SIGNED SUMS OF RECIPROCALS, I

Dedicated to George Szekeres on his 65th birthday

R. T. Worley
(Received 15 November 1974)

Abstract

The author investigates $M(n)=\min \left|\Sigma \eta_{k} k^{-1}\right|$ where the minimum is over all sets of signs $\eta_{j}= \pm 1$ and shows $M(n)<n^{\frac{1}{2}-(1-e) \log _{2^{n}}}$.

R. R. Hall recently suggested the problem of finding an upper bound for

$$
M(n)=\min \left|\sum_{1 \leqq k \leqq n} \frac{\eta_{k}}{k}\right|
$$

where the minimum is taken over all sets $\eta_{1}, \cdots, \eta_{n}$ with each η_{i} being ± 1. Trivially, on writing all terms $1 / k$ as rationals with denominator l.c.m. $(1,2, \cdots, n)$ the numerator of $\Sigma \eta_{k} / k$ is odd so $M(n)$ is certainly non-zero. On the other hand it is easily shown by induction that $M(n)<1 / n$. We show here that this can be improved considerably.

Theorem. For real $\varepsilon>0$ there exists real $N(\varepsilon)$ such that

$$
M(n)<1 / n^{\frac{1}{2}(1-\varepsilon) \log _{2} n}
$$

for $n>N(\varepsilon)$, where $\log _{2}$ denotes the base 2 logarithm.
The essential part of the proof is a variant of the mean value theorem of calculus. Before giving this we introduce some notation. For a given function $f=f(x)$ define $H_{1}(f)$ by

$$
H_{1}(f)(x)=f(x+1)-f(x)
$$

Further functions $H_{2}(f), \cdots, H_{r}(f), \cdots$ are defined inductively by

$$
H_{n}(f)(x)=H_{n-1}(g)\left(\frac{1}{2} x\right)
$$

where

$$
g(x)=H_{1}(f)(2 x) .
$$

The following lemma gives some inkling of the relevance of the above to the problem being considered.

Lemma 1. Let $\varepsilon_{j}=(-1)^{d(j)}$ where $d(j)$ denotes the sum of the digits of the binary expansion of j. Then

$$
H_{n}(f)(x)=(-1)^{n} \sum_{0 \leq j \leq 2^{n}-1} \varepsilon_{i} f(x+j) .
$$

Proof. The lemma is easily checked in the case $n=1$. Now suppose it is true in the case $n=t$. Then

$$
\begin{aligned}
H_{\mathrm{t}+1}(f)(x) & =H_{\mathrm{t}}(g)\left(\frac{1}{2} x\right)=(-1)^{t} \sum_{0 \leq j \leq 2^{t}-1} \varepsilon_{j} g\left(\frac{1}{2} x+j\right) \\
& =(-1)^{t} \sum_{0 \leq \leq^{t}-1} \varepsilon_{j}\left(f\left(2\left(\frac{1}{2} x+j\right)+1\right)-f\left(2\left(\frac{1}{2} x+j\right)\right)\right) \\
& =(-1)^{t+1}\left\{\sum_{0 \leq j \leq 2^{t}-1} f(x+2 j) \varepsilon_{j}-\sum_{0 \leq j \leq 2^{t}-1} f(x+2 j+1) \varepsilon_{i}\right\} \\
& =(-1)^{t+1} \sum_{0 \leq j \leq 2^{t+1}-1} \varepsilon_{j} f(x+j)
\end{aligned}
$$

since $\varepsilon_{2 j}=\varepsilon_{i}$ and $\varepsilon_{2 j+1}=-\varepsilon_{j}$. This completes the proof of the lemma by induction.

We now obtain an estimate for $H_{n}(f)(t)$. It is possible to give a series expansion for $H_{n}(f)(a)$ of the type

$$
H_{n}(f)(a)=2^{n(n-1) / 2} f^{(n)}\left(a+\frac{1}{2}\left(2^{n}-1\right)\right)+c_{n+1} f^{(n+1)}\left(a+\frac{1}{2}\left(2^{n}-1\right)\right)+\cdots
$$

and estimate the coefficients c_{n+1}, c_{n+2}, \cdots, but this does not seem to give any better result when applied to the problem in hand than the following, suggested by R. R. Hall.

Lemma 2. Let f be a function with derivative $f^{(n)}$ of order n existing on $\left(a, a+2^{n}-1\right)$ and $f^{(n-1)}$ continuous on $\left[a, a+2^{n}-1\right]$. Then

$$
H_{n}(f)(a)=2^{n(n-1) / 2} f^{(n)}(a+\theta)
$$

for some $\theta \in\left(0,2^{n}-1\right)$.
Proof. The case $n=1$ is just the mean value theorem of calculus. Now suppose the lemma is true for $n=t$ and that the conditions of the lemma hold for $n=t+1$. Then for g the conditions hold at $\frac{1}{2} a$ with $n=t$ so

$$
H_{t+1}(f)(a)=H_{t}(g)\left(\frac{1}{2} a\right)=2^{t(t-1) / 2} g^{(t)}\left(\frac{1}{2} a+\theta_{1}\right)
$$

where $\theta_{1} \in\left(0,2^{t}-1\right)$. But

$$
g^{(t)}(x)=2^{t}\left(f^{(t)}(2 x+1)-f^{(t)}(2 x)\right)
$$

for all $x \in\left(\frac{1}{2} a, \frac{1}{2} a+2^{\prime}-1\right)$, so by the mean value theorem

$$
g^{(t)}\left(\frac{1}{2} a+\theta_{1}\right)=2^{t}\left(f^{(t+1)}\left(a+2 \theta_{1}+\phi_{1}\right)\right)
$$

where $\phi_{1} \in(0,1)$. Hence

$$
H_{t+1}(f)(a)=2^{(t+1)(t) / 2} f^{(t+1)}(a+\theta)
$$

where $\theta=2 \theta_{1}+\phi_{1} \in\left(0,2^{t+1}-1\right)$, completing the proof of the lemma by induction.

In order to apply lemma 2 to the sum in question we need to show that the relatively large initial terms can be ignored.

Lemma 3. If $1 \leqq k \leqq \frac{1}{2} n+1$ then $M(n) \leqq M_{k}(n)$, where

$$
M_{k}(n)=\min \left|\sum_{k \leqq j \leqq n} \frac{\eta_{i}}{j}\right|
$$

the minimum being over all sets $\eta_{k}, \cdots, \eta_{n}$ with each η_{j} being ± 1.
Proof. The case $k=1$ is trivial. That $M_{k}(n) \leqq M_{k+1}(n)$ for $k+1 \leqq \frac{1}{2} n+1$ follows trivially on observing that the substitution

$$
\eta_{2 k} / 2 k=\eta_{2 k} / k-\eta_{2 k} / 2 k
$$

converts a sum $\Sigma_{k+1 \leqq i \leqq n} \eta_{j} / j$ to one of the form $\Sigma_{k \leqq j \leqq n} \eta_{i} / j$, so the lemma follows by induction.

Proof of the theorem. Let m be such that $n / 2<2^{m+2} \leqq n$ and set $l=\left[n / 2^{m+1}\right]+1$. It is easily seen that

$$
\begin{aligned}
\mid \pm H_{m}(f)\left(n+1-2^{m}\right) \pm & H_{m}(f)\left(n+1-2 \cdot 2^{m}\right) \pm \cdots \pm H_{m}(f)\left(n+1-l \cdot 2^{m}\right) \mid \\
& \leqq \max _{1 \leq j \leq l}\left|H_{m}(f)\left(n+1-j 2^{m}\right)\right|
\end{aligned}
$$

for suitable choices of sign. Taking $f(x)=1 / x$, and using lemmas 1 and 3 the left side of the above inequality is at least as big as $M(n)$ while the right side is, by lemma 2 , bounded above by $2^{m(m-1) / 2} m!/\left(\frac{1}{4} n\right)^{m+1}$. Hence

$$
M(n) \leqq 2^{m(m-1) / 2} m!/\left(\frac{1}{4} n\right)^{m+1}
$$

Using the inequality $\log _{2} n-3<m \leqq \log _{2} n-2$ we have

$$
\begin{aligned}
& 2^{m(m-1) / 2} \leqq\left(\frac{n}{4}\right)^{1 / 2\left(\log _{2} n-3\right)}<8 n^{1 / 2 \log _{2} n} \\
& m!\leqq\left(\log _{2} n\right)^{\log _{2} n}=n^{\log _{2} \log _{2} n}, \\
& 4^{m+1}<n^{2} \quad \text { and } \quad n^{m+1}>n^{\log _{2} n-2}
\end{aligned}
$$

Thus

$$
M(n)<n^{-\frac{1}{2} \log _{2} n}\left(8 n^{4+\log _{2} \log _{2} n}\right)
$$

which clearly gives the theorem.
Erdos (1972) has stated the problem: Let T_{n} denote the fractional part of $\frac{1}{2}+\frac{1}{3}+\cdots+1 / n$. Does there exist $n \geqq 5$ for which $T_{n}=1 /[2,3, \cdots, n]$ where $[2,3, \cdots, n]$ denotes the least common multiple of $2,3, \cdots, n$. Along similar lines is the problem: Does there exist $n \geqq 5$ for which $M(n)=1 /[2,3, \cdots, n]$?

Reference

P. Erdos (1972), Elemente der Mathematik 27, 68.

Department of Mathematics, Monash University, Clayton, 3168, Australia.

