second-order-accurate Eulerian solution c[0]2akekz cos χ − (1/2)(c[0])2a2k2e2kz

known for the Stokes waves (Dean & Dalrymple 1991). This is shown by the
solid line in figure 4. Note that the Eulerian first-order solution c[0]2akekz cos χ has
a second-order mean error (the dotted line in figure 4). Therefore, the Eulerian
second-order correction is a correction in the mean: −(1/2)(c[0])2a2k2e2kz. In contrast,
the first-order solution P[1] has a second-order second-harmonic error (the dashed line
in figure 4). Therefore, it results in (5.9c).

Substitution of the first-order and second-order wave solutions (5.7) and (5.9) in the
governing equations (5.1)–(5.5) yields the third-order governing equations as listed in
appendix B. The third-order wave solutions can be obtained by using the complex
Fourier series

uw
i
[3]
=

3∑
n=1

u{n}i einχ , P[3] =
3∑

n=1

P{n}einχ , z[3] =
3∑

n=1

z{n}einχ , (5.10a−c)

where u{n}i , P{n} and z{n} are third-order complex functions. Do not confuse the
superscripts [n] and {n}; the former denotes the nth-order term of the perturbation
series, and the latter denotes the nth harmonic of the third-order solutions. The
harmonics other than n = 1, 2, 3 are not needed because the terms appearing in the
third-order equations do not contain the other harmonics.
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Two-way coupling between a wave field and a roll–streak circulation 919

In addition to the governing equations in appendix B, the wave solutions being
sought are constrained by the phase function properties (2.3) and the lower-order
dispersion relations (5.7e) and (5.9e). In particular, these equations imply that

∂`c[0] =−
c[0]

2k
∂`k, (5.11)

∂t(kk̂h)= ∂t∂hχ = ∂h∂tχ =−∂h

(
kc[0] + k

∑
n>2

c[n] + kk̂HuD
H

)
, (5.12)

∂tk=−
1
2

c[0]k̂h∂hk− k̂h∂h

(
k
∑
n>2

c[n] + kk̂HuD
H

)
. (5.13)

Here, (5.7e) yields (5.11); (2.3) and (5.9e) yield (5.12); and (5.11), (5.12) and
k̂h∂tk̂h = 0 yield (5.13).

The solutions of uw
i
[3], P[3] and z[3] are derived in appendix D and presented in a

physically understandable way in § 5.2. Crucially, the third-order dynamics determines
not only uw

i
[3], P[3] and z[3] but also the solution of k̂1uD

1 + c[2] and the evolution of a.
Namely, substituting (D 1) and (D 2c) into the upper boundary condition (B 6a) yields
the equations for ∂ta and k̂1uD

1 + c[2]. The one for ∂ta is

∂ta+ cg
h∂ha=−

a
2

Dg
−

1
4c[0]k

i∂t Im(G)−
1
2

Re(G)+O(ε4c[0]), (5.14a)

where

cg
h ≡

c[0]

2
k̂h, (5.14b)

Dg
≡ ∂hcg

h −
∑
n>1

k(KB(n) + k)
KB(n)

∫ 0

−∞

e(KB(n)+k)ζ ′(∂
ζ
3 wc

(n))
′ dζ ′, (5.14c)

G≡
2∂tC(2)

g
+

∑
n>1

cos
(√

K2
(n) − k2y+C(n,4)

) [
K(n) − k

c[0]k
iC(n,3) +

K(n) + k
gk

∂tC(n,3)

]
.

(5.14d)

Here, (∂ζ3 wc
(n))
′ is ∂ζ3 wc

(n) at (x, y, ζ ′, t) and KB(n), C(2), C(n,3), C(n,4), and K(n) are defined
in table 1; cg

h is the leading-order group velocity; Dg is the horizontal divergence of cg
h

and of the surface water (that is, ∂ζ3 wc
=−∂

ζ
2 v

c
+O(ε3c[0]k)); and G is the contribution

to the upper boundary condition made by the pressure homogeneous solution P{1}H
shown later in (5.23a). Importantly, the orders of ∂4

2 G, ∂t∂2G, ∂2
t G and ∂1G are fourth

or higher, according to the scaling conditions in § A.4. Note that the advective effect
of the current – that is, uD

h ∂ha – is negligible at this order. The most crucial result of
(5.14a) is that the roll (i.e. ∂ζ3 wc) affects the amplitude evolution at its leading-order
balance.

The solution of k̂1uD
1 + c[2] may be split (according to the dependence on uc) as

uD
1 = uc(ζ = 0)−

∑
n>1

KA(n) + k
2KA(n)

∫ 0

−∞

e(KA(n)+k)ζ ′(∂
ζ
3 uc

(n))
′ dζ ′ +O(ε3c[0]), (5.15a)
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A≡ 2c[0]ak2ekζ∂
ζ
3 (k̂1uc)

B≡−i2c[0]ak2ekζ∂
ζ
3 wc

C≡ 2c[0]ak2ekζ∂
ζ
3 (k̂1U1 +

1
4 c[0]a2k2e2kζ )

D≡ iekζ ( 1
2 gak̂1∂1k+ 2gkk̂1∂1a+ gak∂hk̂h)+ iζekζ (2gakk̂1∂1k)

E≡ ekζg∂2∂2a
F≡−iekζ c[0]ak∂tk

A(n) ≡ 2c[0]ak2ekζ∂
ζ
3 (k̂1uc

(n)) so that A=
∑

n>1 A(n)

B(n) ≡−i2c[0]ak2ekζ∂
ζ
3 wc

(n) so that B=
∑

n>1 B(n)
αD ≡−ig(a/2)k̂1∂1k

βD ≡ ic[0]2(a/4)k̂1∂1k− igk̂1∂1a− ig(a/2)∂hk̂h

γD ≡ ic[0]2(a/8)∂2k̂2

KA(1) ≡ k
KB(1) ≡ k

KA(n) for n > 2: k<KA(n) 6 1.15k (§ 3.2 and § A.3 for details)
KB(n) for n > 2: k<KB(n) 6 1.15k (§ 3.2 and § A.3 for details)

C(2): complex variable (§ A.4 for details)
C(n,3): complex variable (§ A.4 for details)

C(n,4): real variable (§ A.4 for details)
K(n): k<K(n) 6 1.15k (§ A.4 for details)

TABLE 1. Definitions of some variables.

c[2] =
c[0]a2k2

4
+ 2k

∫ 0

−∞

e2kζ ′ k̂1U
′

1 dζ ′ −
c[0]∂2∂2a

4ak2
−

i Im(G)
2ak

+
∂t Re(G)
4c[0]ak2

+O(ε3c[0]),

(5.15b)

where uc(ζ = 0)≡ uc(x, y, ζ = 0, t), (∂ζ3 uc
(n))
′
≡ (∂

ζ
3 uc

(n))(x, y, ζ ′, t) and U′1≡U1(x, y, ζ ′, t).
A subset of (5.15) is obtained by Stewart & Joy (1974) for a horizontally uniform
current with wc

= 0 and ∂2∂2a= 0 and G= 0. For irrotational waves, the value of Uh

is constrained to be Uh = (1/2)c[0]a2k2e2kζ k̂h + O(ε3c[0]). Thus, for irrotational waves
satisfying ∂2∂2a= 0 and G= 0, (5.15b) simplifies to c[2]= c[0]a2k2/2, which is known
as the second-order phase speed of the Stokes waves (Hui & Tenti 1982).

5.2. Physical interpretation of the third-order wave solutions: seven wave types
The third-order solutions derived in appendix D consist of seven types of independent
wave motions, hereafter called H-, A-, B-, C-, D-, E- and F-waves. Each is
characterised by a unique divergence and force balance. To see this, write the
incompressibility equation (2.17) as ∂ z

i (uw
i
[1]
+ uw

i
[2]
− Ui) + ∂

z
i Ui + ∂

z
i uc

i = −∂
z
i uw

i
[3]
+

O(ε4c[0]k). Each term on the left-hand side is divergent and therefore requires
divergent third-order waves that cancel their divergence. In addition to the divergent
waves, there are divergence-free waves required by the boundary conditions or
momentum conservation. To see this, write the momentum equations (2.18) as

∂ζt uw
i
[3]
+ ∂

ζ
i P[3] + FAi + FBi + FCi + FDi + FEi + FFi =O(ε4c[0]

2
k), (5.16)
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where

FAi ≡ (uc
h − uD

h )∂
ζ
h uw

i
[1], (5.17)

FBi ≡wc∂
ζ
3 uw

i
[1], (5.18)

FCi ≡ [uw
h ∂

ζ
h uw

i − SiJ−1∂
ζ
3 P] − c[2]k̂h∂

ζ
h uw

i
[1], (5.19)

(FD1, FD2, FD3)≡ ((∂tk̂1)c[0]akekζeiχ
+ g∂ζ1 (aekζ )eiχ , (∂tk̂2)c[0]akekζeiχ , 0), (5.20)

(FE1, FE2, FE3)≡ (0, g∂ζ2 (aekζ )eiχ , 0), (5.21)

(FF1, FF2, FF3)≡ (k̂1∂
ζ
t (c
[0]akekζ )eiχ , 0,−i∂ζt (c

[0]akekζ )eiχ). (5.22)

Note that, according to the lower-order wave solutions (5.7) and (5.9), the sum
FDi + FEi + FFi is the third-order imbalance in the Doppler-shifted linear balance of
the lower-order waves; that is, ∂ζt (u

w
i
[1]
+ uw

i
[2])+ ∂

ζ
i (P[1]+P[2])+ (uD

h + c[2]k̂h)∂
ζ
h uw

i
[1]
=

FDi + FEi + FFi +O(ε4c[0]2k). This imbalance becomes significant when, for example,
the current causes a non-zero ∂ta or ∂tk̂2. Based on these divergence balance and
momentum balance, we can decompose the derived third-order solutions in the
following way.

5.2.1. H-wave
The H-wave corresponds to the homogeneous pressure solution. It exists to satisfy

the upper boundary condition for the third harmonics and the horizontal boundary
conditions for all harmonics. Define the H-wave as uHi≡ u{1}Hi e

iχ
+
∑3

n=2 u{n}i einχ , PH≡

P{1}H eiχ
+
∑3

n=2 P{n}einχ and zH ≡ z{1}H eiχ
+
∑3

n=2 z{n}einχ , where

P{1}H =C(2)ekζ
+

∑
n>1

C(n,3) cos
(√

K2
(n) − k2y+C(n,4)

)
eK(n)ζ , (5.23a)

u{1}H =
k̂1

c[0]
P{1}H −

ik̂1

g
∂ζt P{1}H , (5.23b)

v
{1}
H =−

i
c[0]k

∂
ζ
2 P{1}H −

1
gk
∂
ζ
2 ∂

ζ
t P{1}H , (5.23c)

w{1}H =−
i

c[0]k
∂
ζ
3 P{1}H −

1
gk
∂
ζ
3 ∂

ζ
t P{1}H , (5.23d)

z{1}H =
1
gk
∂
ζ
3 P{1}H − i

2
gc[0]k2

∂
ζ
3 ∂

ζ
t P{1}H . (5.23e)

Here P{2}, u{2}i , z{2}, P{3}, u{3}i and z{3} are given by (D 4) and (D 5), and C(2), C(n,3),
C(n,4) and K(n) are defined in § A.4. The H-wave is the only wave type that contains
the second and third harmonics. The H-wave satisfies

∇ · uH = ∂
z
i uHi =O(ε4c[0]k), (5.24)

∂ζt uHi + ∂
ζ
i PH =O(ε4c[0]

2
k). (5.25)

Therefore, the H-wave is divergence-free to third order, and it is driven solely by the
boundary conditions.
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5.2.2. A-wave
The A-wave occurs due to the coexistence of the leading-order wave uw

i
[1] and the

vertical shear of the along-roll jet ∂ζ3 uc
1. Define the A-wave as uAi≡u{1}Ai eiχ , PA≡P{1}A eiχ

and zA ≡ z{1}A eiχ , where P{1}A =
∑

n>1 P{1}A(n) and

P{1}A(n) =
∫ 0

ζ ′=ζ

eKA(n)(ζ−ζ ′)
A(n)(x, y, ζ ′, t)

2KA(n)
dζ ′

+

∫ ζ

ζ ′=−∞

eKA(n)(ζ ′−ζ )
A(n)(x, y, ζ ′, t)

2KA(n)
dζ ′, (5.26a)

u{1}A =
k̂1

c[0]
P{1}A + k̂1akekζ k̂1(uc

1 − uD
1 ), (5.26b)

v
{1}
A =−

i
c[0]k

∂
ζ
2 P{1}A , (5.26c)

w{1}A =−
i

c[0]k
∂
ζ
3 P{1}A − iakekζ k̂1(uc

1 − uD
1 ), (5.26d)

z{1}A =
1
gk
∂
ζ
3 P{1}A +

2a
c[0]

ekζ k̂1(uc
1 − uD

1 ). (5.26e)

Here uD
1 is given by (5.15a), and A(n) and KA(n) are given in table 1. The A-wave is

divergent and cancels the undulation-induced divergence of the current shown in (4.1)
and figure 3(a), namely,

∂ z
i uAi − S[1]h ∂

ζ
3 uc

h =O(ε4c[0]k). (5.27)

The A-wave satisfies the momentum balance as

∂ζt uAi + ∂
ζ
i PA + FAi =O(ε4c[0]

2
k). (5.28)

Note that uc
h − uD

h in (5.17) represents the vertically sheared part of the horizontal
current. Therefore, FAi is the advection of the leading-order wave velocities uw

i
[1] by

the vertically sheared part of the horizontal current. Figure 5 shows the velocities
of the A-wave due to the current shown in figure 2 and the leading-order wave
having (k̂1, k̂2) = (1, 0). Note that uA is in phase with ∂

ζ
1 ww[1]. This correlation is

crucial because it converts the oscillatory motion ww[1] into a non-oscillatory vertical
motion via the advection uA∂

ζ
1 ww[1] at the fourth-order balance. The A-wave is

divergent at the places corresponding to contours 2 and 4 of figure 3(a) to cancel
the undulation-induced divergence of the current. The A-wave ceases towards the
upwelling section because the vertical shear of uc

1 ceases towards the upwelling
section in this example (figure 2). We have that wA is negligible because the first
and second terms on the right-hand side of (5.26d) largely cancel each other. On the
other hand, uA is approximately twice as large as each term on the right-hand side of
(5.26b) because the two terms on the right-hand side of (5.26b) are similar to each
other. The profile of uc

1 in this example and the corresponding uD
1 computed from

(5.15a) are shown in figure 6.

5.2.3. B-wave
The B-wave occurs due to the coexistence of the leading-order wave and the roll.

Define the B-wave as uBi≡u{1}Bi eiχ , PB≡P{1}B eiχ and zB≡ z{1}B eiχ , where P{1}B =
∑

n>1 P{1}B(n)
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0.3

0
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-1.2

uA at ky = 0 √A at ky = 0 wA at ky = 0

uA at ky = 0.9π √A at ky = 0.9π wA at ky = 0.9π

uA at ky = 1.8π √A at ky = 1.8π wA at ky = 1.8π

(b) (c)

(e) (f)

(h) (i)

FIGURE 5. The A-wave at the downwelling section (ky= 0), at the middle section (ky=
0.9π) and at the upwelling section (ky = 1.8π) shown in figure 2. The colour shows
uAi/(ε

3c[0]).

0

-1

-2

kΩ

0 0.02

uc/c[0] and uD/c[0] 
0 0.02

uc/c[0] and uD/c[0] 
0 0.02

uc/c[0] and uD/c[0] 

ky = 0 ky = 0.9π ky = 1.8π(a) (b) (c)

FIGURE 6. Plots of uc
1 (solid) and uD

1 (dashed) at the downwelling section (ky = 0), at
the middle section (ky= 0.9π) and at the upwelling section (ky= 1.8π) in figure 2. The
velocities in (c) are zero.

and

P{1}B(n) =
∫ 0

ζ ′=ζ

eKB(n)(ζ−ζ ′)
B(n)(x, y, ζ ′, t)

2KB(n)
dζ ′

+

∫ ζ

ζ ′=−∞

eKB(n)(ζ ′−ζ )
B(n)(x, y, ζ ′, t)

2KB(n)
dζ ′, (5.29a)
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FIGURE 7. The B-wave at the downwelling section (ky= 0), at the middle section (ky=
0.9π) and at the upwelling section (ky = 1.8π) shown in figure 2. The colour shows
uBi/(ε

3c[0]).

u{1}B =
k̂1

c[0]
P{1}B − ik̂1akekζwc, (5.29b)

v
{1}
B =−

i
c[0]k

∂
ζ
2 P{1}B , (5.29c)

w{1}B =−
i

c[0]k
∂
ζ
3 P{1}B − akekζwc, (5.29d)

z{1}B =
1
gk
∂
ζ
3 P{1}B − i

a
c[0]

ekζwc. (5.29e)

The B(n) and KB(n) are given in table 1. The B-wave exists to cancel the undulation-
induced divergence of the current due to ∂ζ3 wc and S3 shown in (4.1) and figure 3(b),
namely,

∂ z
i uBi − S[1]3 ∂

ζ
3 wc
=O(ε4c[0]k). (5.30)

Therefore, according to (4.1), (5.27) and (5.30), the A- and B-waves cancel the current
divergence to third order: ∇ · (uc

+ uA + uB)=O(ε4c[0]k). The B-wave satisfies

∂ζt uBi + ∂
ζ
i PB + FBi =O(ε4c[0]

2
k). (5.31)

The FBi defined in (5.18) is the vertical advection of the leading-order wave
momentum by the vertical current. Figure 7 shows the velocities of the B-wave due to
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the current shown in figure 2 and the leading-order wave having (k̂1, k̂2)= (1, 0). The
B-wave is divergent at the places corresponding to contours 1 and 3 of figure 3(b).
Unlike the A-wave, the B-wave has significant vB and wB.

5.2.4. C-wave
The C-wave exists for the same reason as the A-wave except that the relevant flow

is uc
1 for the A-wave and U1 for the C-wave. Define the C-wave as uCi≡ u{1}Ci eiχ , PC≡

P{1}C eiχ and zC ≡ z{1}C eiχ , where

P{1}C =
∫ 0

ζ ′=ζ

ek(ζ−ζ ′)C(x, y, ζ ′, t)
2k

dζ ′ +
∫ ζ

ζ ′=−∞

ek(ζ ′−ζ )C(x, y, ζ ′, t)
2k

dζ ′, (5.32a)

u{1}C =
k̂1

c[0]
P{1}C + k̂1akekζ

(
k̂1U1 − c[2] +

1
2

c[0]a2k2e2kζ

)
+ ik̂1

a
c[0]

ekζ∂tc[2], (5.32b)

v
{1}
C =−

i
c[0]k

∂
ζ
2 P{1}C , (5.32c)

w{1}C =−
i

c[0]k
∂
ζ
3 P{1}C − iakekζ

(
k̂1U1 − c[2] +

1
2

c[0]a2k2e2kζ

)
+

a
c[0]

ekζ∂tc[2], (5.32d)

z{1}C =
1
gk
∂
ζ
3 P{1}C +

2a
c[0]

ekζ

(
k̂1U1 − c[2] +

3
8

c[0]a2k2e2kζ

)
+ i

3a
g

ekζ∂tc[2]. (5.32e)

Here, C is defined in table 1, and c[2] and ∂tc[2] are given by (5.15b) and (D 3b). The
C-wave is divergent and cancels the undulation-induced divergence of Uh, namely,

∂ z
i uCi − S[1]h ∂

ζ
3Uh =O(ε4c[0]k). (5.33)

Then, because ∂ z
i Ui=−S[1]h ∂

ζ
3Uh+O(ε4c[0]k) according to the chain rule (2.15) and the

scaling conditions in § 3, the C-wave cancels the divergence of Ui to third order: that
is, ∂ z

i (uCi + Ui)=O(ε4c[0]k). The C-wave is driven by FCi as

∂ζt uCi + ∂
ζ
i PC + FCi =O(ε4c[0]

2
k). (5.34)

According to the first- and second-order wave solutions (5.7) and (5.9) as well as the
scaling conditions in § 3, the term surrounded by the square brackets in (5.19) satisfies

[uw
h ∂

ζ
h uw

i − SiJ−1∂
ζ
3 P] = (Uh +

1
2 c[0]a2k2e2kζ k̂h)∂

ζ
h uw

i
[1]
+O(ε4c[0]

2
k). (5.35)

Therefore, FCi is analogous to FAi, with uc
h corresponding to Uh + (1/2)c[0]a2k2e2kζ k̂h

and uD
h corresponding to c[2]k̂h.

5.2.5. D-wave
The D-wave exists due to the divergence of the Θ-dependent motions of the lower-

order waves (i.e. uw
i
[1]
+ uw

i
[2]
− Ui). This divergence becomes non-zero to third order

when the wave properties (a, k, k̂h) vary. Define the D-wave as uDi ≡ u{1}Di eiχ , PD ≡

P{1}D eiχ and zD ≡ z{1}D eiχ , where

P{1}D = αDζ
2ekζ
+ βDζekζ

+ γDekζ , (5.36a)
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u{1}D =
k̂1

c[0]
P{1}D −

ik̂1

g
∂ζt P{1}D − iaekζ∂tk̂1 − ic[0]∂ζ1 (aekζ ), (5.36b)

v
{1}
D =−

i
c[0]k

∂
ζ
2 P{1}D −

1
gk
∂
ζ
2 ∂

ζ
t P{1}D − iaekζ∂tk̂2 −

a
c[0]k

ekζ∂t∂tk̂2, (5.36c)

w{1}D =−
i

c[0]k
∂
ζ
3 P{1}D −

1
gk
∂
ζ
3 ∂

ζ
t P{1}D , (5.36d)

z{1}D =
1
gk
∂
ζ
3 P{1}D − i

2
gc[0]k2

∂
ζ
3 ∂

ζ
t P{1}D . (5.36e)

Here, αD, βD and γD are defined in table 1; ∂tk̂1, ∂tk̂2 and ∂t∂tk̂2 are given by (D 3c),
(C 5) and (D 3d); and ∂ζt P{1}D to third order is given by (5.36a) and (C 5). The D-wave
satisfies

∂ z
i (uDi + uw

i
[1]
+ uw

i
[2]
− Ui)=O(ε4c[0]k), (5.37)

∂ζt uDi + ∂
ζ
i PD + FDi =O(ε4c[0]

2
k). (5.38)

Therefore, the D-wave cancels the divergence of the lower-order Θ-dependent motions,
and it is forced by the imbalance FDi due to a non-zero ∂tk̂h, ∂1a or ∂1k in (5.20).

5.2.6. E-wave
The E-wave exists due to a non-zero ∂2a or ∂2k. Define the E-wave as uEi≡ u{1}Ei eiχ ,

PE ≡ P{1}E eiχ and zE ≡ z{1}E eiχ , where

P{1}E =−
g
2k
(∂2∂2a)ζekζ

+
g

8k2
(∂2∂2a)ekζ , (5.39a)

u{1}E =
k̂1

c[0]
P{1}E −

ik̂1

g
∂ζt P{1}E , (5.39b)

v
{1}
E = −

i
c[0]k

∂
ζ
2 P{1}E −

1
gk
∂
ζ
2 ∂

ζ
t P{1}E − ic[0]∂ζ2 (aekζ )

−
1
k

ekζ∂2∂ta+
i

c[0]k2
ekζ∂2∂t∂ta, (5.39c)

w{1}E =−
i

c[0]k
∂
ζ
3 P{1}E −

1
gk
∂
ζ
3 ∂

ζ
t P{1}E , (5.39d)

z{1}E =
1
gk
∂
ζ
3 P{1}E − i

2
gc[0]k2

∂
ζ
3 ∂

ζ
t P{1}E . (5.39e)

Here ∂ta and ∂t∂ta are given by (5.14a) and (D 3a). Equation (5.14a) and (5.39a) give
∂ζt P{1}E to third order. The E-wave satisfies

∂ z
i uEi =O(ε4c[0]k), (5.40)

∂ζt uEi + ∂
ζ
i PE + FEi =O(ε4c[0]

2
k). (5.41)

Therefore, the E-wave is divergence-free to third order, and it is forced by the
imbalance FEi due to a non-zero ∂2a or ∂2k in (5.21).
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5.2.7. F-wave
The F-wave exists due to a temporal change in a or k. Define the F-wave as uFi≡

u{1}Fi eiχ , PF ≡ P{1}F eiχ and zF ≡ z{1}F eiχ , where

P{1}F = i
c[0]a

2
(∂tk)ζekζ , (5.42a)

u{1}F =
k̂1

c[0]
P{1}F − i

k̂1

c[0]k
∂ζt (c

[0]akekζ )−
k̂1

c[0]k
ekζ∂t∂ta, (5.42b)

v
{1}
F =−

i
c[0]k

∂
ζ
2 P{1}F , (5.42c)

w{1}F =−
i

c[0]k
∂
ζ
3 P{1}F −

1
c[0]k

∂ζt (c
[0]akekζ )+ i

1
c[0]k

ekζ∂t∂ta, (5.42d)

z{1}F =
1
gk
∂
ζ
3 P{1}F −

i
c[0]k

∂ζt (aekζ )−
i

gk
∂ζt (c

[0]akekζ )−
3
gk

ekζ∂t∂ta. (5.42e)

Here ∂ta and ∂t∂ta are given by (5.14a) and (D 3a). The F-wave satisfies

∂ z
i uFi =O(ε4c[0]k), (5.43)

∂ζt uFi + ∂
ζ
i PF + FFi =O(ε4c[0]

2
k). (5.44)

Therefore, the F-wave is divergence-free to third order, and it is forced by the
imbalance FFi due to a non-zero ∂ta or ∂tk in (5.22).

5.3. Wave action density conservation

The dispersion relations (5.7e) and (5.9e) and the phase function (2.2) determine ∂tc[0]
and ∂tk as (5.11) and (5.13), respectively. Meanwhile, ∂ta is required by the governing
equations to satisfy (5.14). These equations then yield the time derivative of c[0]a2/2
as

∂t
c[0]a2

2
+ cg

h∂h
c[0]a2

2
=−

c[0]a2

2
Dg
−

c[0]a
2

Re(G)−
a
4k

i∂t Im(G)+O(ε5c[0]
2
k−1), (5.45)

where cg
h, Dg and G are defined by (5.14b)–(5.14d). Because of (5.7e), the quantity

c[0]a2/2 is equal to the wave energy density (divided by the water density) ga2/2
divided by the intrinsic frequency

√
gk. Thus, c[0]a2/2 can be recognised as the

leading-order wave action density.
If wc

= wc
(2) in (3.3), then wc

(n) = 0 for n 6= 2 and ∂
ζ
3 wc

(2) = −∂
ζ
2 v

c
+ O(ε3c[0]k)

according to the current’s scales listed in § 3. Thus, in this case, (5.14c) reduces to

Dg
= ∂h(c

g
h + ug

h)+O(ε3c[0]k), (5.46)

where

ug
h ≡

k(KB(2) + k)
KB(2)

∫ 0

ζ ′=−∞

e(KB(2)+k)ζ ′uc
h(x, y, ζ ′, t) dζ ′. (5.47)

Therefore, in this case, (5.45) and (5.46) yield

∂t
c[0]a2

2
+ ∂h

(
(cg

h + ug
h)

c[0]a2

2

)
=−

c[0]a
2

Re(G)−
a
4k

i∂t Im(G)+O(ε5c[0]
2
k−1). (5.48)
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Then, cg
h + ug

h is the velocity appropriate for the flux of the action in the sheared
currents.

When G and wc are negligible, equation (5.45) reduces to the leading-order
expression of the conventional equation for an inviscid, deep-water wave without
wind forcing (Bretherton & Garrett 1968). Therefore, equation (5.45) generalises the
wave action density conservation to include the effect of the roll and the along-roll
jet. It shows that the upwelling (i.e. ∂ζ3 wc < 0 in (5.14c)) of the roll has an effect of
reducing the action density, and the downwelling (∂ζ3 wc > 0) of the roll has an effect
of increasing the action density.

5.4. Evolution of the wave energy and US
h

According to (5.14), the wave energy density (divided by the water density) evolves
as

∂tE+ cg
h∂hE=−EDg

−
ga
2

Re(G)−
c[0]a

4
i∂t Im(G)+O(ε5c[0]

3
), (5.49)

where E≡ ga2/2. Note that the advection of E by the current is of sixth order.
Combining (5.12), (5.13), (5.45) and the identities listed in appendix C yields

∂ζt US
1 + cg

H∂
ζ
HUS

1 = −US
1Dg
− c[0]ak2e2kζ k̂1 Re(G)

−
ak
2

e2kζ k̂1i∂t Im(G)+O(ε5c[0]
2
k), (5.50a)

∂ζt US
2 + cg

H∂
ζ
HUS

2 =−US
1∂2(uD

1 + c[2]k̂1)+O(ε5c[0]
2
k), (5.50b)

where US
h ≡ c[0]a2k2e2kζ k̂h. The first term on the right-hand side of (5.50b) is the effect

of the wave refraction due to the along-roll jet. Similarly to the wave action density,
∂tE and ∂ζt US

1 are affected by the roll via the divergence term Dg defined in (5.14c).

5.5. Thickness-weighted ensemble average of the wave momentum
According to (2.5), (2.6) and (2.14), the thickness-weighted ensemble average of the
wave momentum is

uS
i (x, y, ζ , t)≡

1
2π

∫ 2π

0
J(x, y, ζ , t,Θ)uw

i (x, y, ζ , t,Θ) dΘ ≡〈Juw
i 〉=Ui+〈S3uw

i 〉. (5.51)

Note that Juw
h is equal to the flux of volume through the relevant sidewall of the

volume element of the ζ -coordinate system (see figures 1 and 3 for the volume
elements). The values of 〈S3uw

h 〉 computed using the wave solutions in §§ 5.1 and 5.2
and appendices D and E are shown in (F 1) and (F 2) in appendix F. These results
(F 1) and (F 2) show that uS

h is uS
h = Uh + (1/2)US

h to third order but has a complex
expression at fourth order. The terms (1/2)US

h in (F 1) and (F 2) result from the
correlation between uw

h
[1] and J[1] = S3

[1].

6. The physics of wave-averaged circulations
6.1. The pseudo-incompressibility necessary for the wave-averaged governing

equations
In general, it is possible to define different types of wave-averaged flows such as the
ensemble average 〈u〉 (as defined in (2.5)), the thickness-weighted ensemble average
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〈Ju〉, an Eulerian average and the generalised Lagrangian mean. Regardless of the
averaging method used in a given theory, the wave-averaged flow (say, ū) in the given
theory is forced by the corresponding wave-averaged pressure (say, p̄) typically in the
form ∂̄tūi + ∂̄ip̄ = F̄i, where ∂̄` and F̄i are the gradient operators and forces in the
given theory. For an incompressible fluid, p̄ is typically an unknown variable, and
its solution must be obtained by solving the Poisson equation typically formulated as
∂̄i∂̄tūi+ ∂̄i∂̄ip̄= ∂̄iF̄i. Therefore, the Poisson equation – hence, the governing equations
of ū and p̄ – can be solved only if the unwanted unknown variable ∂̄i∂̄tūi is zero (or
takes a known value). However, in general, the property that ∂̄iūi= 0 – hence, ∂̄i∂̄tūi=

0 – may not be satisfied even if the fluid is incompressible (i.e. ∂ z
i ui = 0). Therefore,

it is crucial that the theory is built for a solvable wave-averaged flow, which satisfies
∂̄iūi= 0. Hereafter, let us call this property (i.e. ∂̄iūi= 0) the pseudo-incompressibility
of ū, as opposed to the incompressibility of ū (i.e. ∂ z

i ūi = 0). The solvability for ū
requires the pseudo-incompressibility of ū, rather than its incompressibility.

To this end, consider any velocity field EU and its thickness-weighted divergence
J∂ z

i Ui. According to the chain rule (2.15) and the identities ∂ζ` J= ∂ζ` S3 and ∂ζ` Sm= ∂
ζ
mS`

(for m = 1, 2, 3, t), the thickness-weighted divergence of EU satisfies the following
identity:

J∂ z
i Ui = J∂ζhUh − Sh∂

ζ
3Uh + ∂

ζ
3U3 = ∂

ζ
h (JUh)+ ∂

ζ
3 (U3 − ShUh). (6.1)

The right-hand side is the net mass transfer per second (divided by the mass of the
undeformed element ρ0 dx dy dζ ) due to EU across the surfaces of the instantaneous
(or frozen) volume element of the ζ -coordinate system. (See figures 1 and 3 for the
volume elements of the ζ -coordinate system.) Physically, JU1 and JU2 are the mass
fluxes through the sidewalls of the volume element. On the other hand, U3 − ShUh
is the mass flux through the tilted top or bottom wall of the volume element. Here,
U3 is the mass flux through the horizontal-plane projection of the tilted surface and
−ShUh is the sum of the mass fluxes through the vertical-plane projections of the tilted
top or bottom surface. The term U3 − ShUh is also the vertical velocity of the tilted
surface due to EU (cf. (2.9)). Now, the ensemble average (2.5) of (6.1) yields 〈J∂ z

i Ui〉=

∂
ζ
h 〈JUh〉 + ∂

ζ
3 〈U3 − ShUh〉. Therefore,

〈J∂ z
i Ui〉 = 0 ⇐⇒ ∂

ζ
h 〈JUh〉 + ∂

ζ
3 〈U3 − ShUh〉 = 0. (6.2)

That is, the pseudo-incompressibility of the velocity field (〈JUh〉, 〈U3 − ShUh〉) is
equivalent to the property that the thickness-weighted ensemble average of ∇ · EU is
zero.

Because the fluid velocity u is incompressible, equation (6.2) for EU= u yields

∂
ζ
i Ui = 0, (6.3)

where U≡ (U1,U2,U3)≡ (U, V,W) and

U ≡ 〈Ju〉 = 〈u〉 + 〈S3u〉 = 〈uc
〉 + U1 + 〈S3u〉, (6.4a)

V ≡ 〈Jv〉 = 〈v〉 + 〈S3v〉 = 〈v
c
〉 + U2 + 〈S3v〉, (6.4b)

W ≡ 〈w− Shuh〉 = 〈w〉 − 〈Shuh〉 = 〈wc
〉 + U3 − 〈Shuh〉. (6.4c)

These equations are exact to all orders. The flow U consists of the non-oscillatory
flow 〈uc

i 〉 + Ui as well as the horizontal bolus velocity 〈S3uh〉 and the average mass
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Original term Averaged result

∂ζt uh ∂ζt 〈uh〉

∂
ζ
h P ∂

ζ
h 〈P[4]〉

uw
H
[1]∂

ζ
Huw

h
[1] (1/2)c[0]akekζ k̂H∂

ζ
H(c[0]akekζ k̂h)

uw
H
[1]∂

ζ
Huw

h
[3] (1/2)c[0]ak2ekζ i Im(u{1}h )

u[2]H ∂
ζ
Hu[2]h 〈uc

H + UH〉∂
ζ
H〈uc

h + Uh〉

uw
H
[3]∂

ζ
Huw

h
[1]

−(1/2)c[0]ak2ekζ k̂hk̂1i Im(u{1}1 )

wc∂
ζ
3 u[2]h 〈wc

〉∂
ζ
3 〈uc

h + Uh〉

wc(J−1)[1]∂
ζ
3 uw

h
[1]

−(1/2)〈wc
〉∂
ζ
3 (US

h/2)

−S[1]h ∂
ζ
3 P[3] (1/2)akekζ k̂hi∂ζ3 Im(P{1})

−S[3]h ∂
ζ
3 P[1] −(1/2)c[0]2ak2ekζ

[∂
ζ
h (aekζ )+ ∂

ζ
h Re(z{1})+ k̂hki Im(z{1})]

TABLE 2. The non-zero terms in the ensemble-averaged horizontal momentum equations.

flux 〈−Shuh〉 through the vertical-plane projections of the tilted surface. Therefore,
U represents the wave-averaged flow of material. Hereafter, let us call U the wave-
averaged material flow. Crucially, the pseudo-incompressibility of U – i.e. (6.3) – is
equivalent to 〈J∇ · u〉 = 0 and ensures that U and the corresponding wave-averaged
pressure are solvable. Physically, this means that the wave-averaged pressure develops
in such a way that ∂ζi Ui and equivalently 〈J∇ · u〉 remain zero. This is in contrast
with the fact that the pressure without being averaged develops in such a way that
∇ · u remains zero.

Unlike the wave-averaged material flow U, other wave-averaged flows – namely,
〈u〉, 〈uc

〉 and uQ
≡ (〈uh〉 − US

h/2, 〈w〉) – are not guaranteed to satisfy their
pseudo-incompressibility (appendix G). Therefore, only U is appropriately solvable.
This is a crucial point which differentiates S19 from the CL theory. In the latter,
the Eulerian mean velocity (which is closely related to 〈uc

〉) is assumed to be
pseudo-incompressible (and also incompressible) and is thereby considered to govern
the wave-averaged pressure. In contrast, in S19, 〈uc

〉 is neither pseudo-incompressible
nor incompressible, and the wave-averaged pressure is governed by U.

6.2. The momentum equations and upper boundary condition of U
Substitution of the first- to third-order wave solutions presented in § 5 and appendix E
into (5.1) yields the momentum equations of u at fourth order. These momentum
equations have some terms that have a non-zero ensemble average to fourth order; all
of these terms are listed in tables 2 and 3. According to these results, the momentum
equations of U are (as derived in appendix H)

∂ζt U1 + (UH∂
ζ
H +W∂ζ3 )(U1 −US

1)+ ∂
ζ
1 〈P

[4]
〉 + ∂

ζ
1Ψ − ∂

ζ
t US

1 +Λ1 =O(ε5c[0]
2
k), (6.5a)

∂ζt U2 + (UH∂
ζ
H +W∂ζ3 )(U2 −US

2)+ ∂
ζ
2 〈P

[4]
〉 + ∂

ζ
2Ψ + cg

H∂
ζ
HUS

2 =O(ε5c[0]
2
k), (6.5b)

∂ζt W + (UH∂
ζ
H +W∂ζ3 )W + ∂

ζ
3 〈P

[4]
〉 + ∂

ζ
3Ψ − 2∂ζ3φ

+ (U1 − uD
1 − c[2]k̂1)∂

ζ
3 US

1 =O(ε5c[0]
2
k), (6.5c)
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Original term Averaged result

∂ζt w ∂ζt 〈w〉

∂
ζ
3 P ∂

ζ
3 〈P[4]〉

uw
H
[1]∂

ζ
Hww[3] (1/2)c[0]ak2ekζ i Im(w{1})

u[2]H ∂
ζ
Hw[2] 〈uc

H + UH〉∂
ζ
H〈wc
〉 + (1/4)kUS

hUS
h

uw
H
[3]∂

ζ
Hww[1] (1/2)c[0]ak2ekζ k̂1 Re(u{1}1 )

wc∂
ζ
3 w[2] 〈wc

〉∂
ζ
3 〈wc
〉

−S[1]3 ∂
ζ
3 P[3] −(1/2)akekζ∂

ζ
3 Re(P{1})

−S[1]3 (J−1)[1]∂
ζ
3 P[2] (1/4)kUS

hUS
h

−S[2]3 ∂
ζ
3 P[2] −(1/2)kUS

hUS
h

−S[2]3 (J−1)[1]∂
ζ
3 P[1] (1/4)kUS

hUS
h

−S[1]3 (J−1)[2]∂
ζ
3 P[1] −(1/8)kUS

hUS
h

−S[3]3 ∂
ζ
3 P[1] −(1/2)c[0]2ak2ekζ∂

ζ
3 Re(z{1})

TABLE 3. The non-zero terms in the ensemble-averaged vertical momentum equation.

∂ζt ∂
ζ
1 ∂

ζ
3 ∂

ζ
2 (∂

ζ
2 )

2 (∂
ζ
2 )

3 (∂
ζ
2 )

4 (∂
ζ
2 )

5 ∂ζt ∂
ζ
1 ∂

ζ
2 ∂

ζ
3

uc, wc ε4 ε3 ε2 ε2 ε2 ε2 ε3 ε3 Uh ε4 ε4 ε4 ε2k̂h

vc ε4 ε3 ε2 ε2 ε2 ε2 ε2 ε3 U3 ε4 ε4 ε4 ε4

TABLE 4. The orders of the derivatives of uc
i and Ui. The order of a higher derivative that

is not listed in the table is equal to or higher than the highest order of the listed derivatives
contained in the higher derivative: e.g. ∂ζ1 ∂

ζ
2 uc

i 6 O(ε3c[0]k2) because ∂ζ1 uc
i 6 O(ε3c[0]k).

∂t ∂1 ∂2 (∂2)
2 (∂2)

3 ∂t∂2 ∂t(∂2)
2 ∂t(∂2)

3 (∂t)
2 (∂t)

2∂2

a ε3 ε3 ε3 ε3 ε3 ε3 ε3 ε3 ε3 ε3

c[0], k̂1, k ε2 ε2 ε2

k̂2 ε2 ε2 ε2 ε2 ε2 ε2 ε2

c[2] ε2 ε2 ε2 ε2 ε2

TABLE 5. The orders of the derivatives of a, k, k̂h, c[0] and c[2]. For a, any derivative not
included in the table is of fourth or higher order. For k, k̂h, c[0] and c[2], any derivative
left blank or not included in the table is of third or higher order.

where

Φ ≡
1
2

aekζ

(
k Re(P{1})− ∂ζ3 Re(P{1})−

1
c[0]

i∂ζt Im(P{1})+
2

c[0]k
i∂ζ3 ∂

ζ
t Im(P{1})

)
−

1
8

US
HUS

H + ae2kζ∂t∂ta, (6.5d)

φ ≡
a

2c[0]
ekζ (i∂ζt Im(P{1})+ c[0]ekζ∂t∂ta), (6.5e)

Ψ ≡Φ + φ +
1
4

US
HUS

H −US
1(U1 − uD

1 − c[2]k̂1), (6.5f )

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

75
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.752


932 N. Suzuki

Λ1 ≡ −k̂1
ak

2c[0]
ekζ

(
∂ζt Re(P{1})+

2
k
∂
ζ
3 ∂

ζ
t Re(P{1})+

1
k2
∂
ζ
3 ∂

ζ
3 ∂

ζ
t Re(P{1})

)
+ 3a2k2e2kζ k̂1∂tc[2], (6.5g)

and k̂1uD
1 + c[2], ∂ζt US

1 , ∂t∂ta, ∂tc[2] and P{1} are given in (5.15), (5.50), (D 3) and (D 1).
For additional information on the wave-related terms, note that ∂ζt P{1} = ∂ζt (P

{1}
D +

P{1}E + P{1}H )+O(ε4c[0]3k), and also see (5.11), (5.14), (C 3) and (C 5).
According to the wave solutions in § 5, the terms Λ1 and −2∂ζ3φ depend mostly

on P{1}H given by (5.23a). Therefore, if there is no forcing of the third-order waves
through the horizontal boundary condition (thus, P{1}H = 0, as explained in § 5.2), then
Λ1 and −2∂ζ3φ become negligible for the fourth-order balance. In (6.5c), the term
(−uD

1 − c[2]k̂1)∂
ζ
3 US

1 derives from the fact that the waves are refracted and Doppler
shifted according to (5.50b). These equations are expressed in terms of the Stokes
shear force (Suzuki & Fox-Kemper 2016). The equivalent equations expressed in terms
of the vortex force are shown in appendix I. The Stokes shear force – rather than
the vortex force – is useful for physical analysis because a large part of the vortex
force is equal to a potential force. Since a potential force cannot inject vorticity or
energy (except through the energy flux at the boundaries), the evolution of the roll
is easier to understand in terms of a force that is not dominated by a potential force.
In contrast, most potential force in the Stokes shear force is simply the horizontal
mean of the Stokes shear force and easily removable with the same procedure as the
familiar separation of the horizontal mean buoyancy and the buoyancy perturbation.

Finally, averaging (5.5) with (2.5) yields the upper boundary condition for U as

1
g
∂ζt 〈P〉 −W = 0 at ζ = 0. (6.6)

Here, 〈P〉 = 〈P[4]〉 +O(ε5c[0]2) according to the wave solutions given in § 5. Note that
the averaged kinematic boundary condition is ∂ζt 〈z〉 = 〈w〉 − 〈Shuh〉 =W. The value of
〈Shuh〉= 〈Shuw

h 〉+O(ε5c[0]) is shown in (F 3) in appendix F. An important point of (F 3)
is that the averaged vertical motion of the water surface, ∂ζt 〈z〉, due to the correlation
〈uhSh〉 is of fourth order. Therefore, 〈uhSh〉 cannot be neglected for the wave-averaged
governing equations.

6.3. Implications of (6.3) and (6.5)
The fundamental difference between the CL theory and S19 is the recognition that
the wave-averaged mass conservation is satisfied by the wave-averaged material flow
U (§ 6.1). This difference is crucial because it allows S19 to deal with the current-
induced evolution of the wave field without neglecting the evolution of the wave-
induced mass divergence and its effect on the wave-averaged pressure. This point is
exemplified here by contrasting a case having time-dependent wave properties with
another case having time-independent wave properties.

Before discussing the two cases, let us note the following essential facts. It can be
shown (e.g. by taking the curl of (6.5)) that the rolls of typical Langmuir circulations
are driven mainly by the term cg

H∂
ζ
HUS

2 in (6.5b) and the term (U1 − uD
1 − c[2]k̂1)∂

ζ
3 US

1
in (6.5c). The former represents the propagation of US

2 at the group velocity. The latter
is the counterpart of the Stokes shear force (hereafter, SSF), U1∂

ζ
3 US

1 , discussed in
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FIGURE 8. Comparison between the RASSF and the SSF.

Suzuki & Fox-Kemper (2016), and it is different from the SSF by (−uD
1 − c[2]k̂1)∂

ζ
3 US

1 .
This difference originates from the wave refraction effect explicit in the governing
equations of U. The SSF of Suzuki & Fox-Kemper (2016) lacks the refraction effect
because the equations of Suzuki & Fox-Kemper (2016) are equivalent to the CL
equations, which lack the refraction effect. Hereafter, (U1− uD

1 − c[2]k̂1)∂
ζ
3 US

1 is called
the refraction-affected Stokes shear force (RASSF). According to (6.4a), RASSF is
equal to (〈uc

1〉 + U1 + 〈S3u1〉 − uD
1 − c[2]k̂1)∂

ζ
3 US

1 .
Because the RASSF is a vertical force, its horizontal mean is hydrostatically

balanced and dynamically unimportant (like the horizontal mean of buoyancy). Thus,
what is dynamically important is the RASSF perturbation from the horizontal mean.
Under the scaling conditions being considered (§ 3), the horizontal perturbation in
〈uc

1〉 − uD
1 is much larger than the horizontal perturbation in U1 + 〈S3u1〉 − c[2]k̂1 or

in US
1 . Therefore, the RASSF perturbation is approximately equal to (〈uc

1〉 − uD
1 )∂

ζ
3 US

1
and occurs at the along-roll jets. When the waves are propagating in the downstream
direction of the along-roll jets, the signs of 〈uc

1〉 − uD
1 and US

1 are the same at the jets.
Therefore, in this situation, the RASSF perturbation at the jets is a downward force.
This is why the RASSF perturbation drives the downwellings at the along-roll jets
(figures 1 and 2). This effect of the RASSF perturbation is the same as that of the
SSF perturbation 〈uc

1〉∂
ζ
3 US

1 , as detailed in Suzuki & Fox-Kemper (2016). Now, let us
consider the aforementioned two cases.

6.3.1. Case I: x-independent but t-dependent wave properties
When the wave properties are independent of x, (5.50b) shows that cg

H∂
ζ
HUS

2 is
negligible while ∂ζt US

2 is significant due to the refraction. Hence, the wave properties
change with time. Moreover, (5.50b) shows that ∂ζt ∂

ζ
2 US

2 is of fourth order. Then, as
shown in § 6.1 and appendix G, the evolution of the wave-induced mass divergence
can affect the wave-averaged pressure at its leading order (i.e. fourth order). Therefore,
the dynamics of U described by (6.3) and (6.5) is crucial. Then, because cg

H∂
ζ
HUS

2 in
(6.5b) is negligible, the rolls are driven solely by the RASSF perturbation. This is in
contrast to the CL theory, in which the rolls are driven by the SSF perturbation.

For example, consider a current structure having K2
A(2) − k2

= 0.0051 rad m−1

in (3.2) and an along-roll jet 〈uc
1〉 shown in figure 8(c). In the same panel, the

Doppler-shift velocities (5.15a) of a wave whose wavelength λ is 10 m and of
another wave whose λ is 50 m are also shown. In this example, both the shorter
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and longer waves have ak = 0.1 and (k̂1, k̂2) = (1, 0) at the time of consideration.
Because the shorter wave has a larger ∂ζ3 US

1 near the surface, it produces a larger
SSF perturbation (figure 8a). However, as shown in figure 8(b), the refraction effect
makes the following two differences: first, the longer wave becomes more important
than the shorter wave because 〈uc

1〉− uD
1 near the surface is larger for the longer wave;

and second, the magnitude of (〈uc
1〉 − uD

1 )∂
ζ
3 US

1 is much smaller than that of 〈uc
1〉∂

ζ
3 US

1
because uD

1 is close to 〈uc
1〉 near the surface. More specifically, compared to the SSF

perturbation, the RASSF perturbation is decreased by a factor of 10 for the shorter
wave and 5 for the longer wave for this example current. Therefore, unlike the CL
theory, S19 predicts that long waves are more critical than short waves in driving
the rolls and thereby upper-ocean mixing. Meanwhile, the energy transfer from the
waves to the rolls is likely to be overestimated by the CL theory in a situation like
case I. Furthermore, because uD

1 is determined essentially by the current profile at
depths shallower than the wavelength, S19 is much more sensitive to the near-surface
current profile.

6.3.2. Case II: x-dependent but t-independent wave properties
In this case, (5.50b) shows that cg

H∂
ζ
HUS

2 =−US
1∂2(uD

1 + c[2]k̂1)+O(ε5c[0]2k). Thus, the
rolls are driven by both cg

H∂
ζ
HUS

2 and the RASSF. Because the wave properties do not
evolve, the evolution of the wave-induced mass divergence is zero and the refraction
becomes irrelevant for the unsteady part of U. This can be easily seen from (I 1)–(I 3)
(which are equivalent to (6.5)) in appendix I. That is, in (I 2), the refraction term is
cancelled by the propagation of US

2 . Because of this cancellation, (I 2) and (I 3) yield
the same vortex force as the CL equations. Therefore, if the wave properties do not
evolve, then S19 essentially reduces to the CL theory (provided that the wave-averaged
mass conservation pertaining to the steady component of U is properly taken into
account).

In summary, S19 may be regarded as an extension of the CL theory to deal with the
current-induced evolution of the wave field, which produces an evolving wave-induced
mass divergence. In passing, let us note another important point of the wave effects:
namely, the wave field produces a potential force ∂ζi Ψ in (6.5). In S19, the value of Ψ
to fourth order can be explicitly computed using the wave solutions obtained in § 5.
It is worth noting that 〈P[4]〉 and Ψ may be combined and treated as a generalised
pressure, as other theories do. However, it is crucial to note that the explicit value of
Ψ to fourth order is required when the boundaries are either flexible or non-periodic
(at least at the boundaries so that the energy fluxes at the boundaries due to Ψ are
correct).

6.4. Wave–wave nonlinear processes producing the RASSF
The RASSF results from the wave–wave nonlinearity due to the first-order wave
and the sum of the A- and C-waves (§ 5.2). These waves horizontally displace each
other’s vertical velocities via the advection terms uw

1
[1]∂

ζ
1 ww[3] and uw

1
[3]∂

ζ
1 ww[1]. The

ensemble averages of these terms are non-zero as shown in table 3. In this way,
they convert the oscillatory velocities ww[1] and ww[3] into the non-oscillatory velocity
W. Furthermore, the A- and C-waves also alter the gradients of the first-order wave
pressure by undulating the constant-ζ surfaces. The ensemble averages of these
perturbations are non-zero as the presence of S[3]i ∂

ζ
3 P[1] in tables 2 and 3 shows. In

this way, the first-order wave pressure also forces U. According to (5.26) and (5.32),
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the sum of the A- and C-waves is

Re(u{1}A eiχ
+ u{1}C eiχ)=

k̂1

c[0]
(P{1}A + P{1}C ) cos χ −

k̂1a
c[0]

ekζ (∂tc[2]) sin χ + uΓ , (6.7a)

Re(v{1}A eiχ
+ v

{1}
C eiχ)=

1
c[0]k

∂
ζ
2 (P

{1}
A + P{1}C ) sin χ, (6.7b)

Re(w{1}A eiχ
+w{1}C eiχ)=

1
c[0]k

∂
ζ
3 (P

{1}
A + P{1}C ) sin χ +

a
c[0]

ekζ (∂tc[2]) cos χ +wΓ , (6.7c)

Re(z{1}A eiχ
+ z{1}C eiχ) =

1
gk
∂
ζ
3 (P

{1}
A + P{1}C ) cos χ −

1
4c[0]

aekζ k̂1US
1 cos χ

−
3a
g

ekζ (∂tc[2]) sin χ + zΓ , (6.7d)

where

uΓ ≡ k̂1akekζ k̂1(U1 − uD
1 − c[2]k̂1) cos χ, (6.8a)

wΓ
≡ akekζ k̂1(U1 − uD

1 − c[2]k̂1) sin χ, (6.8b)

zΓ ≡
2

c[0]
aekζ k̂1(U1 − uD

1 − c[2]k̂1) cos χ. (6.8c)

The contribution to the RASSF comes from a specific part of the A- and C-waves:
namely, uΓ , wΓ and zΓ . Thus, let us now analyse the wave effects on W pertaining
to these parts. In the vertical momentum equation of (2.18), wΓ is advected by uw[1].
Likewise, ww[1] is advected by uΓ . These advection terms have non-zero ensemble
averages, namely,

−〈uw[1]∂
ζ
1 wΓ
〉 =−

1
4(U1 − uD

1 − c[2]k̂1)∂
ζ
3 US

1 +O(ε5c[0]
2
k), (6.9)

−〈uΓ ∂ζ1 ww[1]
〉 =−

1
4(U1 − uD

1 − c[2]k̂1)∂
ζ
3 US

1 +O(ε5c[0]
2
k), (6.10)

according to (2.5), (5.7a), (5.7b), (6.8a) and (6.8b). Here, the signs are chosen so
that these terms appear on the right-hand side of (6.5c). Equations (6.9) and (6.10)
show that the sum of these two advection terms makes one half of the RASSF. The
other half comes from the correlation between the vertical gradient of the first-order
pressure and the displacement zΓ involved in the last term on the right-hand side of
(2.18). This correlation produces a potential force and one half of the RASSF because

〈SΓ1 ∂
ζ
3 P[1]〉 = ∂ζ1 〈z

Γ ∂
ζ
3 P[1]〉 +O(ε6c[0]

2
k), (6.11)

〈SΓ2 ∂
ζ
3 P[1]〉 = ∂ζ2 〈z

Γ ∂
ζ
3 P[1]〉 +O(ε6c[0]

2
k), (6.12)

〈SΓ3 ∂
ζ
3 P[1]〉 = ∂ζ3 〈z

Γ ∂
ζ
3 P[1]〉 − 〈zΓ ∂ζ3 ∂

ζ
3 P[1]〉, (6.13)

where SΓi ≡ ∂
ζ
i zΓ is the part of Si due to zΓ according to the definitions (2.12) and

(2.13) of Si. Note that the first terms on the right-hand side of (6.11)–(6.13) form a
potential force. Meanwhile, the last term on the right-hand side of (6.13) gives half
the RASSF, that is,

− 〈zΓ ∂ζ3 ∂
ζ
3 P[1]〉 =− 1

2(U1 − uD
1 − c[2]k̂1)∂

ζ
3 US

1 +O(ε5c[0]
2
k), (6.14)

according to (5.7c) and (6.8c). The physical meaning of −zΓ ∂ζ3 ∂
ζ
3 P[1] is the following.

Among many other forces, the fluid is forced by the pressure gradient force −∂ z
i P.
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FIGURE 9. Diagram showing the directions of the forces SΓ2 ∂
ζ
3 P[1] (solid arrows) and

SΓ3 ∂
ζ
3 P[1] (dashed arrows) at different phases indicated in the two panels. According to

(5.7c), the sign of ∂ζ3 P[1] is the same as the sign of cos χ . In these panels, there is
an along-roll jet at the location indicated by �. Thus, U1 − uD

1 − c[2]k̂1 has a positive
maximum there. The solid lines depict the corresponding zΓ in (6.8c). Because the signs
of ∂ζ3 P[1] and SΓi change with cos χ , the arrows always point towards � and produce a
non-zero wave average.

The chain rules (2.15) imply −〈∂ z
i P〉=−∂ζi 〈P〉+ 〈Si∂

z
3P〉. The term −∂ζi 〈P〉 represents

the pressure gradient force disregarding the effects of the undulation of the constant-
ζ surfaces and the fluctuation in P. The effects of the surface undulation and the
fluctuation in P are represented by 〈Si∂

z
3P〉, and the leading-order effect of zΓ in this

term is the left-hand side of (6.11)–(6.13). Figure 9 shows the directions of 〈SΓi ∂
ζ
3 P[1]〉.

These directions imply that a significant portion of 〈SΓi ∂
ζ
3 P[1]〉 is a potential force.

According to (6.11)–(6.13), the separation of the potential force from 〈SΓi ∂
ζ
3 P[1]〉 leaves

half the RASSF.

6.5. Is it necessary to determine Ui separately from 〈uc
i 〉?

In § 5, Ui and uc
i are separately treated in order to make the logical structure of

the theory clearer. Then, the preceding sections show that the value of Ui is not
determined by the balance correct to third order, but it is determined by the balance
at fourth order. However, the fourth-order balance does not dictate Ui and uc

i separately.
Therefore, separation of Ui and uc

i is not possible unless we introduce an additional
definition about how to distinguish Ui from uc

i or an additional and unnecessary
constraint such as the wave’s second-order irrotationality. Meanwhile, such separation
of Ui and uc

i is unnecessary unless one tries to separate the A- and C-waves or
k̂1uD

1 and c[2]. However, such separation is unnecessary because they always appear
in pairs. For example, U1 can be always treated together with uc

(1) in (3.2) as
U1 + uc

(1) because they appear in parallel in the driving functions A and C (table 1
and appendix D) and in (5.26a) and (5.32a). In this way, the sum of the A- and
C-waves can be computed without ever separating U1 and uc

1. Likewise, the sum
k̂1uD

1 + c[2] can be computed without ever separating Ui and uc
i by using the identity

2k
∫ 0
−∞

e2kζ ′ k̂1U1(x, y, ζ ′, t) dζ ′ = k̂1U1(ζ = 0)− k̂1
∫ 0
−∞

e2kζ ′(∂
ζ
3U1)

′ dζ ′ in (5.15). Here,
(∂
ζ
3U1)

′ is ∂ζ3U1 at (x, y, ζ ′, t). Finally, note that ∂tc[2] = ∂t(k̂1uD
1 + c[2])+O(ε4c[0]2k).
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6.6. Value of Ui in the current’s absence

Consider a case in which uc
i and P{1}H are zero. In this case, 〈ui〉 = Ui; uD

1 and G are
zero; ∂t∂2k̂2, ∂tc[2], ∂2∂2c[2] and ∂2∂2Dg are of third order; and ∂t∂ta, ∂t∂2∂2a, ∂ζt Re(P{1})
and i∂ζt Im(P{1}) are of fourth order. Thus, (H 1) becomes

∂ζt U1 =
1
2∂

ζ
t US

1 − ∂
ζ
1 Φ̆ +O(ε5c[0]

2
k), (6.15a)

∂ζt U2 =
1
2∂

ζ
t US

2 − ∂
ζ
2 Φ̆ +O(ε5c[0]

2
k), (6.15b)

∂ζt U3 =−∂
ζ
3 Φ̆ +O(ε5c[0]

2
k), (6.15c)

where Φ̆ ≡ 〈P[4]〉 + (4k)−1ga(∂2∂2a)e2kζ . In (6.15a) and (6.15b), the terms ∂ζt US
h/2

derive from the nonlinear terms 〈uw
H
[1]∂

ζ
Huw

h
[1]
〉, 〈uw

H
[1]∂

ζ
Huw

h
[3]
〉 and 〈−S[3]h ∂

ζ
3 P[1]〉 shown

in table 2. Therefore, these equations show that, if uc
i , P{1}H and Φ̆ are negligible,

then (Uh, U3) is equal to (US
h/2, 0) at this accuracy and is driven by these nonlinear

effects. As a result, the wave motion becomes irrotational at least to second order
(see (5.9)). In addition, the wave’s mean momentum uS

h becomes the same as US
h

to third order (see § 5.5); hence, uS
h becomes the same as the conventional Stokes

drift velocity. (Note that, in the standard wave theory, the conventional value of the
Stokes drift velocity requires the assumption of the second-order wave irrotationality,
which implies that the second-order Eulerian wave velocity has no Eulerian mean.)
This result clearly shows that the wave’s second-order irrotationality, which is typically
treated as an assumption in a standard wave theory, does not have to be an assumption
but is rather a dynamical consequence when uc

i , P{1}H and Φ̆ are negligible.

7. Summary and outlook
S19 presents a theory of the physical mechanisms of the two-way coupling between

a surface wave field and a roll–streak circulation, especially for a situation involving
the wave refraction due to the circulation. The key quantities pertinent to this problem
are: (i) the current-induced wave–wave nonlinearity; (ii) the current-induced evolution
of the wave-induced mass divergence; and (iii) its effect on the wave-averaged
pressure. In order to accurately represent these quantities, the theory is developed
without relying on any extrapolation, any spatiotemporal mapping or an approximation
that treats the wave-induced mass divergence as being concentrated at the surface.
The theory also does not assume the wave’s second-order irrotationality.

The roll–streak circulation has significant vertical velocities and (horizontal and
vertical) gradients and thereby induces wave refraction, amplitude modulation and
higher-order waves. For the second-order current speeds considered here, the leading
order of the current-induced waves are of third order. These third-order waves consist
of seven types of independent motions, each of which has a clear physical origin
according to the divergence balance and the force balance (§ 5.2). The wave dynamics
valid in the presence of the roll–streak circulation is determined; this includes the
wave amplitude evolution (5.14), the wave action density conservation (§ 5.3) and
other second-order wave quantities (§ 5.4). Both the amplitude and wave action
density are affected by the upwelling or downwelling.

The current-induced third-order wave motions produce wave–wave nonlinear effects
by interacting with the first-order wave motion (§ 6.4). These wave–wave nonlinear
effects are leading-order forces acting on wave-averaged flows (§ 6.2). The vortex
force terms (appendix I) derive from the terms involving ∂

ζ
i Re(z{1}) in 〈−S[3]i ∂

ζ
3 P[1]〉
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(tables 2 and 3). When these terms are neglected, as done for example by Mellor
(2003, 2005, 2011, 2015, 2016, 2017), the vortex force terms cannot be derived.

The new wave-averaged theory presents the governing equations for the wave-
averaged circulation which satisfies the wave-averaged mass conservation: namely,
(6.3), (6.5) and (6.6). These equations show that the CL equations are suitable only if
the wave field does not change with time due to the wave–current interactions. When
the wave field evolves due to the refraction, the CL equations may significantly
overpredict the wave effect (§ 6.3). For the physics of wave-averaged flows, the
divergence property that matters is the thickness-weighted ensemble average 〈J∇ · u〉
of the divergence of the fluid flow u (§ 6.1). This is because the wave-averaged
pressure develops to satisfy 〈J∇ ·u〉= 0. To represent this fact, the concept of pseudo-
incompressibility is developed, and it is shown that the pseudo-incompressibility of
the wave-averaged material flow U is equivalent to 〈J∇ · u〉= 0 (§ 6.1). Therefore, the
pseudo-incompressibility of U governs the wave-averaged pressure. As a result, the
wave-averaged governing equations must be written for U. This is the fundamental
difference from the CL equations, in which the wave-averaged pressure is taken to
be governed by the current’s incompressibility.

The RASSF perturbation is the main force that drives the roll (§ 6.3), and it is
induced by the A-wave (§ 6.4). It is crucial to note that the A-wave exists because
of the undulation-induced divergence (§ 4) of the current and the advection of the
leading-order wave momentum by the current (§ 5.2). Meanwhile, as is evident
in figure 3, the existence of the undulation-induced divergence does not rely on
the simplifying conditions such as the small orders of the wave slope and current
velocities or the exact sinusoidal shape of the leading-order wave. In other words,
a steeper wave and a larger vertical gradient of the current will produce more
pronounced undulation-induced divergence of the current. Likewise, the advection
becomes stronger for a steeper wave and a stronger current. Therefore, although it
is difficult to show mathematically, it is likely that the wave effect that drives rolls
becomes more significant for steeper waves. These simplifying conditions are needed
only for the simplicity of the mathematical descriptions and not for the physics
revealed here.

S19 considers a simple system in order to highlight the basic physics of the
wave–current interactions. It is desired that S19 provides a step towards studying a
more complete system including, for example, winds and a spectrum of leading-order
waves. Winds, for example, are essential at least for maintaining the streaks of
Langmuir circulations. Further coupling involving winds may occur in a situation
where the structure of the wind field is correlated with the structure of the current
field. For further development in this field, it is important to note that certain
wave phenomena are precluded in the mathematical formulation of S19 (although
it seems acceptable for the conditions considered here). These phenomena include
partial reflection (McKee 2006) and a first- and second-order modulation of the
wave amplitude. Such an amplitude variation may occur when the currents are of
O(c[0])–O(εc[0]) (e.g. Veron & Melville 2001, figure 15). In such a situation, the
modal approach of Shrira & Slunyaev (2014) and a related formulation by Craik
(1982), Phillips & Wu (1994) and Phillips (1998, 2005) are very important. Note that,
for the O(ε2c[0]) current considered here, S19 allows the same order (i.e. third order)
of amplitude variation as Craik’s and Phillips’s formulation (i.e. ∆= 10−2 in equation
(2.4) of Phillips (2005)). The width of the current structure considered in S19 is wider
than roughly one wavelength (§ 3.2); it is unclear what mathematical formulation is
most appropriate for conditions involving very narrow current structures such as those
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in Tsai et al. (2017, figure 1). It is also unclear which of case I and case II discussed
in § 6.3 is more relevant to Langmuir circulations in nature and submesoscale fronts.
The answer is likely to depend on the wavelength and the vertical structure of the
streak. To answer these questions, instability analysis based on S19 and comparison
with wave-resolving numerical simulation or observation are much needed.

Acknowledgements
I am grateful for discussions with F. Ardhuin, J. C. McWilliams, B. Chapron

and W. R. C. Phillips. This work was supported by the ‘Laboratoire d’Excellence’
LabexMER (ANR-10-LABX-19) and by ISblue project, ‘Interdisciplinary graduate
school for the blue planet’ (ANR-17-EURE-0015) and co-funded by a grant from the
French government under the program ‘Investissements d’Avenir’, by a grant from
the Regional Council of Brittany (SAD programme) and by the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement no. PCOFUND-GA-2013-609102,
through the PRESTIGE programme coordinated by Campus France.

Appendix A. Detailed scaling conditions
A.1. Orders of derivatives

The orders of all derivatives are listed in tables 4 and 5. In table 4, the orders of
∂ζt uc

i and ∂ζt Ui follow from the order of the leading-order force that is independent of
Θ in (2.18) (details in § 6.2). The orders of (∂ζ2 )nvc are in accordance with ∂

ζ
3 wc
=

−∂
ζ
2 v

c
+O(ε3c[0]k). The derivatives of c[1] are not listed in the tables because c[1] is

zero (§ 5.1). To derive this result, we only need to know that c[1] and its derivatives are
of first or higher order. For the Doppler shift velocity uD

h , its scales follow from the
current’s scales: namely, ∂n

2 uD
1 6 O(ε2c[0]kn) for n= 0, 1, 2, 3; and ∂n

2 uD
2 6 O(ε2c[0]kn)

for n= 0, 1, 2, 3, 4. Any other derivatives of uD
h are of third or higher order.

A.2. Derivation of (3.1)
Owing to the horizontal displacement ξh induced by the wave orbital motions,
different water parcels within the constant-ζ layer at ζ pass back and forth through
a given coordinate (x, y, ζ ) as Θ changes. Thus, if these parcels carry different
current velocities, then uc

i (x, y, ζ , t, Θ) may fluctuate as Θ changes. This fluctuation
is equal to ξ1∂

ζ
1 uc

i + ξ2∂
ζ
2 uc

i , correct to its leading order. Now, the scales of a and
k̂2 imply that ξ1 6 O(εk−1) and ξ2 6 O(ε2k−1) in accordance with the standard
linear wave theory (or see (5.7)). Therefore, this fluctuation in uc

i is of fourth or
higher order. In other words, uc

i is independent of Θ at least to third order, that is,
uc

i (x, y, ζ , t, Θ)= uc
i (x, y, ζ , t)+O(ε4c[0]). Applying (2.5) to this yields (3.1).

A.3. KA(n) and KB(n)

The scaling conditions (table 4) of ∂ζt uc
(n) and ∂ζt wc

(n) require that ∂t

√
K2

A(n) − k2 and

∂t

√
K2

B(n) − k2 be of second or higher order. Likewise, ∂hKA(n) and ∂hKB(n) as well

as any spatial derivatives of
√

K2
A(n) − k2 or

√
K2

B(n) − k2 must be of first or higher

order. The upper bounds of KA(n) and KB(n) are due to the scaling conditions (∂ζ2 )4uc 6
O(ε3c[0]k4) and (∂ζ2 )4wc 6 O(ε3c[0]k4).
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A.4. C(2), C(n,3), C(n,4) and K(n)

The third-order first-harmonic homogeneous solution P{1}H is the solution of (∂ζ2 ∂
ζ
2 +

∂
ζ
3 ∂

ζ
3 − k2)P{1}H = O(ε4c[0]2k2). Using a standard method (Kusse & Westwig 1998,

pp. 424–429) for solving Laplace’s equation, the general homogeneous solution can
be obtained as

P{1}H = (C(1)y+C(2))ekζ
+

∑
n>1

(C(n,1)e
√

k2−k2
(n)y +C(n,2)e−

√
k2−k2

(n)y)ek(n)ζ

+

∑
n>1

C(n,3) cos
(√

K2
(n) − k2y+C(n,4)

)
eK(n)ζ , (A 1)

where the parameters C(m) and C(n,m) for m = 1, 2, 3 are complex; C(n,4), k(n) and
K(n) are real; and 0< k(n) < k < K(n). These parameters are constants or functions of
(x, y, t), but their horizontal gradients must be negligible for the third-order balance:
that is, ∂hC(1), ∂1C(2) and ∂hC(n,m) (for m = 1, 2, 3), and ∂2∂2C(2) must be of fourth
or higher order; and ∂hC(n,4), ∂hk(n) and ∂hK(n), as well as any spatial derivatives of√

k2 − k2
(n) and

√
K2
(n) − k2, must be of first or higher order. These parameters are to

be determined by some constraints such as the horizontal boundary condition. For
simplicity, S19 specifies some degree of constraints with regard to the horizontal
boundary condition, or equivalently P{1}H . Namely, S19 considers only those P{1}H
whose structures are similar to that of the current, and whose time scales satisfy
∂ζt ∂

ζ
t P{1}H 6 O(ε4c[0]4k2). In other words, C(1) = 0, C(n,1) = 0, C(n,2) = 0, K(n) 6 1.15k,

∂t∂tC(2) 6 O(ε4c[0]4k2), ∂t∂tC(n,3) 6 O(ε4c[0]4k2), ∂tC(n,4) 6 O(εc[0]k), ∂tK(n) 6 O(εc[0]k2),

∂t

√
K2
(n) − k2 6 O(εc[0]k2) and ∂t∂t

√
K2
(n) − k2 6 O(εc[0]2k3). This results in (5.23a).

Appendix B. The third-order governing equations

Substitute (5.7), (5.9) and (5.10) into (5.1)–(5.5) to obtain the third-order governing
equations for each harmonic. In this step, we can use the fact that ∂ζ1 u{n}i , ∂ζ1 P{n} and
∂
ζ
1 z{n} are of fourth or higher order. (This fact is verified for the derived solutions

and the scaling conditions listed in § 3.) Unlike the x-derivatives, the y-, t- and ζ -
derivatives of u{n}i , P{n} and z{n} cannot be neglected. The momentum equations (5.1)
yield

u{1} =
k̂1

c[0]
P{1} − i

1
c[0]k

∂ζt u{1} − i
k̂1

c[0]k
∂ζt (c

[0]akekζ )− ic[0]∂ζ1 (aekζ )− iaekζ∂tk̂1

+ k̂1akekζ

(
k̂1uc

1 − k̂1uD
1 + k̂1U1 − c[2] +

1
2

c[0]a2k2e2kζ
− iwc

)
+O(ε4c[0]),(B 1a)

v{1} =−i
1

c[0]k
∂
ζ
2 P{1} − i

1
c[0]k

∂ζt v
{1}
− ic[0]∂ζ2 (aekζ )− iaekζ∂tk̂2 +O(ε4c[0]), (B 1b)

w{1} = −i
1

c[0]k
∂
ζ
3 P{1} − i

1
c[0]k

∂ζt w{1} −
1

c[0]k
∂ζt (c

[0]akekζ )

− iakekζ

(
k̂1uc

1 − k̂1uD
1 + k̂1U1 − c[2] +

1
2

c[0]a2k2e2kζ
− iwc

)
+O(ε4c[0]), (B 1c)
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u{2} =
k̂1

c[0]
P{2} −

i
2c[0]k

∂ζt u{2} +O(ε4c[0]), (B 1d)

v{2} =−
i

2c[0]k
∂
ζ
2 P{2} −

i
2c[0]k

∂ζt v
{2}
+O(ε4c[0]), (B 1e)

w{2} =−
i

2c[0]k
∂
ζ
3 P{2} −

i
2c[0]k

∂ζt w{2} +O(ε4c[0]), (B 1f )

u{3} =
k̂1

c[0]
P{3} −

i
3c[0]k

∂ζt u{3} +O(ε4c[0]), (B 1g)

v{3} =−
i

3c[0]k
∂
ζ
2 P{3} −

i
3c[0]k

∂ζt v
{3}
+O(ε4c[0]), (B 1h)

w{3} =−
i

3c[0]k
∂
ζ
3 P{3} −

i
3c[0]k

∂ζt w{3} +O(ε4c[0]). (B 1i)

The incompressibility equation (5.2) yields

ik̂1ku{1} + ∂ζ2 v
{1}
+ ∂

ζ
3 w{1} − akekζ

[ik̂1∂
ζ
3 (u

c
1 + U1)+ ∂

ζ
3 wc
]

+ c[0]akekζ∂H k̂H + k̂1∂
ζ
1 (c
[0]akekζ )=O(ε4c[0]k), (B 2a)

i2k̂1ku{2} + ∂ζ2 v
{2}
+ ∂

ζ
3 w{2} =O(ε4c[0]k), (B 2b)

i3k̂1ku{3} + ∂ζ2 v
{3}
+ ∂

ζ
3 w{3} =O(ε4c[0]k). (B 2c)

Then, taking a temporal partial derivative of (B 2) yields

ik̂1k∂ζt u{1} + ∂ζ2 ∂
ζ
t v
{1}
+ ∂

ζ
3 ∂

ζ
t w{1} + c[0]akekζ∂2∂tk̂2 =O(ε4c[0]

2
k2), (B 3a)

i2k̂1k∂ζt u{2} + ∂ζ2 ∂
ζ
t v
{2}
+ ∂

ζ
3 ∂

ζ
t w{2} =O(ε4c[0]

2
k2), (B 3b)

i3k̂1k∂ζt u{3} + ∂ζ2 ∂
ζ
t v
{3}
+ ∂

ζ
3 ∂

ζ
t w{3} =O(ε4c[0]

2
k2). (B 3c)

The lower boundary condition (5.4) yields

u{n}i =O(ε4c[0]) at ζ =−∞ (B 4)

for n= 1, 2, 3. Then, (B 1a), (B 1d), (B 1g) and (B 4) yield

P{n} =O(ε4c[0]
2
) at ζ =−∞. (B 5)

The upper boundary condition (5.5) yields

−i
P{1}

c[0]
+

1
g
∂ζt P{1} −w{1} + ∂ta

+ iak
(

k̂1uc
1 − k̂1uD

1 + k̂1U1 − c[2] +
1
4

c[0]a2k2

)
=O(ε4c[0]) at ζ = 0, (B 6a)

−i2
P{2}

c[0]
+

1
g
∂ζt P{2} −w{2} =O(ε4c[0]) at ζ = 0, (B 6b)

−i3
P{3}

c[0]
+

1
g
∂ζt P{3} −w{3} + i

3
4

c[0]a3k3
=O(ε4c[0]) at ζ = 0. (B 6c)
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The equation of the ζ -surfaces (5.3) yields

kz{1} = −i
1

c[0]
∂ζt z{1} + i

w{1}

c[0]
− i
∂ζt (aekζ )

c[0]

+
1

c[0]
akekζ

(
k̂1uc

1 − k̂1uD
1 + k̂1U1 − c[2] +

1
4

c[0]a2k2e2kζ

)
+O(ε4), (B 7a)

kz{2} =−i
1

2c[0]
∂ζt z{2} + i

w{2}

2c[0]
+O(ε4), (B 7b)

kz{3} =−i
1

3c[0]
∂ζt z{3} + i

w{3}

3c[0]
+

1
4

a3k3e3kζ
+O(ε4). (B 7c)

Appendix C. Useful identities

Because k̂hk̂h = 1, we have k̂h∂`k̂h = (1/2)∂`(k̂hk̂h) = 0. This and the scaling
conditions for the zeroth and first derivatives listed in § 3 yield

k̂1∂`k̂1 =−k̂2∂`k̂2 6

{
O(ε3k), for `= 1, 2, 3,
O(ε3c[0]k), for `= t.

(C 1)

Because ∂1∂2χ = ∂2∂1χ , equation (2.3) gives ∂1(kk̂2) = ∂2(kk̂1). This and the scaling
for the zeroth and first derivatives (§ 3) yield

∂2k= kk̂1∂1k̂2 +O(ε3k2), −∂hk+ k̂hk̂1∂1k+ kk̂1∂1k̂h =O(ε3k2). (C 2a,b)

Equations (5.11), (5.12) and (5.13) and the scaling for the zeroth and first derivatives
(§ 3) yield

∂tk=−
c[0]

2
k̂1∂1k+O(ε3c[0]k2), (C 3)

∂tk̂1 =−
k̂1

k
∂tk−

c[0]

2k
∂1k+O(ε3c[0]k), (C 4)

∂tk̂2 =−
c[0]

2k
∂2k− ∂2c[2] − k̂1∂2uD

1 +O(ε3c[0]k). (C 5)

Therefore, ∂tk̂1 =O(ε3c[0]k) and ∂ζt enkζ
=−(1/2)c[0]k̂1∂

ζ
1 enkζ
+O(nε3c[0]k) for any real

number n. From (C 1), (C 2), (5.11), (5.14b) and US
h ≡ c[0]a2k2e2kζ k̂h, we have

cg
H∂

ζ
H(

1
2 US

1) = cg
Hc[0]ak2e2kζ k̂1∂Ha+ 1

2 c[0]
2
a2k2ekζ∂

ζ
1 ekζ

+
3
8 c[0]

2
a2ke2kζ∂1k+O(ε5c[0]

2
k), (C 6)

cg
H∂

ζ
H(

1
2 US

2)=
1
4 c[0]

2
a2ke2kζ∂2k+O(ε5c[0]

2
k)=−US

H∂
ζ
2 cg

H +O(ε5c[0]
2
k). (C 7)

Appendix D. Derivation of the third-order wave solutions

Combining (5.7e), (5.11), (B 1a)–(B 1c), (B 2a), (B 3a) and k̂h∂`k̂h = 0 yields the
governing equation for P{1} as (∂ζ2 ∂

ζ
2 + ∂

ζ
3 ∂

ζ
3 − k2)P{1} + A + B + C + D + E + F =
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O(ε4c[0]2k2), where the six driving functions are defined in table 1. The solution
satisfying the lower boundary condition (B 5) is

P{1} = P{1}H + P{1}A + P{1}B + P{1}C + P{1}D + P{1}E + P{1}F , (D 1)

where the terms on the right-hand side are given by (5.23a), (5.26a), (5.29a), (5.32a),
(5.36a), (5.39a) and (5.42a). Here, P{1}H is the homogeneous solution, and P{1}A through
P{1}F are the particular solutions for the corresponding driving functions: that is,
(∂
ζ
2 ∂

ζ
2 + ∂

ζ
3 ∂

ζ
3 − k2)P{1}A + A = O(ε4c[0]2k2), and so on. The expression for P{1}H is

derived in § A.4; P{1}A and P{1}B are derived for the current structure (3.2) and (3.3);
and P{1}A , P{1}B and P{1}C are derived using the method of separation of variables (for y
and ζ ) combined with the Wronskian method (Kusse & Westwig 1998, pp. 351–353).
In (5.26a), the upper bound of the first integral and the lower bound of the second
integral are chosen in such a way that eKA(ζ−ζ ′)6 1 for the first term and eKA(ζ ′−ζ )6 1
for the second term. This ensures that the solution becomes of third order and
also satisfies the lower boundary condition (B 5). The same reasoning applies to
(5.29a) and (5.32a). The expression for P{1}D is derived by substituting (5.36a) into
(∂
ζ
2 ∂

ζ
2 + ∂

ζ
3 ∂

ζ
3 − k2)P{1}D + D = O(ε4c[0]2k2) and then solving for the coefficients αD,

βD and γD. Note that D = −2kβDekζ
− 2αDekζ

− 4kαDζekζ . The same method is
used in deriving (5.39a) and (5.42a). These derivations use the fact that ∂ζhC, ∂ζ1D,
∂
ζ
2 ∂

ζ
2D, ∂ζ1E, ∂ζ2 ∂

ζ
2E, ∂ζ1F and ∂

ζ
2 ∂

ζ
2F are of fourth or higher order according to the

scaling conditions (§ 3). The last terms of (5.36a) and (5.39a) are chosen in such a
way that P{1}D and P{1}E make particularly simple contributions to the upper boundary
condition (B 6a). These choices do not cause loss of generality because they can be
absorbed in the specification of the value of C(2) in (5.23a). The particular solutions
presented in S19 for any driving functions are written in such a way that polynomial
or exponential functions of y appear only in the general homogeneous solution (A 1),
because these functions are limited in the valid range of y.

Using the scaling conditions in § 3, the following solutions can be obtained from
(B 1a)–(B 1c) and (B 7a):

u{1} =
k̂1

c[0]
P{1} − i

k̂1

g
∂ζt P{1} + i

k̂1a
c[0]

ekζ∂tc[2] − i
k̂1∂

ζ
t (c
[0]akekζ )

c[0]k
−

k̂1ekζ∂t∂ta
c[0]k

+ k̂1akekζ

(
k̂1uc

1 − k̂1uD
1 + k̂1U1 − c[2] +

c[0]

2
a2k2e2kζ

− iwc

)
− ic[0]∂ζ1 (aekζ )− iaekζ∂tk̂1 +O(ε4c[0]), (D 2a)

v{1} = −i
1

c[0]k
∂
ζ
2 P{1} −

1
gk
∂
ζ
2 ∂

ζ
t P{1} − iaekζ∂tk̂2 −

a
c[0]k

ekζ∂t∂tk̂2

− ic[0]∂ζ2 (aekζ )−
1
k

ekζ∂2∂ta+ i
1

c[0]k2
ekζ∂2∂t∂ta+O(ε4c[0]), (D 2b)

w{1} = −i
∂
ζ
3 P{1}

c[0]k
−
∂
ζ
3 ∂

ζ
t P{1}

gk
+

a
c[0]

ekζ∂tc[2] −
∂ζt (c

[0]akekζ )

c[0]k
+ i

ekζ∂t∂ta
c[0]k

− iakekζ

(
k̂1uc

1 − k̂1uD
1 + k̂1U1 − c[2] +

c[0]

2
a2k2e2kζ

− iwc

)
+O(ε4c[0]), (D 2c)
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z{1} =
1
gk
∂
ζ
3 P{1} − i

2
gc[0]k2

∂
ζ
3 ∂

ζ
t P{1} + i

3a
g

ekζ∂tc[2]

+
2a
c[0]

ekζ

(
k̂1uc

1 − k̂1uD
1 + k̂1U1 − c[2] +

3
8

c[0]a2k2e2kζ

)
−

3
gk

ekζ∂t∂ta

− i
a

c[0]
ekζwc

− i
1

c[0]k
∂ζt (aekζ )− i

1
gk
∂ζt (c

[0]akekζ )+O(ε4k−1). (D 2d)

For simplicity, the homogeneous solutions (proportional to eic[0]kt) of (B 1a)–(B 1c) and
(B 7a) are excluded from (D 2). Note that ∂ζt P{1}= ∂ζt (P

{1}
D +P{1}E +P{1}H ), correct to third

order, because the time derivatives of P{1}A , P{1}B , P{1}C and P{1}F are of fourth or higher
order.

Substituting the aforementioned pressure solutions and (D 2c) into the upper
boundary condition (B 6a) yields (5.14) and (5.15). Then, (C 3)–(C 5), (5.11), (5.14),
(5.15b) and the scaling conditions (§ 3) yield

∂t∂ta=
c[0]a

4
∂2∂2(k̂1uD

1 + c[2])−
1
2
∂t Re(G)+O(ε4c[0]

2
k), (D 3a)

∂tc[2] =
c[0]

4ak2

(
a
2
∂2∂2Dg

+
1
2
∂2∂2 Re(G)

)
−

1
2ak

i∂t Im(G)+O(ε3c[0]
2
k), (D 3b)

∂tk̂1 =O(ε3c[0]k), (D 3c)

∂t∂tk̂2 =−
c[0]

4ak2

(
a
2
∂2∂2∂2Dg

+
1
2
∂2∂2∂2 Re(G)

)
+O(ε3c[0]

2
k2). (D 3d)

Once the horizontal boundary condition (hence, C(2), C(n,3), C(n,4) and K(n) in
(5.23a)) and uc

1 + U1 are specified, then the derived solutions are fully determined.
(Note that the accuracy of uc

1 + U1 necessary for computing the third-order wave
solutions is only O(ε2c[0]).)

The third-order, second- and third-harmonic solutions are

P{2} =C(3) cos(
√

12ky+C(4))e4kζ , (D 4a)

u{2} =
k̂1

c[0]
P{2}, (D 4b)

v{2} = i

√
3

c[0]
C(3) sin(

√
12ky+C(4))e4kζ , (D 4c)

w{2} =−i
2

c[0]
P{2}, (D 4d)

z{2} =
1
g

P{2}, (D 4e)
P{3} = 3

8 c[0]
2
a3k3e3kζ

+C(5) cos(
√

72ky+C(6))e9kζ , (D 5a)

u{3} =
k̂1

c[0]
P{3}, (D 5b)

v{3} = i

√
8

c[0]
C(5) sin(

√
72 ky+C(6))e9kζ , (D 5c)

w{3} =−i
3
8

c[0]a3k3e3kζ
− i

3
c[0]

C(5) cos(
√

72ky+C(6))e9kζ , (D 5d)

z{3} =
3
8

a3k2e3kζ
+

1
g

C(5) cos(
√

72ky+C(6))e9kζ , (D 5e)
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where complex numbers C(3) and C(5) and real numbers C(4) and C(6) are constants
to be determined by a full specification of the horizontal boundary condition. For
simplicity, the solutions are obtained for a class of horizontal boundary conditions that
change slowly enough so that scaling conditions ∂ζt P{2} 6 O(ε4c[0]3k) and ∂ζt P{3} 6
O(ε4c[0]3k) are valid. (Because the governing equations for the second and third
harmonics in appendix B contain no terms that require ∂ζt P{2} and ∂ζt P{3} be non-zero
to third order, these derivatives depend solely on the time dependence of the horizontal
boundary condition.) These solutions are derived in the following way. Combining
(B 1d), (B 1e), (B 1f ), (B 2b) and (B 3b) yields (∂ζ2 ∂

ζ
2 + ∂

ζ
3 ∂

ζ
3 − 4k2)P{2} =O(ε4c[0]2k2)

with the boundary conditions (B 5) and (B 6b). Likewise, combining (B 1g), (B 1h),
(B 1i), (B 2c) and (B 3c) yields (∂

ζ
2 ∂

ζ
2 + ∂

ζ
3 ∂

ζ
3 − 9k2)P{3} = O(ε4c[0]2k2) with the

boundary conditions (B 5) and (B 6c). The other solutions follow directly from (B 1d),
(B 1e), (B 1f ), (B 7b), (B 1g), (B 1h), (B 1i) and (B 7c).

Appendix E. Solutions of Si

Equations (5.7d), (5.9d), (5.10) and equations ak=O(ε) and S[n]` = (
∑n

m=1 ∂
ζ
` z[m])[n]

yield the following solutions for Si: S[0]i = 0, S[1]h =−k̂hakekζ sin χ , S[1]3 = akekζ cos χ ,
S[2]h =−k̂ha2k2e2kζ sin(2χ), S[2]3 = a2k2e2kζ cos(2χ) and

S[3]h = ∂
ζ
h (aekζ ) cos χ +

3∑
m=1

[∂
ζ
h Re(z{m})+ imk̂hk Im(z{m})] cos(mχ)

+

3∑
m=1

[i∂ζh Im(z{m})−mk̂hk Re(z{m})] sin(mχ),

S[3]3 =

3∑
m=1

[∂
ζ
3 Re(z{m})] cos(mχ)+

3∑
m=1

[i∂ζ3 Im(z{m})] sin(mχ).


(E 1)

The solutions of z{m} are given in (D 2d), (D 4e) and (D 5e).

Appendix F. Solutions of 〈S3uw
h 〉 and 〈Shuw

h 〉

These are

〈S3uw
1 〉 = 〈S

[1]
3 uw

1
[1]
〉 + 〈S[1]3 uw

1
[3]
〉 + 〈S[2]3 uw

1
[2]
〉 + 〈S[3]3 uw

1
[1]
〉 +O(ε5c[0])

=
1
2

US
1 +

13
8

k̂1c[0]a4k4e4kζ
+

k̂1ak
2c[0]

ekζ

(
Re(P{1})+

1
k2
∂
ζ
3 ∂

ζ
3 Re(P{1})

)
+

k̂1a

2c[0]2
ekζ

(
−i∂ζt Im(P{1})−

2
k2

i∂ζ3 ∂
ζ
3 ∂

ζ
t Im(P{1})− 4c[0]ekζ∂t∂ta

)
+

3
2

a2k2e2kζ (uc
1 − uD

1 + U1 − c[2]k̂1)+ a2ke2kζ∂
ζ
3 (u

c
1 + U1)+O(ε5c[0]), (F 1)

〈S3uw
2 〉 = 〈S

[1]
3 uw

2
[1]
〉 + 〈S[1]3 uw

2
[3]
〉 + 〈S[2]3 uw

2
[2]
〉 + 〈S[3]3 uw

2
[1]
〉 +O(ε5c[0])

=
1
2

US
2 −

a2

2c[0]
e2kζ∂t∂tk̂2

+
a
2

ekζ

(
−

1
g
∂
ζ
2 ∂

ζ
t Re(P{1})−

1
c[0]

i∂ζ2 Im(P{1})− ekζ∂2∂ta
)
+O(ε5c[0]), (F 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

75
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.752


946 N. Suzuki

− 〈Shuw
h 〉 = −〈S

[1]
h uw

h
[3]
〉 − 〈S[3]h uw

h
[1]
〉 +O(ε5c[0])

= −
1
2

akekζ∂ζt (aekζ )+
a

2c[0]2
ekζ

(
∂ζt Re(P{1})−

2
k
∂
ζ
3 ∂

ζ
t Re(P{1})

)
+

ak
2c[0]

ekζ

(
i Im(P{1})−

1
k

i∂ζ3 Im(P{1})+ 2aekζ∂tc[2]
)
+O(ε5c[0]). (F 3)

Appendix G. Pseudo-incompressibility of other flows

The ensemble-averaged flow 〈u〉 does not satisfy its pseudo-incompressibility to the
necessary (i.e. fourth-order) accuracy. In fact, (2.5) and (6.3)–(6.4c) yield

∂
ζ
i 〈ui〉 =−∂

ζ
h 〈S3uh〉 + ∂

ζ
3 〈Shuh〉. (G 1)

Meanwhile, 〈S3uh〉 = 〈S3uw
h 〉 + O(ε5c[0]) and 〈Shuh〉 = 〈Shuw

h 〉 + O(ε5c[0]) according
to (3.1) and appendix E. Therefore, the right-hand side of (G 1) can be computed
from (F 1)–(F 3). The result shows that ∂ζi 〈ui〉 is of fourth order. In terms of the
Poisson equation, we must consider ∂

ζ
i ∂

ζ
t 〈ui〉. According to (F 1)–(F 3) and the

scaling conditions in § 3, we have

∂ζt 〈S3u1〉 =
1
2
∂ζt US

1 −
3
2

a2k2e2kζ k̂1∂tc[2]

+
k̂1ak
2c[0]

ekζ

(
∂ζt Re(P{1})+

1
k2
∂
ζ
3 ∂

ζ
3 ∂

ζ
t Re(P{1})

)
+O(ε5c[0]

2
k), (G 2)

∂ζt 〈S3u2〉 =
1
2
∂ζt US

2 −
a
2

ekζ

(
1

c[0]
i∂ζ2 ∂

ζ
t Im(P{1})+ ekζ∂2∂t∂ta

)
+O(ε5c[0]

2
k), (G 3)

− ∂ζt 〈Shuh〉 = −
ak
2

e2kζ∂t∂ta

+
ak

2c[0]
ekζ

(
i∂ζt Im(P{1})−

1
k

i∂ζ3 ∂
ζ
t Im(P{1})

)
+O(ε5c[0]

2
k). (G 4)

Then, (D 3a), (G 1)–(G 4) and the scaling conditions in § 3 yield

∂
ζ
i ∂

ζ
t 〈ui〉 = ak2e2kζ

(
c[0]a

4
∂2∂2(k̂1uD

1 + c[2])−
1
2
∂t Re(G)

)
+O(ε5c[0]

2
k2). (G 5)

The right-hand side of (G 5) is of fourth order.
The ensemble-averaged current 〈uc

〉 is not guaranteed to satisfy its pseudo-
incompressibility. According to (6.3), we have ∂ζi 〈uc

i 〉 = −∂
ζ
i Ui − ∂

ζ
h 〈S3uh〉 + ∂

ζ
3 〈Shuh〉.

There is no reason to assume that the right-hand side of this equation is negligible
to fourth order.

The quasi-current uQ
≡ (〈uh〉 −US

h/2, 〈w〉) does not satisfy pseudo-incompressibility.
In fact, according to (5.50), (G 1), (G 5) and the scaling conditions in § 3, both ∂ζi uQ

i

and ∂ζi ∂ζt uQ
i are of fourth order.
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Appendix H. Derivation of (6.5)
Averaging (5.1) using (2.5) and combining it with (5.50) and the identities in

appendix C yields the following momentum equations:

(∂ζt + 〈uH〉∂
ζ
H + 〈w

c
〉∂
ζ
3 )
(
〈u1〉 −

1
2 US

1

)
+ ∂

ζ
1 〈P

[4]
〉 + ∂

ζ
1

(
Φ − 1

4 US
HUS

H

)
−

a
c[0]

ekζ k̂1∂
ζ
3 ∂

ζ
t Re(P{1})+ 3

2 a2k2e2kζ k̂1∂tc[2] =O(ε5c[0]
2
k), (H 1a)

(∂ζt + 〈uH〉∂
ζ
H + 〈w

c
〉∂
ζ
3 )(〈u2〉 −

1
2 US

2)+ ∂
ζ
2 〈P

[4]
〉 + ∂

ζ
2 (Φ −

1
4 US

HUS
H)

−US
1∂

ζ
2 (〈u1〉 −

1
2 US

1)=O(ε5c[0]
2
k), (H 1b)

(∂ζt + 〈uH〉∂
ζ
H + 〈w

c
〉∂
ζ
3 )〈w〉 + ∂

ζ
3 〈P

[4]
〉 + ∂

ζ
3

(
Φ − 1

4 US
HUS

H

)
−US

1∂
ζ
3

(
〈u1〉 −

1
2 US

1

)
−

a
c[0]

ekζ i∂ζ3 ∂
ζ
t Im(P{1})

−
3
2 ake2kζ∂t∂ta=O(ε5c[0]

2
k), (H 1c)

where Φ is defined by (6.5d). The terms 〈uH〉∂
ζ
HUS

h and ∂
ζ
1Φ are of fifth order, and

US
H∂

ζ
h US

H is of sixth order, according to the scaling conditions (§ 3) and the derived
wave dynamics (§ 5). Without loss of generality, these terms are included in these
equations because the properties of these equations become clearer in this way;
e.g. the inclusion of ∂ζ1Φ makes it clearer to see that ∂ζi Φ is a potential force. Note
that the terms −∂ζt US

h/2 (together with some other terms) derive from 〈uw
H
[1]∂

ζ
Huw

h
[1]
〉,

〈uw
H
[1]∂

ζ
Huw

h
[3]
〉 and 〈−S[3]h ∂

ζ
3 P[1]〉 shown in table 2. Because uQ

≡ (〈uh〉 − US
h/2, 〈w〉)

is not pseudo-incompressible (appendix G), these equations do not form a solvable
Poisson equation for the wave-averaged pressure 〈P[4]〉.

According to (6.4) and appendix F, we have Uh = 〈uh〉 +
1
2 US

h +O(ε4c[0]) and W =
〈wc
〉 +O(ε4c[0]). These facts and the scaling conditions (§ 3) imply that 〈uH〉∂

ζ
H〈ui〉 =

UH∂
ζ
H〈ui〉 + O(ε5c[0]2k) and US

H∂
ζ
HUS

h 6 O(ε6c[0]2k). Combining these equations with
(5.50), (6.4), (G 2)–(G 4) and (H 1a)–(H 1c) yields (6.5).

Appendix I. The vortex force form of (6.5)
We have

∂ζt U1 + (UH∂
ζ
H +W∂ζ3 )(U1 −US

1)+ ∂
ζ
1 〈P

[4]
〉 + ∂

ζ
1 (Φ + φ +

1
4 US

HUS
H)

− ∂ζt US
1 +Λ1 =O(ε5c[0]

2
k), (I 1)

∂ζt U2 + (UH∂
ζ
H +W∂ζ3 )(U2 −US

2)+ ∂
ζ
2 〈P

[4]
〉 + ∂

ζ
2 (Φ + φ +

1
4 US

HUS
H)

+ cg
H∂

ζ
HUS

2 −US
1∂

ζ
2 (U1 − uD

1 − c[2]k̂1)=O(ε5c[0]
2
k), (I 2)

∂ζt W + (UH∂
ζ
H +W∂ζ3 )W + ∂

ζ
3 〈P

[4]
〉 + ∂

ζ
3 (Φ + φ +

1
4 US

HUS
H)

−US
1∂

ζ
3 U1 − 2∂ζ3φ =O(ε5c[0]

2
k). (I 3)

A vortex force −US
1∂

ζ
2 U1 in (I 2) is largely cancelled by the wave refraction effect

US
1∂

ζ
2 (uD

1 + c[2]k̂1), unless the refraction effect is balanced by cg
H∂

ζ
HUS

2 . According
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to (6.4), −US
1∂

ζ
2 U1 in (I 2) and −US

1∂
ζ
3 U1 in (I 3) contain terms −US

1∂
ζ
2 〈uc

1〉 and
−US

1∂
ζ
3 〈uc

1〉, which are equal to the leading-order terms of the vortex force of the CL
equations under the scaling conditions in S19.
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