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The Dual Pair G2 × PU3(D) (p-Adic Case)
Gordan Savin and Wee Teck Gan

Abstract. We study the correspondence of representations arising by restricting the minimal representation of
the linear group of type E7 and relative rank 4. The main tool is computations of the Jacquet modules of the
minimal representation with respect to maximal parabolic subgroups of G2 and PU3(D).

Introduction

Let F be a p-adic field of residue characteristic not 2, and let D be the non-split quarternion
algebra over F. Associated to D, there is a linear adjoint algebraic group HD over F of type
E7, and relative rank 4. We shall let HD denote the group of F-points of HD. There is a
reductive dual pair

G2 × PU3(D) = G× G′ ⊂ HD

Here, G2 is split and PU3(D) is an inner form of PGSp6 of relative rank one. In this paper,
we study the dual pair correspondence which arises from the restriction of the minimal
representation Π of HD to the dual pair G2 × PU3(D). Recall that the minimal represen-
tation is the analogue of the Weil representation of the metaplectic group. As usual, if σ
is an irreducible admissible representation of G2, we let Θ(σ) denote the set of irreducible
admissible representations σ′ of PU3(D), counted with multiplicities, such that σ ⊗ σ′ is
a quotient of Π. Similarly, we have the set Θ(σ′). Then we determine the sets Θ(σ) and
Θ(σ′) when σ and σ′ are non-cuspidal representations.

The techniques used in this work can already be found in [MS], where, among other
things, the correspondence of tempered spherical representations was determined for the
dual pair G2 × PGSp6 in the split adjoint group of type E7. The point is that, to deter-
mine the correspondence of non-cuspidal representations, one reduces to the determina-
tion of the Jacquet modules ofΠwith respect to the maximal parabolic subgroups of G2 and
PU3(D). There are essentially two steps involved in this. First, we determine the restriction
of Π to certain maximal parabolic subgroups of HD. Unlike the case of the Weil repre-
sentation, where we have several different smooth models of the representation at hand,
we compute the restriction just by using the fact that Π is minimal. The second step is
essentially an orbit computation, involving the internal modules of the groups in question.

Let us describe the main results of the paper. Let π′ be an irreducible (finite-dimen-
sional) representation of D×. In [JL], Jacquet and Langlands associated to π′ a square-
integrable representation π = JL(π′) of GL2, an inner form of D×. Let Q be the minimal
parabolic subgroup of PU3(D). The Levi factor L of Q is given by:

L ∼== D× × D×/F×
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The Dual Pair 131

where F× is embedded via t 7→ (t, t−1). Using unnormalized induction throughout the
paper, let

σ′ = IndG′

Q δ
1/2
Q (π′ × π′)

where δQ is the modulus character of Q. Also, we let Q1 = L1U1 (respectively Q2 = L2U2)
be the maximal parabolic subgroup of G2 whose Levi factor is generated by the long root
(respectively short root) of G2, and let{

σ1 = IndG
Q1
δ

1/2
Q1
π

σ2 = IndG
Q2
δ

1/2
Q2
π.

For the ease of exposition, let us suppose that π is supercuspidal and both σ1 and σ′ are
irreducible, which is true generically. Then we shall show:{

Θ(σ1) = {σ′}

Θ(σ′) = {σ1}

and
Θ(σ2) = ∅.

Also, let St (respectively St′) be the Steinberg representation of G (respectively G′). Then

Θ(St′) = {St}.

Note that the above results are predicted by the natural inclusion of L-groups, that is, they
respect Langlands functoriality. We refer the reader to [G], for more precise results, and a
global variant of this correspondence.

Acknowledgements Parts of this paper form a chapter in the second author’s doctoral
dissertation [G]. The second author would like to thank his advisor, Professor Benedict
Gross, for his encouragement and advice.

1 Representations of `-Groups

In this first section, we establish some notation and discuss some basic facts on induced
representations that are required later.

Let G be the F-points of a reductive algebraic group over F. Then recall that G is an
`-group, in the terminology of [BZ]. Let Alg(G) be the category of smooth representations
of G, and let Irr(G) be the set of simple objects of Alg(G).

Recall that if P =MN is a parabolic subgroup of G, then we have an exact functor

IndG
P : Alg(M) −→ Alg(G)

whose left and right adjoints are given by the functors of co-invariants (Jacquet functors).
More precisely, let N̄ be the opposite unipotent radical. Then{

HomG

(
π, IndG

P(δ1/2σ)
)
= HomM(πN, δ

1/2σ)

HomG

(
IndG

P(δ1/2σ), π
)
= HomM(δ̄1/2σ, πN̄)

(1.1)
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132 Gordan Savin and Wee Teck Gan

where δ and δ̄ are the moduli characters of P and P̄.
Finally, we record below an easy lemma:

Lemma 1.2 Let 0→ V1 → V2 → V3 → 0 be an exact sequence of G-modules. If the center
of G acts on V1 and V3 by different eigenvalues, then the sequence is split.

2 Jacquet-Langlands Correspondence and Weil Representation

In this section, we recall the local Jacquet-Langlands correspondence from [JL]. First of all,
there is a natural bijection between regular elliptic conjugacy classes of GL2(F) and D×.
For each π in Irr

(
GL2(F)

)
, we write chπ for its character, which is, by a well-known result

of Harish-Chandra, a locally integrable function, locally constant on the set of all regular
conjugacy classes. Then there exists a bijection π ↔ π′ between the set of all classes of
irreducible essentially square integrable representations of GL2(F) and the set of all classes
of irreducible representations of D× characterized by

− chπ = chπ′

on the set of regular elliptic conjugacy classes. Note that π is supercuspidal if the dimension
of π is greater than one. Otherwise, π is a special representation in the terminology of [JL].

Let ψ be an additive (unitary) character ψ of F of conductor OF , the ring of integers of
F. As in the introduction, D is the unique non-split quarternion algebra over the p-adic
field F. Let Tr and N be the reduced trace and reduced norm on D. For x ∈ D, x̄ denotes
its conjugate with respect to the canonical anti-involution on D. The Jacquet-Langlands
correspondence can be constructed using (a particular case of) the Weil representation W
of SL2(F). The space of W is the space of Schwarz function S(D) on D, and the action of
SL2(F) is completely specified by:



W

(
a 0

0 a−1

)
Φ(x) = |a|2Φ(ax)

W

(
1 b

0 1

)
Φ(x) = ψ

(
bN(x)

)
Φ(X)

W

(
0 1

−1 0

)
Φ(x) = −Φ̂(x).

Here, Φ̂ denotes the Fourier transform of Φ with respect to the Haar measure on D deter-
mined by the character ψ ◦ Tr of D.

Let R̃ = GL2(F) × (D× × D×/F×). The action of SL2 on S(D) defined above, extends
to the action (also denoted by W ) of

R = {(g, α, β) ∈ R̃ : det(g) = N(αβ)}.

To describe this action, it suffices to do so for elements of the form (g, α, β), with

g =

(
a 0
0 1

)
.
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Then the action is given by

W (g, α, β)Φ(x) = |a|Φ(ᾱxβ).

Now let
W̃ = indR̃

R W.

For a general discussion of the representation W̃ , we refer the reader to [Ro], where theta
correspondences for similitude groups are treated at length. We now state the result of
Jacquet and Langlands in terms of the action of R̃ on W̃ :

Theorem 2.1 Let π′ be an irreducible representation of D×, and let π̃ be the contragredient
of JL(π′). LetΘ(π′⊗ π′) be the set of irreducible admissible representations σ of GL2(F) such
that π′ ⊗ π′ ⊗ σ is a quotient of W̃ . Then

{
Θ(π′ ⊗ π′) = {π̃}

Θ(π̃) = {π′ ⊗ π′}.

3 Groups and Dual Pairs

In this section, we describe the various groups that will be studied in this paper. In partic-
ular, we shall describe the group HD, and the dual pair G2 × PU3(D).

Let J = J(D) be the Jordan algebra of 3-by-3 hermitian matrices with coefficients in D:

X =


a x y

x̄ b z
ȳ z̄ c


 .

Note that the algebra J has a natural decomposition

J = ⊕ Ji j (1 ≤ i ≤ j ≤ 3)

where Ji j consists of matrices X in J whose entries are 0 at all positions different from (i, j)
and ( j, i). In particular, {

Jii
∼== F

Ji j
∼== D if i < j.

Recall that J has a natural cubic form det, the determinant form, which in turn gives rise to
a symmetric trilinear form such that (X,X,X) = 6 det(X). The value (X,Y,Z) is given by

(X,Y,Z) = 2 Tr(XY Z) + Tr(X) Tr(Y ) Tr(Z)

− Tr(X) Tr(Y Z)− Tr(Y ) Tr(XZ)− Tr(Z) Tr(XY ).
(3.1)

If X and Y are in J, then let X × Y ∈ J∗ be the element such that

(X × Y )(Z) = (X,Y,Z)
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134 Gordan Savin and Wee Teck Gan

for all Z ∈ J. Finally, we note that (X,Y ) = Tr(XY ) defines a symmetric bilinear form,
which can be used to identify J and J∗.

Let LD be the algebraic group of linear transformation on J which preserves the deter-
minant form. Then it is well-known that

LD
∼== SL3(D)/µ2

(as algebraic groups). The action of LD on J is given, for X ∈ J, by:

X 7→ gXḡt

where g ∈ SL3(D). Moreover GL3(D) also acts on J by the same formula, and preserves
the form det up to scaling. Note that LD has center µ3, and relative root system of type A2.
We let lD

∼== sl3(D) be its Lie algebra. Associated to D, there is a linear algebraic group HD

over F which is adjoint, of type E7 and relative rank 4. The Satake diagram of HD is:

α1 α2 α3 α4

◦ ◦ ◦ • ◦ •

•

The group HD has relative root system F4, and each short root space has dimension 4,
and can be given the structure of D. Moreover [T, p. 66], HD has unique (up to conjugacy)
special maximal compact subgroup K, whose reductive quotient is a finite group of type
2Gm ×2 E6, where 2Gm is the group of norm one elements in the quadratic extension K of
the residue field F of F.

Now we describe the Lie algebra h of HD, following the construction in [Ru]. Notice
that h has a subalgebra h0 = sl3 ⊕ sl3(D). This is obtained by covering the vertex α2 in the
Satake diagram. Via the adjoint action, h decomposes as a h0-module:

h = sl3 ⊕ sl3(D)⊕ (V ⊗ J)⊕ (V ∗ ⊗ J∗)(3.2)

where {
V = 〈e1, e2, e3〉

V ∗ = 〈e∗1 , e
∗
2 , e
∗
3 〉

are the standard representation of sl3(F) and its dual.
As for the bracket relations, most of them are obvious, except for the bracket between

two elements of V ⊗ J, and the bracket between an element of V ⊗ J and an element of
V ∗ ⊗ J∗. For the former, we have

[ei ⊗ X, e j ⊗ Y ] = ±e∗k ⊗ X × Y

where± is the sign of permutation (i, j, k) of (1, 2, 3). For the latter, we refer the reader to
[Ru] for details.
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The Dual Pair 135

Using the realization (3.2), we can describe the dual pair G2 × PU3(D) very easily. In-
deed, let e be a generic element of J, i.e., det(e) 6= 0, and let G′ ⊂ LD be the subgroup
which fixes e. Then G′ is isomorphic to PU3(D). Let G be the closed subgroup of HD with
Lie algebra:

g = sl3 ⊕V ⊗ e⊕V ∗ ⊗ e∗

where 2e∗ = e × e. Then G is isomorphic to a split group of type G2. It is easy to see
that G and G′ are mutual commutants in HD, and so G × G′ is a reductive dual pair in
HD. Moreover, the choice of e is not important, as all such e’s are in the same orbit of
GL3(D)/µ2. Hence, for definiteness, we fix the following choice of e:


0 0 1

0 1 0
1 0 0


 .

This gives a fixed embedding:
G× G′ ↪→ HD.

Finally, we note that under the identification of J and J∗ defined by Tr(XY ), the element
e corresponds to e∗.

4 Parabolic Subgroups

In this section, we describe various maximal parabolic subgroups of HD. First we have the
Heisenberg maximal parabolic subgroup P2 = M2 · N2, which corresponds to the vertex
α1 in the Satake diagram. Then N2 is a Heisenberg group with center Z2. Note that N2/Z2

is a representation of M2, and we let Ω be the minimal non-trivial M2-orbit in N̄2/Z̄2; it is
the orbit generated by the highest weight vector. For a discussion of P2, we refer the reader
to [MS].

Now let P1 = M1 · N1 be the maximal parabolic subgroup of HD corresponding to the
vertex α2. Then N1 is a 3-step nilpotent group. On the level of Lie algebras, let

s1 =


1

1
−2


 ∈ sl3,

and h1(i) = {x ∈ h : [s1, x] = ix}. Then the Lie algebra p1 = m1 ⊕ n1 of P1 is given by

{
m1 = h1(0) = gl2 ⊕ lD

n1 = ⊕i≥0h1(i),

where 


h1(1) = 〈e1, e2〉 ⊗ J

h1(2) = 〈e∗3 〉 ⊗ J∗ ∼== det⊗ J∗

h1(3) ∼== det⊗〈e1, e2〉 ⊂ sl3.
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Here 〈e1, e2〉 is the standard representation of L1
∼== GL2, and det is the usual determinant

of 2-by-2 matrices. We let Ω1 (respectively Ω2) be the minimal non-trivial orbit of M1 on
h1(−1) (respectively h1(−2)).

Consider now the intersection of G× G′ with P1. We have:

(G× G′) ∩ P1 = Q1 × G′

where Q1 = L1 · U1 is the maximal parabolic subgroup of G = G2 whose Levi factor is
generated by the long root. Then the Lie algebra u1 of U1 can be identified as the subspace
of n1, the Lie algebra of N1, given by:




u1(1) = 〈e1, e2〉 ⊗ 〈e〉 ⊂ h1(1)

u1(2) = 〈e∗3 ⊗ e∗〉 ⊂ h1(2)

u1(3) = h1(3).

Let Vi be the orthogonal complement of u1(i) in h1(−i), for i = 1, 2. Then

{
V1 = 〈e∗1 , e

∗
2 〉 ⊗ J∗0

V2 = det∗⊗ J∗0

where J0 is the subspace of J orthogonal to e∗, and J∗0 is the subspace of J∗ orthogonal to e.
We have

Lemma 4.1

1. Ω1 ∩V1 is the minimal non-trivial L1 × G′ orbit in V1:

Ω1 ∩V1 = {0 6= v ⊗ X ∈ 〈e1, e2〉 ⊗ J0 : rank(X) = 1}.

2. Ω2 ∩V2 is the minimal non-trivial L1 × G′ orbit in V2:

Ω2 ∩V2 = {X ∈ J∗0 : rank(X) = 1}.

Now we do the same for another maximal parabolic subgroup P = M · N of HD. Here,
P corresponds to the vertex α4, and N is a 2-step nilpotent group. The Lie algebra p of P
can be described as follows. Let

s =


1

0
−1


 ∈ sl3(D),

and define the spaces h(i) analogously as before. Then, for example,

{
h(1) = lD(1)⊕V ⊗ J12 ⊕V ∗ ⊗ J∗23

h(2) = lD(2)⊕V ⊗ J11 ⊕V ∗ ⊗ J∗33
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where {
lD(1) ∼== D⊕ D

lD(2) ∼== D

are two summands of the nilpotent radical of the minimal parabolic subalgebra of sl3(D)
consisting of the upper-triangular matrices.

Now we have:

(G× G′) ∩ P = G× Q

where Q = L · U is the minimal parabolic subgroup of G′. The Lie algebra of U can be
identified as: 



u(1) =




0 x 0

0 0 z

0 0 0


 : x + z̄ = 0


 ⊂ lD(1)

u(2) =




0 0 y

0 0 0

0 0 0


 : Tr(y) = 0


 ⊂ lD(2).

The Levi factor L can be identified with D××D×/F× where F× is embedded into D××D×

via t 7→ (t, t−1). The adjoint action of (α, β) in L on u(1) ∼== D and u(2) ∼== D0 (where D0

is the 3-dimensional space of traceless quaternions) is given by

{
(α, β) : x 7→ βxᾱ

(α, β) : y 7→ N(αβ)y.

Note that with these identifications, the modulus character of Q is given by:

δQ(α, β) = |N(α · β)|5.

Let V ′i be the orthogonal complement of u(i) in h(−i), for i = 1, 2. Then, as a represen-
tation of G× L, we have: {

V ′1 = Ø0 ⊗ D

V ′2 = Ø0 ⊗ N.

Here, Ø0 is the 7-dimensional space of traceless octonions, on which G acts, and the actions
of D× × D×/F× on D and N are given respectively by:

{
(α, β) : x 7→ ᾱ−1xβ−1

(α, β) 7→ N(αβ)−1.

Lemma 4.2 LetΩ′ be the minimal M-orbit on h(2). ThenΩ′∩V ′2 is the minimal G×L-orbit
in V ′2.
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5 The Minimal Representation Π

In this section, we describe a particular representation Π of HD, known as the minimal
representation. Recall that for any irreducible admissible representation π of a reductive p-
adic group H, the character Tr(π) of π is an invariant distribution, i.e., a linear functional
on the space of locally constant, compactly supported functions on H, which is invariant
under conjugation. In a small neighborhood of 1, we can regard Tr(π) as a distribution in a
neighborhood of 0 in the Lie algebra h of H. Then a well-known result of Harish-Chandra
says that:

Tr(π) =
∑
O

cOµ̂O

where the sum above is over the set of nilpotent orbits O in h and µ̂O is the Fourier trans-
form of the (suitably normalized) invariant measure on O. The wave-front set W F(π) of π
is then the closure of the union of all those orbits O such that cO is non-zero.

In the case of HD, there is a unique minimal nilpotent orbit Omin. A representation π of
HD is said to be minimal if the only non-zero cO’s in the above character expansion are the
ones corresponding to the minimal orbit and the trivial orbit. In other words, π is minimal
if its wave-front set is the union of the trivial orbit and the minimal orbit. See [MS] for a
justification of the term minimal.

Let K be the special maximal compact subgroup of HD, and let K1 be its pro-unipotent
radical. Then, as we have mentioned, K/K1 is a finite group of type 2Gm ×2 E6. Now
the minimal representation Π can also be characterized by the fact that it is the unique
irreducible admissible representation of HD such that ΠK1 is isomorphic to the minimal
representation of the finite group K/K1. This representation of K/K1 is denoted by φ′2,4 in
the notation of [Ca]. The representation φ′2,4 has dimension q11 − q8 + q7 + q5 − q4 + q,
and is a unipotent principal series representation whose space of Borel-fixed vectors is 2-
dimensional. Note in particular that Π is not K-spherical. Moreover, it is known that [Ru]

cOmin = 1.

For the rest of this section, we review the results of Moeglin and Waldspurger [MW] on
the values of coefficients of leading terms in the Harish-Chandra character formula. Let π
be an irreducible representation of H. Let O ⊂ h be a nilpotent orbit such that if O′ is an
orbit with strictly bigger dimension than that of O, then cO′ = 0 in the character expansion
of π. Pick an element f in O, and let s ∈ h be a semisimple element such that

[s, f ] = −2 f ,

and such that ad(s) has integral eigenvalues. Existence of one such s is guaranteed by the
Jacobson-Morozov theorem, but there are more choices as we shall see in our applications.

Abusing the notation, let

h(i) = {x ∈ h | [s, x] = ix}

and define {
n = ⊕i>0h(i)

n̄ = ⊕i<0h(i).
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Let N and N̄ be the corresponding unipotent subgroups of H. Note that f is contained in
h(−2). We have two cases:

(I) h(1) ≡ 0. In this case the formula

ψ f

(
exp(x)

)
= ψ

(
〈 f , x〉

)
(5.1)

defines a character of N . Here 〈 , 〉 is the Killing form on h, and ψ a non-trivial additive
character of F. The main result of [MW] is

dimπN,ψ f = dim HomN (π, ψ f ) = cO.(5.2)

Here πN,ψ f is the maximal quotient of π on which N acts as a multiple of ψ f [BZ, 2.30].
(II) h(1) 6= 0. Then Let n′ ⊂ n be the radical of the skew symmetric bilinear form

(x, y) := 〈[x, y], f 〉,(5.3)

where x and y are in n. Note that n′ ⊇ ⊕i>1h(i) and the formula (5.1) defines a character
Ψ f of N ′ = exp n′. Let N ′′ be the kernel of this character. Then N/N ′′ is a Heisenberg
group. Let W f be the smooth irreducible representation of N/N ′′ with central character
ψ f . In this case, the result of [MW] is that

dim HomN(π,W f ) = cO.(5.4)

6 Jacquet Modules I

The bulk of the work of this paper is the computation of various Jacquet modules, which
will be carried out in this and the next two sections. As in [MS], this computation will be
based solely on the assumption that Π is minimal. While calculations in [MS] were based
on (5.2) only, here we have to use both (5.2) and (5.4), due to more complicated structure
of the maximal parabolic subgroups.

In this section, we compute ΠU1 , where U1 is the unipotent radical of the maximal
prabolic subgroup Q1 = L1 · U1 of G. But first, we need to determine the restriction of
Π to the maximal parabolic subgroup P1. Recall that N1 is a 3-step nilpotent group:

{1} = N1(4) ⊂ N1(3) ⊂ N1(2) ⊂ N1(1) = N1

with:
N1(i)/N1(i + 1) ∼== h1(i)

as groups. Hence we have a filtration:

0 = Π4 ⊂ Π3 ⊂ Π2 ⊂ Π1 ⊂ Π0 = Π

of P-modules such that:
Ei := Πi/Πi+1

∼== (Πi)N1(i).

Our task is to describe the P-modules Ei .
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First, we know that E0 = ΠN1 , and the structure of this M1-module is easily computed by
restricting the two-dimensional representation of the Iwahori Hecke algebra corresponding
to Π to the Iwahori Hecke algebra of M1. Furthermore, the center of M1 coincides with the
center of L1

∼== GL2. It can be checked that the central character of πN1 is |z|9.
Next, we describe E1. Note that (E1)N1 = 0, and (E1)N1(2) = E1 by definition. So we can

regard E1 as a representation of N1/N1(2) ∼== h1(1). Let f1 ∈ h1(−1). Then, as described
by (5.1), f1 defines a character ψ f1 of N1/N1(2), and by (5.2), we deduce that

dim(E1)N1,ψ f1
=

{
1 if f ∈ Ω1

0 if not.
(6.1)

Let f1 inΩ1. Let M f1 ⊂ M1 be the stabilizer of f1 in M1. Then M f1 acts on the 1-dimensional
space ΠN1,ψ f1

, via a character which we denote by δ1. From (6.1) and arguing as in [MS,
Thm. 6.1], we have

E1
∼== indP1

M f1 N1
(δ1 ⊗ ψ f1 ) ∼== C∞0 (Ω1).

Finally, we consider E2. By definition, (E2)N1(3) = E2, and (E2)N1(2) = 0. Let f2 be in
h1(−2). It defines a character ψ f2 of N1(2)/N1(3), and an irreducible representation W f2 of
N1 as in Section 5. Then, by (5.4), we deduce that

(E2)N1(2),ψ f1
=

{
W f2 if f2 ∈ Ω2

0 if not
(6.2)

as N1-modules. Now let f2 inΩ2. Let M f2 ⊂ M1 be the stabilizer of f2 in M1. Then M f2 acts
on W f2 . Again, from (6.2) and arguing as in [MS, Thm. 6.1], we have

E1
∼== indP1

M f2 N1
(W f2 ) ∼== C∞0 (Ω2; W f2 )

where C∞0 (Ω2; W f2 ) is the space of all locally constant, compactly supported sections of the
P1-equivariant vector bundle on Ω2 whose fiber at f2 is W f2 .

Thus we have shown:

Proposition 6.3 The moduleΠN1(3) has a P1-equivariant filtration, with successive quotients

ΠN1

indP1
M f1 N1

(γ1 ⊗ ψ f1 )

indP1
M f2 N1

(W f2 ).

Next we use this proposition to compute the Jacquet module ΠU1 . Using the fact that
the Jacquet functor is exact, and that U1(3) = N1(3) we see that we need to compute U1-
coinvariants for the subquotients in the proposition. Obviously, U1 acts trivially on ΠN1 .
Next,

C∞0 (Ω1)U1 = C∞0 (V1 ∩ Ω1).(6.4)
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Now recall that V1 ∩Ω1 is the orbit of the highest weight vector in the irreducible L1 ×G′-
module 〈e∗1 , e

∗
2 〉 ⊗ J∗0 . It follows from (6.4) that

indP1
M f1 N1

(γ1 ⊗ ψ f1 )U1 = IndL1×G′

B1×Q

(
δ1 ⊗ C∞0 (F×)

)
where B1 is a Borel subgroup of L1 and F× is the line in V1 ∩ Ω1 stabilized by B1 × Q.

Now we proceed to compute (indP1
M f2 N1

W f2 )U1 . First, we have

C∞0 (Ω2; W f2 )U1(2) = C∞0 (V2 ∩ Ω2; W f2 )(6.5)

where V2 ∩ Ω2 is the orbit of the highest weight vector in the irreducible L1 × G′-module
〈e3〉 ⊗ J0. Identifying 〈e3〉 ⊗ J0 with J0, we now pick

f2 =


1 0 0

0 0 0
0 0 0


 .

To finish the calculation we have to calculate (W f2 )U1 . In the terminology of Section 4,
N f2 = N1, N ′f2

= N1(2), and the skew-linear form on N1/N1(2) ∼== 〈e1, e2〉 ⊗ J defined by
the formula (5.3) is

(u⊗ X, v ⊗ Y ) = (u, v) · ( f2,X,Y )

where (u, v) is the standard symplectic form on 〈e1, e2〉. A direct computation using (3.1)
shows that the kernel∆ of the bilinear form ( f2,X,Y ) consists of the elements in the form

X =


a z ȳ

z̄ 0 0
y 0 0


 .

It follows that N ′′f2
is the inverse image of the space 〈e1, e2〉⊗∆ ⊂ h1(1) under the projection

map from N1 to N1/N1(2) ∼== h1(1). Let∆⊥ be the complement of∆ in J consisting of all
elements of the form

X =


0 0 0

0 b x
0 x̄ c


 .

On these elements, the quadratic form ( f2,X,X) is given by

( f2,X,X) = 2bc − 2N(x).

It follows that the representation W f2 is associated to the 12-dimensional symplectic space
〈e1, e2〉 ⊗∆⊥. We fix a polarization of this space consisting of all elements of the form

e1 ⊗


0 0 0

0 0 x
0 x̄ 0


 + e1 ⊗


0 0 0

0 0 0
0 0 c1


 + e2 ⊗


0 0 0

0 0 0
0 0 c2


 .
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We realize W f2 on the space of locally constant, compactly supported functionsΦ(x, c1, c2).
The action of U1/U1(2) is given by

Π(u)Φ(x, c1, c2) = ψ(u1c1 + u2c2)Φ(x, c1, c2),

where u = (u1e1 + u2e2)⊗ e under the identification U1/U1(2) ∼== 〈e1, e2〉 ⊗ 〈e〉. It follows
that

(W f2 )U1/U1(2)
∼== C∞0 (D) ∼==W(6.6)

where W is the Heisenberg representation associated to the symplectic space 〈e1, e2〉 ⊗ D.
Now note that L1 × L = R̃ and M f2 ∩ (L1 × L) = R, which were introduced in Section 2.
Furthermore, the action of M f2 on W f2 induces an action of R on W which, by the Schur
Lemma, must be a twist by a character of R of the action described in the Section 2.

Lemma 6.7 Any character of R is a restriction of a character of R̃ of the form |det |t ⊗χ where
t is a real number and χ a unitary character of D× D/F×.

It follows from (6.5) and (6.6) that

(indP1
M f2 N1

W f2 )U1
∼== IndL1×G′

L1×Q δ2 ⊗ W̃

where δ2 is a character of L1 × L as in the Lemma.
We summarize what we have shown in the following proposition:

Proposition 6.8 As a representation of L1×G′, the moduleΠU1 has a filtration with successive
quotients

ΠN1

IndL1×G′

B1×Q δ1 ⊗ C∞0 (F×)

IndL1×G′

L1×Q δ2 ⊗ W̃ ,

where δ2 = |det |t2 ⊗ χ2 is a character of L1 × L as in Lemma 6.7. The central character of
L1
∼== GL2 on ΠN1 is |z|9.

We shall show that t2 = 5 and that the character χ2 is trivial in Section 9, where we
investigate the local correspondence.

7 Jacquet Modules II

In this section, we computeΠU2 , where U2 is the unipotent radical of the maximal parabolic
subgroup Q2 = L2 ·U2 of G. Since the computation is entirely similar to the case of split
groups in [MS], we shall content ourselves with just stating the results. There is an exact
sequence of P2-modules

0 −→ indP2
M f N2

(γ ⊗ ψ f ) −→ ΠZ2 −→ ΠN2 −→ 0
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where f is in the orbit Ω. This then implies the following proposition.

Proposition 7.1 As a representation of L2×G′, the moduleΠU2 has a filtration with successive
quotients

ΠN2

IndL2×G′

B2×Q δ ⊗ C∞0 (F×).

The central characters of L2
∼== GL2 on ΠN2 are |z|4 and |z|6, the latter corresponding to a

one-dimensional summand of ΠN2 .

8 Jacquet Modules III

In this section, we compute the Jacquet module ofΠ with respect to the subgroup U of G′.
Since the computation is similar to that in Section 6, we shall be brief.

As before, we first determine the restriction of Π to the maximal parabolic P = M · N .
Since now N is a 2-step nilpotent group

{1} = N(3) ⊂ N(2) ⊂ N(1) = N,

there is a filtration of P-modules:

0 = Π3 ⊂ Π2 ⊂ Π1 ⊂ Π0 = Π

with Ei defined as before. Hence, E0 is again ΠN . As for E1, we find that it is now equal to
0, since the minimal nilpotent orbit has empty intersection with h(−1). Thus we only need
to describe E2, and as in Section 6 we find that

E2
∼== indP

M f N W f

where f is in the minimal orbit Ω′. We summarize the results without a detailed proof:

Proposition 8.1 As a representation of G× L, the moduleΠU has a filtration with successive
quotients:

ΠN

IndG×L
P1×L δ

′ ⊗ W̃

where δ′ = |det |t
′
⊗ χ′ is a character of L1 × L as in Lemma 6.7. The central character of

L ∼== D× D/F×, on ΠN is
(z1, z2) 7→ |z1z2|

6.

We shall show that t ′ = 5 and that the character χ′ is trivial in Section 9, where we
investigate the local correspondence.
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9 Local Correspondence

In this section we prove the correspondence of representations discussed in the introduc-
tion, and also determine the characters δ2 and δ′ from the previous sections. Basically, the
hard work has been done in the last three sections.

Let π = JL(π′) be an irreducible square-integrable representation of GL2 with unitary
central character, and let

π(s) = π ⊗ |det |s

where s ∈ R. Consider the representations{
I1(π, s) = IndG

P1
δ

1/2
P1
π(s)

I2(π, s) = IndG
P2
δ

1/2
P2
π(s)

where {
δP1 = |det |5

δP2 = |det |3.

If s > 0, then Ii(π, s) has unique (Langlands) quotient, which we denote by Ji(π, s). Simi-
larly, let

π′(s) = π′ ⊗ |N(αβ)|s

and let
I(π′, s) = IndG′

Q δ
1/2
Q · π′(s)⊗ π′(s).

Again, if s > 0, then I(π′, s) has unique (Langlands) quotient, which we denote by J(π′, s).
The calculation of the characters δ′ and δ2 goes along with the proof of the following

theorem.

Theorem 9.1 Let π = JL(π′) be an irreducible super-cuspidal representation of GL2 with
unitary central character, and let s > 0. Then{

Θ
(

J1(π, s)
)
= { J(π′, s)}

Θ
(

J(π′, s)
)
= { J1(π, s)}

and
Θ
(

J2(π, s)
)
= ∅.

Let 1′ be the trivial representation of G′. The one-dimensional summand of ΠN2 corre-
sponding to the central character |z|6 is isomorphic to |det |3 ⊗ 1′, as L2 × G′-modules. It
follows from the Frobenius reciprocity that Θ(1′) contains a subquotient of IndG

P2
(|det |3).

Since the subquotients of IndG
P2

(|det |3) are 1, the trivial representation of G, and J1(st, 5/2)
(where st is the Steinberg representation of GL2) we have

Θ(1′) ∩ {1, J1(st, 5/2)} 6= ∅.

Let σ be an irreducible representation in the intersection above. Since 1′ is a submodule of

IndG′

Q 1,

∅ 6= HomG×G′(Π, σ ⊗ IndG′

Q 1) = HomG×L(ΠU , σ ⊗ 1).
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Since the central character of ΠN is |z1z2|6 by Proposition 8.1, and the central character
of 1 is trivial, σ ⊗ 1 must be a quotient of IndG×L

P1×L δ
′ ⊗ W̃ by Lemma 1.2. A calculation,

using (1.1) and Theorem 2.1 shows that σ is a quotient of IndG
P1

(st⊗δ′). This is possible
only if σ = J1(st, 5/2), χ′ = 1 and t ′ = 5. Thus, we have determined the character δ′ and
have shown that

Θ(1′) = { J1(st, 5/2)}.

We are now ready to prove the following lemma.

Lemma 9.2 Let π = JL(π′) be an irreducible square-integrable representation of GL2, and
let s > 0. Then {

Θ
(

J1(π, s)
)
6= ∅

Θ
(

J(π′, s)
)
⊆ { J1(π, s)}.

Proof Let σ be inΘ
(

J(π′, s)
)
. Note that J(π′, s) is the unique submodule of I(π̃′,−s). By

the Frobenius reciprocity,

HomG×G′
(
Π, σ ⊗ I(π̃′,−s)

)
= HomG×L

(
ΠU , σ ⊗ π̃

′(5/2− s)⊗ π̃′(5/2− s)
)
.

Note that the central character of π̃′(5/2 − s) ⊗ π̃′(5/2 − s) is, up to a unitary character,
equal to |z1z2|5−2s. Since s is positive, it is different then the central character |z1z2|6 ofΠN ,
it follows that

HomG×L

(
IndG×L

P1×L δ
′ ⊗ W̃ , σ ⊗ π̃′

(
(5/2− s)⊗ π̃′(5/2− s)

))
6= ∅.

Again, a calculation, using (1.1) and Theorem 2.1 shows thatσmust be J1(π, s). The lemma
is proved.

For those s for which I(π′, s) is irreducible, we have in fact shown that J1(π, s)⊗ I(π′, s)
is a quotient ofΠ. Since J1(π, s) is unique submodule of I1(π̃,−s), it follows that

∅ 6= HomG×G′
(
Π, I1(π̃,−s)⊗ I(π′, s)

)
= HomL1×G′

(
ΠU1 , π̃(5/2− s)⊗ I(π′, s)

)
.

Again, the central characters show that π̃(5/2 − s) cannot be a quotient of ΠN1 . Further-
more, if we take π to be supercuspidal, then π̃(5/2− s) cannot be a quotient of the middle
term of the filtration ofΠU1 given by Proposition 6.8. Thus,

HomL1×G′
(
IndL1×G′

L1×Q δ2 ⊗ W̃ , π̃(5/2− s)⊗ I(π′, s)
)
6= ∅

and this is possible only if χ2 = 1 and t2 = 5. This determines δ2, and the following
analogue of Lemma 9.2 follows.

Lemma 9.3 Let π = JL(π′) be an irreducible super-cuspidal representation of GL2, and let
s > 0. Then {

Θ
(

J(π′, s)
)
6= ∅

Θ
(

J1(π, s)
)
⊆ { J(π′, s)}.
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The first part of the Theorem is now a simple combination of Lemma 9.2 and
Lemma 9.3. For the second part note that J2(π, s) is unique submodule of I2(π̃,−s). Again,
by the Frobenius reciprocity,

HomG

(
Π, I2(π̃,−s)

)
= HomL2

(
ΠU2 , π̃(3/2− s)

)
.

Since π̃(3/2−s) is supercuspidal, it cannot be a quotient of the second term of the filtration
of ΠU2 given by Proposition 7.1. Also, since the central character of π̃(3/2 − s) is, up to a
unitary character, equal to |z|3−2s, it cannot be a quotient of ΠN2 if s > 0. This shows that
J2(π, s) is not a quotient of Π. The theorem is proved.

We finish this paper by calculating Θ(St′) where St′ is the Steinberg representation of
G′. Since St′ is a submodule of I(1, 5/2), it follows as in the proof of Lemma 9.2 that

{
Θ(St′) ⊆ {St}

Θ(St) ∩ {St′, J(1, 5/2)} 6= ∅.

where St is the Steinberg representation of G. Since, by Lemma 9.2, J(1, 5/2) cannot be
paired with St, it follows that

Θ(St′) = {St}.(9.4)
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