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Abstract A famous theorem of Shokurov states that a general anticanonical divisor of a smooth Fano
threefold is a smooth K3 surface. This is quite surprising since there are several examples where the base
locus of the anticanonical system has codimension two. In this paper, we show that for four-dimensional
Fano manifolds the behaviour is completely opposite: if the base locus is a normal surface, and hence has
codimension two, all the anticanonical divisors are singular.

1. Introduction

1.1. Motivation and main result

The anticanonical system is arguably the most natural object attached to a Fano manifold,
and it plays an important role in the classification of Fano manifolds of low dimension.

While it is expected that the anticanonical bundle always has global sections [10, 1, 28],

it is in general not globally generated. In dimension three, Shokurov’s theorem gives a

complete description of the situation:

Theorem 1.1 [48]. Let X be a smooth Fano threefold such that the base locus Bs(| −
KX |) is not empty. Then the base locus is a smooth rational curve. Moreover, a general
anticanonical divisor Y ∈ |−KX | is smooth.
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In dimension four, our current knowledge about the anticanonical system is very limited.
An example by the first named author and Voisin shows that Shokurov’s theorem does

not generalise to higher dimension:

Example 1.2 [23, Example 2.12]. Let S be a smooth del Pezzo surface of degree one,
and denote by p ∈ S the unique base point of |−KS |. Set X := S×S, and let Y ∈ |−KX |
be a general anticanonical divisor. Then Y is singular in the point (p,p).

Indeed, the threefold Y contains the base locus Bs(|−KX |) = p×S ∪S×p which has
embedding dimension four in the point (p,p). The varieties in Example 1.2 belong to the

unique family of Fano fourfolds having the maximal Picard number 18 [9, Theorem 1.1],

so one might hope that the presence of singular general anticanonical divisors is a rare
pathology. In this paper, we destroy this hope by showing that a sufficiently large base

locus always leads to singularities:

Theorem 1.3. Let X be a smooth Fano fourfold such that h0(X,OX(−KX)) ≥ 3.
Assume that the base locus Bs(|−KX |) is an irreducible normal surface. Then a general

anticanonical divisor Y ∈ |−KX | is not Q-factorial; in particular, it is singular.

This theorem covers all the examples we know of smooth Fano fourfolds such that
Bs(| −KX |) is an irreducible surface; cf. Examples 3.2, 3.3, 3.4. These examples differ

from Example 1.2 in a significant way: they have moving singularities (i.e., the singular

locus Ysing ⊂ Bs(|−KX |) depends on the choice of Y ∈ |−KX |). Theorem 1.3 is almost

optimal: if the base scheme Bs(|−KX |) is smooth of dimension at most one, a general
anticanonical divisor Y is smooth by a strong version of Bertini’s theorem [12, Corollary

2.4]. It seems likely that Theorem 1.3 still holds under the relaxed assumption that

Bs(| −KX |) contains a surface. However, this additional generality leads to numerous
case distinctions in our proofs, a technicality that we wanted to avoid.

While our main result states that the anticanonical geometry of a Fano fourfold is more

complicated than in dimension three, the tools developed in this paper indicate that two-
dimensional base loci lead to numerous restrictions on the geometry and the numerical

invariants. Therefore, Theorem 1.3 is actually a first step towards the classification of

Fano fourfolds with large anticanonical base locus. We plan to come back to this topic in

the near future.

1.2. The setup

Let X be a smooth Fano fourfold such that h0(X,OX(−KX))≥ 3 and Bs(|−KX |) is an
irreducible normal surface B.
Let Y ∈ | −KX | be a general anticanonical divisor, so Y is a normal threefold

(Corollary 2.8). By Kodaira, vanishing the restriction morphism

H0(X,OX(−KX))→H0(Y ,OY (−KX))

is surjective. Thus, we know that

Bs(|−KX |Y |) = Bs(|−KX |) =B
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and h0(Y ,OY (−KX)) = h0(X,OX(−KX))−1≥ 2. Denote by |M | the mobile part of the

linear system |−KX |Y |. Then we have a linear equivalence of effective Weil divisors

−KX |Y �M +B.

The proof of Theorem 1.3 will be by contradiction, so we make the following assumption.

Assumption 1.4. We assume that Y is Q-factorial.

Combined with the known results about anticanonical divisors (cf. Corollary 2.9), this

assumption implies that the Weil divisors M and B are Cartier. By Grothendieck’s
Lefschetz hyperplane theorem [39, Example 3.1.25], the restriction morphism

Pic(X)→ Pic(Y )

is an isomorphism, so there exists uniquely defined Cartier divisor classes MX →X and
BX →X such that

M �MX |Y , B �BX |Y .

Note that it is not clear whether the divisors MX and BX are effective, establishing this

will be an important first step in our proof.

1.3. General strategy and structure of the proof

The proof of Shokurov’s theorem 1.1 can be split into two steps, cf. [24, §2.3]: first, one
shows that Y has canonical singularities. Then one applies Mayer’s theorem to a minimal

resolution Y ′ → Y .

Theorem 1.5 [42, Proposition 5]. Let S be a smooth K3 surface, and let A be a nef and

big Cartier divisor on S such that Bs(|A|) �= ∅. Then we have a decomposition into fixed
and mobile part

A�M +B,

where B � P1 and M is a nef divisor that defines an elliptic fibration ϕ|M | : S → P1.

Since the first part of Shokurov’s proof also works for Fano fourfolds [28, Theorem

5.2], the most natural approach would be to look for an analogue of Mayer’s theorem for

Calabi-Yau threefolds (with mild singularities). This approach immediately encounters

two obstacles: while it is easy to classify fixed prime divisors on a K3 surface (they
are (−2)-curves), there are many possibilities on a Calabi-Yau threefold (e.g., Enriques

surfaces [7, Theorem 3.1]). Moreover, the mobile part of a linear system on a surface is

always nef. This is not true on a threefold.
The second obstacle leads to a basic case distinction in our proof: if MX is nef,

the basepoint free theorem yields a morphism X → T that we can use to study the

anticanonical system. This situation is close to the Examples 3.2, 3.3, 3.4, and we will
need a series of rather specific classification results to settle this case in Section 7.

In the second case, MX is not nef. We use the embedding Y ⊂ X in a more direct

way. We start by showing that −KX +MX is nef and big (i.e., the anticanonical divisor
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compensates the negativity of MX). This allows us to show that the surface B is a

complete intersection: we find an effective divisor BX with canonical singularities such

that

B = Y ∩BX .

Moreover, using an extension theorem of Fujino, we obtain that the restriction map

H0(X,OX(−KX))→H0(BX,OBX
(−KX))

is surjective. Combined with some classification results for linear systems on irregular

surfaces (cf. Section 4), we exclude this possibility.

1.4. Future research

In Theorem 1.3, we make the assumption that h0(X,OX(−KX)) ≥ 3, an assumption
that is satisfied by all smooth Fano fourfolds that we are aware of.1 Riemann-Roch

computations only show that h0(X,OX(−KX))≥ 2 (Theorem 2.8), so it would be highly

desirable to have an answer to the following

Problem 1.6 [15, 37, 41]. Is there a smooth Fano fourfold X with h0(X,OX(−KX)) = 2?

Is there a smooth Calabi-Yau threefold Y with an ample Cartier divisor A such that
h0(Y ,OY (A)) = 1?

Beauville [6] gave an example of a numerical Calabi-Yau threefold with a fixed ample
divisor. For our purpose, we are interested in strict Calabi-Yau’s (i.e., Y is simply

connected).

A significant problem in this theory is the lack of interesting examples. Our Example 3.4

generalises a construction from the threefold case, but it is still related to the del Pezzo
surface of degree one.

Problem 1.7. Construct new examples of smooth Fano fourfolds X such that

Bs(|−KX |) has dimension two.

2. Notation and basic facts

We work over C; for general definitions, we refer to [20]. All the schemes appearing in

this paper are projective; manifolds and normal varieties will always be supposed to be
irreducible. For notions of positivity of divisors and vector bundles, we refer to Lazarsfeld’s

book [39, 40]. Given two Cartier divisors D1,D2 on a projective variety, we denote by

D1 � D2 (resp. D1 ≡ D2) the linear equivalence (resp. numerical equivalence) of the

Cartier divisor classes. Given a Cartier divisor D, we will denote by OX(D) both the
associated invertible sheaf and the corresponding line bundle. Somewhat abusively we

will say that a Cartier divisor class is effective if it contains an effective divisor.

We use the terminology of [31] for birational geometry and of [34] for rational curves.
We refer to [35] for the definitions and basic facts about singularities of the MMP.

1There is an example with h0(X,OX(−KX)) = 3; see [37, Proposition 2.2][47, Table 2].
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Given a normal projective surface S with Gorenstein singularities, we will denote by

q(S) := h1(S,OS)

the irregularity, and by

pg(S) := h2(S,OS) = h0(S,OS(KS))

the geometric genus.

Definition 2.1. Let Y be a projective variety, and let D be a nef Cartier divisor on Y.

The numerical dimension ν(Y ,D) is defined as

max{k ∈ N | Dk �= 0}.

We collect a number of basic facts for the convenience of the reader:

Fact 2.2. Let A be a Cartier divisor on a projective variety Y such that the complete
linear system |A| has a non-empty fixed part B. Then h0(Y ,OY (B)) = 1.

Fact 2.3. Let X be a Fano manifold, and let D be a nef Cartier divisor on X. Then there
exists a morphism with connected fibres ϕ :X → T and an ample Cartier divisor HT on

T such that D � ϕ∗HT .

Proof. By the basepoint free theorem, we have mD� ϕ∗Hm for some very ample divisor

Hm → T for every m� 0. Thus, HT :=Hm+1−Hm is a Cartier divisor such that D �
ϕ∗HT . Since D is numerically the pull-back of an ample class on T, the divisor HT is
ample.

Fact 2.4. Let S be an irreducible projective surface with Gorenstein singularities, and

let C ⊂ S be an irreducible curve that is not contained in the singular locus of S. If

−KS ·C ≥ 2, the curve C deforms in S in a positive-dimensional family.

Proof. Let τ : S′ → S be the composition of normalisation and minimal resolution. Then

we have KS′ � τ∗KS −E, where E is an effective divisor that maps into the singular
locus of S. Thus, if C ′ ⊂ S′ is the strict transform, it is not contained in the support of

E. Thus, we have

−KS′ ·C ′ ≥−KS ·C ≥ 2.

The statement now follows from [34, Theorem 1.15].

Fact 2.5 [8, Lemma 2.4.1]. Let X be a normal projective variety with rational

singularities such that q(X) > 0. Then the Albanese map α : X → A to the Albanese

torus exists and is determined by the Albanese map of some resolution of singularities.

Fact 2.6. Let S be a normal projective surface with rational singularities, and let A be

a Cartier divisor on S. Then the Riemann-Roch formula

χ(S,OS(A)) =
1

2
A2+

1

2
(−KS) ·A+χ(S,OS)

holds.
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Let Y be a normal projective threefold with terminal singularities, and let A be a
Cartier divisor on Y. Then the Riemann-Roch formula

χ(Y ,OY (A)) =
1

12
A · (A−KY ) · (2A−KY )+

1

12
A · c2(Y )+χ(Y ,OY )

holds.

Proof. It is sufficient to verify that all the terms are well-defined and can be calculated
on a resolution of singularities. This is well-known; cf. [22, Section 2]. The statement then

follows via the projection formula.

In the rest of the paper, we will refer to the following set of statements by inversion of

adjunction:

Theorem 2.7 [31, Theorem 5.50] [29, Theorem] [35, Theorem 4.9]. Let X be a normal

projective variety, and let S ⊂X be a reduced Weil divisor that is Cartier in codimension

two. Let Δ be an effective boundary divisor on X that has no common component with S
such that KX +S+Δ is Q-Cartier. Then the following holds:

• The pair (X,S+Δ) is lc near S if and only if the pair (S,Δ|S) is slc.
• The pair (X,S+Δ) is plt near S if and only if the pair (S,Δ|S) is klt.

2.1. Anticanonical divisors on Fano fourfolds

The following statement collects the known results about anticanonical divisors on smooth

Fano fourfolds

Theorem 2.8 [28, Theorem 5.2],[23, Theorem 1.7], [21, Theorem 2]. Let X be a smooth

Fano fourfold. Then we have

h0(X,OX(−KX))≥ 2.

Let Y ∈ |−KX | be a general anticanonical divisor. Then Y is a normal prime divisor with
terminal Gorenstein singularities. The variety Y is Calabi-Yau, that is, KY �OY and

H1(Y ,OY ) =H2(Y ,OY ) = 0.

In fact, the possible singularities of Y are completely described by [21, Theorem 4], but

we will not need this description for our proof. By [25, Lemma 5.1], a terminal Q-factorial

Gorenstein threefold singularity is factorial, so Theorem 2.8 implies the following:

Corollary 2.9. Let X be a smooth Fano fourfold. If a general anticanonical divisor Y is

Q-factorial, it is factorial.

Theorem 2.10 [33, Theorem]. Let X be a Fano manifold of dimension at least four, and

let Y ∈ |−KX | be an irreducible2 anticanonical divisor. Then the inclusion

NE(Y ) ↪→NE(X)

2The statement in [33] is for smooth divisors, but the proof works without this assumption.
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is a bijection. Equivalently, a Cartier divisor D →X is nef if and only if its restriction
D|Y is nef.

Theorem 2.11 [28, Proposition 4.2]. Let Y be a normal projective threefold with

canonical Gorenstein singularities such that c1(Y ) = 0. Let A→ Y be an ample Cartier
divisor, and let D ∈ |A| be a general element. Then the pair (Y ,D) is lc.

Corollary 2.12. In the situation of Setup 1.2, let M be a general element of the mobile

part of | −KX |Y |. Then the pair (Y ,M +B) is lc, and hence, the pairs (Y ,M) and
(Y ,B) are lc. In particular, B is a normal projective Gorenstein surface with at most

lc singularities and pg(B) = 0. Moreover,

(B,M |B)

is an lc pair such that

−KX |B �KB +M |B (1)

is ample with (KB +M |B) ·M |B > 0.

Proof. Since M is a general divisor in the mobile part, the divisor M +B is general in

|−KX |Y |. Thus, (Y ,M +B) is lc by Theorem 2.11. The statement for (Y ,M) and (Y ,B)
is now immediate since we assume that Y is Q-factorial. By adjunction (Theorem 2.7),

this implies that the surfaces M and B have at most slc singularities. Since B is normal

by assumption, it has lc singularities. Consider the cohomology sequence associated to
the exact sequence

0→OY →OY (B)→OB(B)�OB(KB)→ 0.

The Calabi-Yau threefold Y has h1(Y ,OY ) = 0 and h0(Y ,OY (B)) = 1 by Fact 2.2, so
pg(B) = h0(B,OB(KB)) = 0.

Again, by adjunction, the pair (B,M |B) is slc (hence lc) since (Y ,M+B) is lc. Since KY

is trivial, the linear equivalence (1) follows from the adjunction formula. Finally, observe

that the support of the divisor M+B �−KX |Y is connected since it is ample. Therefore,
the intersection M ∩ B has positive dimension and (KB +M |B) ·M |B = −KX |B ·
M |B > 0.

3. Examples and first observations

We start this section by collecting some arguments that give a moral explanation for

Theorem 1.3.

Lemma 3.1. Let X be a projective manifold, and let A be an ample divisor on X. Let
B ⊂ Bs(|A|) be a submanifold of dimension at least dimX

2 such that the conormal bundle

N ∗
B/X is nef. Then every divisor Y ∈ |A| has at least one singular point along B.

Proof. Consider the natural morphism

α :H0(X,OX(A))�H0(X,IB ⊗OX(A))→H0(B,IB/I2
B ⊗OX(A)).
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By [8, Lemma 1.7.4], the divisor Y is smooth along B if and only if the section

α(s) ∈H0(B,IB/I2
B ⊗OX(A)) is nowhere zero, where 0 �= s ∈H0(X,OX(A)) is a section

vanishing on Y. Since IB/I2
B⊗OX(A)�N ∗

B/X⊗OX(A) is a tensor product of a nef vector
bundle and an ample line bundle, it is ample [40, Theorem 6.2.12.(iv)]. Set d= codimXB.

If α(s) does not vanish in any point of B, the top Chern class cd(N ∗
B/X ⊗OX(A)) is zero.

Yet since d ≤ dimB, this is a contradiction to the positivity of Chern classes of ample
vector bundles [40, Theorem 8.3.9].

Remark. The key point of the proof above is that the vector bundle N ∗
B/X ⊗OX(A)

is ample, and one may wonder if this holds without any assumption on N ∗
B/X : as a

toy case, assume that the base scheme Bs(|A|) is the submanifold B. We can resolve

the indeterminacies of ϕ|A| by blowing up B and compute that N ∗
B/X ⊗OX(A) is nef.

However, it is not clear if the vector bundle is ample; in fact, this is impossible if
h0(X,OX(A))≤ dimX−1.

The lemma allows to cover all the known examples of Fano fourfolds with a two-
dimensional base locus:

Example 3.2. Let X = S1×S be the product of smooth del Pezzo surface S1 of degree

one and S a smooth del Pezzo surface of degree at least two. Then every anticanonical
divisor Y ∈ |−KX | is singular.
Proof. The base locus is B = p×S, where p=Bs(|−KS1

|). Thus, N ∗
B/X �O⊕2

B is trivial,

and Lemma 3.1 applies.

Applied to an irreducible component of the base locus, the argument above also works

for [23, Example 2.12].

Example 3.3. Let X = Z ×P1, where Z is a smooth Fano threefold such that C :=
Bs(|−KZ |) is not empty. Then every anticanonical divisor Y ∈ |−KX | is singular.
Proof. The base locus is B = C×P1, and we know that N ∗

C/Z �O⊕2
C or N ∗

C/Z �OC ⊕
OC(1) (cf. the proof of [24, Lemma 2.4.4]). Thus, N ∗

B/X is nef, and Lemma 3.1 applies.

The next manifold is a generalisation of a well-known example in the threefold case [44,

Table 2, No 1].

Example 3.4. For n ≥ 4, let M be a general sextic hypersurface in the weighted

projective space P(1n,2,3). Then M is a del Pezzo manifold of dimension n and degree 1

[16, Theorem 8.11] (i.e., we have −KM � (n−1)A with A an ample Cartier divisor such
that An = 1). The del Pezzo manifold M has a ladder [16, Theorem 3.5]; that is, we can

choose n−1 general elements D1, . . . ,Dn−1 in the linear system |A| such that

C :=D1∩. . .∩Dn−1

is a smooth elliptic curve. Morever, |A| has a unique base-point p.

Let now μ :X →M be the blow-up along C, and denote by E the exceptional divisor.
Then μ resolves the base locus of the linear system |V | generated by D1, . . . ,Dn−1, so we

have a fibration

f :X → Pn−2
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such that μ∗A� f∗H+E, where H is the hyperplane divisor on Pn−2. Using the Nakai-

Moishezon criterion, we obtain immediately that

−KX � μ∗(−KM )− (n−2)E � (n−1)μ∗A− (n−2)E � (n−2)f∗H+μ∗A

is ample, so X is a Fano manifold. The general f -fibre is a surface S obtained as the

complete intersection of n−2 elements in |V |, so it is a del Pezzo surface of degree one.

In particular, |−KS | has a unique base point pS such that μ(pS) = p. This implies that

μ−1(p)� Pn−2 is contained in Bs(|−KX |).
Since N ∗

Pn−2/X �OPn−2 ⊕OPn−2(1) is nef, we can apply Lemma 3.1 to see that all the

anticanonical divisors in X are singular.

Remark 3.5. Let X be a complex manifold, and let B ⊂ X be a submanifold of
codimension two. Let B ⊂ Y ⊂ X be a normal prime divisor. Then Y is singular in a

point p ∈ B if and only if Y is not factorial in p. Indeed, if Y is factorial in p, the Weil

divisor B ⊂ Y is Cartier near the point p. Thus, if Y is singular in p, so is the Cartier
divisor B.

The next statement shows that for most prime Fano manifolds (i.e., the prime Fanos

with index one), the presence of a codimension two base locus is incompatible with the

smoothness of the anticanonical divisor.

Proposition 3.6. Let X be a Fano manifold of dimension at least four with Picard

number one such that h0(X,OX(−KX))≥ 3. Assume that the base locus Bs(|−KX |) has
codimension two and a general anticanonical divisor Y ∈ |−KX | is smooth. Then X has
Fano index at least three.

Proof. Let

−KX |Y �M +B

be the decomposition into fixed and mobile part. Since Y is smooth, the Weil divisors
M and B are Cartier. Since dimX ≥ 4 and ρ(X) = 1, the Lefschetz hyperplane theorem

implies PicY � PicX � ZH, where H is the ample generator of the Picard group. Thus,

we have

M � aH|Y , B � bH|Y
with a,b ∈ N∗. Since h0(Y ,OY (B)) = 1 and h0(Y ,OY (M)) ≥ 2, we have a > b, and
therefore, a+ b≥ 3. Since

−KX |Y �M +B � (a+ b)H|Y ,

the statement follows from PicY � PicX.

Lemma 3.7. Let X be a smooth Fano fourfold, and let D be a non-zero nef Cartier

divisor on X. Then h0(X,OX(D))≥ 2.

Proof. If D has numerical dimension one, there exists a fibration ϕ :X → P1 such that

D � ϕ∗H with H an ample Cartier divisor on P1 (cf. Fact 2.3). Thus, h0(P1,OP1(H))≥ 2

yields the claim.
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If D has numerical dimension at least two, we have D2 ·K2
X = D2 · (−KX)2 > 0.

Moreover, h0(X,OX(D)) = χ(X,OX(D)) by Kodaira vanishing, and by Riemann-Roch,

χ(X,OX(D)) =
D4

4!
− D3 ·KX

2 ·3! +
D2 · (K2

X + c2(X))

12 ·2! − D ·KX · c2(X)

24 ·1! +χ(X,OX)

≥ D2 · (−KX)2

24
+

D2 · c2(X)

24
− D ·KX · c2(X)

24
+1.

Since −KX ·D · c2(X)≥ 0 and D2 · c2(X)≥ 0 by [46, Theorem 1.3], [43, Theorem 6.1] we

obtain that the second line is at least two.

Lemma 3.8. Let X be a smooth Fano fourfold, and let L be a line bundle on X such that

h0(X,L) �=0. Let D ∈ |L| be a general divisor, and assume that for a general anticanonical
divisor Y ∈ |−KX |, the pair (Y ,D ∩ Y ) is log-canonical. Then the pair (X,D) is log-

canonical.

Proof. Since dimX ≤ 4, the anticanonical system | −KX | has no fixed component; cf.

Theorem 2.8. In particular, Y has no common component with D.

We argue by contradiction and assume that the non-lc locus Z is not empty.
1st step. Assume that Z has positive dimension. Since Y is an ample divisor, it intersects

Z in at least one point, so the pair (X,D) is not lc near Y. Thus, the pair (X,D+Y ) is

not lc near Y. By Theorem 2.7, this is a contradiction to Corollary 2.12.
2nd step. Assume that Z has dimension zero. We endow Z ⊂X with its natural scheme

structure; cf. [17, §7]. Since

L− (KX +D)�−KX

is ample, we can apply Fujino’s extension theorem (with W the empty set; cf. [17,
Theorem 8.1]) to see that the restriction map

H0(X,L)→H0(Z,L)

is surjective. Since Z is a finite scheme, the restriction L|Z is globally generated. Thus,

L is globally generated near Z ; in particular, a general D ∈ |L| is smooth near Z. Hence,

the pair (X,D) is lc, a contradiction.

4. Auxiliary results about linear systems, part I

In Section 5, our study of the Fano fourfold X will lead to several restrictions on the

geometry of the base locus Bs(| −KX |). These restrictions can be strengthened when
combined with the technical results of this section.

Lemma 4.1. Let S be a normal projective surface with canonical singularities such that
pg(S) = 0. Assume that the Albanese map induces a fibration α : S → C onto a curve of

genus g = q(S)> 0. Then the general α-fibre is P1 or g = 1.

Proof. Since canonical surface singularities are rational, we can replace S with a

resolution of singularities. Thus, S is a smooth surface with pg(S) = 0 and q(S) ≥ 1.
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If the general α-fibre is not P1, the surface S is not uniruled. Thus, we can apply

[5, Theorem VI.13] to the minimal model of S to obtain that q(S) = 1.

Proposition 4.2. Let S be a normal projective Gorenstein surface with pg(S) = 0, and

let A be a nef and big Cartier divisor on S such that

A�KS +ΔS,

where ΔS is an effective Weil divisor such that the pair (S,ΔS) is lc and A ·ΔS > 0.

Assume that we have

h0(S,OS(A))≤ q(S).

Then S has canonical singularities, and the Albanese map induces a fibration

α : S → C

onto a curve of genus q(S)> 0. Set r := rk(α∗OS(A)). Then we have

(r−1)(q(S)−1)≤ 1.

Moreover, we have

h0(S,OS(A)) = q(S).

Remark. In the second step of the proof, we will use the following fact that follows easily

from the Leray spectral sequence: let S be a normal projective surface with Gorenstein
singularities such that pg(S) = 0. Assume that S has irrational (hence non-canonical

[31, Corollary 5.24]) singularities, and let τ : Sc → S be the canonical modification [35,

Theorem 1.31]. Then we have

pg(Sc) = pg(S) = 0, q(Sc)> q(S).

Proof of Proposition 4.2. Since A ·ΔS > 0, we have ΔS �= 0. Thus,

H2(S,OS(KS +ΔS))�H0(S,OS(−ΔS)) = 0,

and we have the inequalities

q(S)≥ h0(S,OS(KS +ΔS))≥ χ(S,OS(KS +ΔS)).

1st step. Assume that S has canonical singularities. By Fact 2.6, we have the Riemann-

Roch formula

χ(S,OS(KS +ΔS)) =
1

2
(KS +ΔS) ·ΔS +χ(OS).

Hence, A ·ΔS > 0 implies that q(S)>χ(S,OS) = 1−q(S). In particular, we have q(S)> 0,
so there is a non-trivial Albanese morphism α. If dimα(S) = 2, the ramification formula

shows that pg(S)> 0 which we excluded. Thus, the Albanese morphism gives a fibration

[8, Lemma 2.4.5]

α : S → C
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onto a curve C of genus g := q(S)> 0. Since the pair (S,ΔS) is lc, the direct image sheaf

α∗OS(KS/C +ΔS)� α∗OS(A)⊗OC(−KC)

is a nef vector bundle [19, Theorem 1.1] of rank r. Thus,

V := α∗OS(A)� α∗OS(KS/C +ΔS)⊗OC(KC)

has c1(V )≥ r(2g−2). By the Riemann-Roch formula on curves, we have

h0(S,OS(A)) = h0(C,V )≥ χ(C,V ) = c1(V )+ rχ(C,OC)≥ r(g−1). (2)

Now observe that r(g−1)> g unless (r−1)(g−1)≤ 1.

Finally, let us show that we have h0(S,OS(A)) = q(S): if h0(S,OS(A)) ≤ q(S)−1, the

Riemann-Roch estimate (2) becomes g−1≥ r(g−1).
Subcase a) Assume that g > 1. Then the unique possibility r = 1. Since A is nef and

big, this implies that the general α-fibre is not P1. Yet this contradicts Lemma 4.1.

Subcase b) Assume that g = 1. In this case, the Riemann-Roch inequality becomes

h0(S,OS(KS +ΔS))≥
1

2
(KS +ΔS) ·ΔS > 0,

so h0(S,OS(KS +ΔS))≥ 1 = g.

2nd step. We show that S has canonical singularities. Since S is Gorenstein, it has

canonical singularities if and only if it has rational singularities. Arguing by contradiction,

we assume that S has non-canonical singularities and denote by τ : Sc → S the canonical
modification. Then we have KSc

� τ∗KS −E with E an effective Weil divisor. Observe

that

KSc
+E+ τ∗ΔS � τ∗(KS +ΔS),

so the pair (Sc,ΔSc
) := (Sc,E+ τ∗ΔS) is lc. Moreover,

Ac := τ∗A�KSc
+ΔSc

is a nef and big Cartier divisor with Ac ·ΔSc
= A ·ΔS > 0 and h0(S,OS(A)) =

h0(Sc,OSc
(Ac)). Finally, by the remark before the proof, one has pg(Sc) ≤ pg(S) = 0

and q(Sc)> q(S). Therefore, by Step 1 of the proof,

h0(S,OS(A)) = h0(Sc,OSc
(Ac)) = q(Sc)> q(S),

a contradiction to our assumption.

The conditions in Proposition 4.2 are very restrictive; however, there is a classical

example that will play a prominent role in Section 7:

Example 4.3. Let C be an elliptic curve, and for some point p ∈ C, let

0→OC → V →OC(p)→ 0

be an unsplit extension. Set α : S := P(V )→ C and denote by ζS the tautological class

on S. Set ΔS := 3ζS −α∗p. Then ΔS is an ample divisor [20, V, Proposition 2.21] such
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that |ΔS | contains an element with normal crossing singularities. Thus, the pair (S,ΔS)

is lc, and

A :=KS +ΔS � ζS

is an ample divisor with h0(S,OS(A)) = 1 = q(S).

Since it would be tedious to go into the classification of surfaces with small invariants,

we want a convenient criterion to exclude this kind of exceptional surfaces in the proof

of Theorem 1.3:

Proposition 4.4. Let S be a normal projective Gorenstein surface with pg(S) = 0, and

let A be an ample Cartier divisor on S such that

A�KS +ΔS,

where ΔS is an effective Weil divisor such that the pair (S,ΔS) is lc. Assume that we

have

h0(S,OS(A))≤ q(S).

Then ΔS does not contain any smooth rational curve.

Proof. We argue by contradiction, so let l⊂ΔS be a smooth rational curve. In particular,

ΔS �= 0, and therefore, A ·ΔS > 0. By Proposition 4.2, the surface has canonical
singularities, and we have an Albanese fibration α : S → C onto a smooth curve C of

genus g = q(S). Moreover, we have

(r−1) · (q(S)−1)≤ 1, (3)

where r = rk(α∗OS(A)).

1st case. Assume that g > 1. By Lemma 4.1, the general α-fibre F is P1. Since A ·F ≥ 1,
we have r ≥ 2, and thus, (3) yields g = 2 and r = 2. Moreover, A ·F = 1 implies that

α : S → C is a P1-bundle over the genus two curve C [34, II,Theorem 2.8]. In particular,

the rational curve l is a fibre of α, and thus a nef divisor on S. The pair (S,ΔS − l) is lc,
so the direct image

α∗OS(KS/C +ΔS − l)� α∗OS(A)⊗OC(−KC − l)

is a nef vector bundle [19, Theorem 1.1]. Thus, α∗OS(A) has degree at least six. By the

Riemann-Roch formula on the curve C, this implies h0(S,OS(A)) = h0(C,α∗OS(A))≥ 4,

a contradiction.
2nd case. Assume that g = 1. By Proposition 4.2, we have h0(S,OS(A)) = 1, and thus

by Riemann-Roch,

1≥ χ(S,OS(A)) =
1

2
(KS +ΔS) ·ΔS > 0.

Therefore, A ·ΔS = (KS +ΔS) ·ΔS = 2, and Lemma 4.5 applies: all the irreducible
components of ΔS are rational curves, so they are contracted by the Albanese map.

Moreover, the support of ΔS is connected, so it is contained in an α-fibre F0. Since

pa(ΔS) = 2, we deduce that pa(F0) ≥ 2. Since the arithmetic genus is constant in
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the flat family α : S → C, we obtain that S is not uniruled. Let τ : S′ → S be the

minimal resolution, and let ν : S′ → Sm the minimal model of S′. Since S has canonical

singularities, we have

pg(Sm) = pg(S
′) = pg(S) = 0, q(Sm) = q(S′) = q(S)> 0.

By [5, Proposition VI.6], the minimal surface Sm does not contain any rational curves.

Since the exceptional divisors of the resolution τ are rational curves, the rigidity lemma

[11, Lemma 1.15] yields a birational map ν : S → Sm that contracts all the rational curves
on S. In particular, it contracts the divisor ΔS . Yet pa(ΔS) = 2 > 0, a contradiction to

the fact that the smooth surface Sm has rational singularities.

Lemma 4.5. Let S be a normal projective surface with canonical singularities and

pg(S) = 0, and let A be an ample Cartier divisor on S such that

A�KS +ΔS,

where ΔS is an effective Weil divisor such that the pair (S,ΔS) is lc and A ·ΔS = 2.
Assume that ΔS has an irreducible component that is a smooth rational curve l. Then the

support of ΔS is connected, and all its irreducible components are rational curves.

Proof. Recall first that canonical surface singularities are Gorenstein, so both KS and

ΔS = A−KS are Cartier. We have pa(ΔS) = 2, so the inclusion l ⊂ΔS must be strict.
Since A is ample with A ·ΔS = 2, we obtain

ΔS = l+R

with R an irreducible curve such that A ·R= 1. In particular, we have by subadjunction

degKR ≤ (KS +R) ·R≤ (KS + l+R) ·R=A ·R= 1,

so pa(R) = 1
2 degKR+1≤ 1. In particular, ΔS is connected because otherwise

2 = pa(ΔS) = pa(R)+pa(l)≤ 1

yields a contradiction.

Let τ : S′ → S be the minimal resolution and set

ΔS′ := τ∗ΔS .

Since ΔS is connected, the cycle ΔS′ is connected. Denote byR′ ⊂ΔS′ the strict transform
of R. We claim that R′ is a rational curve, and this concludes the proof.

Proof of the claim. Since S has canonical singularities, the minimal resolution τ is

crepant, so we have KS′ � τ∗KS and

KS′ +ΔS′ = τ∗(KS +ΔS) = τ∗A.

Thus, we have

1 = τ∗A ·R′ = (KS′ +ΔS′) ·R′ = (KS′ +R′) ·R′+(ΔS′ −R′) ·R′.
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If we show that (ΔS′ −R′) ·R′ ≥ 2, then the adjunction formula yields the claim. Since

ΔS′ is connected, we have (ΔS′ −R′) ·R′ ≥ 1. We will argue by contradiction to exclude

the case where we have an equality.
In this case, R′ is a curve of arithmetic genus one that meets ΔS′ −R′ transversally

exactly in one point. In particular, we have

2 = pa(ΔS′) = pa(R
′)+pa(ΔS′ −R′) = 1+pa(ΔS′ −R′).

The curve l⊂S being smooth, it meets the exceptional divisor over every point p∈ l∩Ssing

in exactly one point, and the intersection is transverse. Thus, we have

pa(ΔS′ −R′) = pa(l)+
∑

p∈l∩Ssing

τ−1(p) = 0

since the exceptional divisors of the minimal resolution of an ADE-singularity have
arithmetic genus zero. This gives the final contradiction.

5. Positivity arguments

This section is the technical core of the paper. We will study the positivity properties
of the Cartier classes MX and BX and successively improve our knowledge about the

existence and singularities of effective divisors contained in these classes.

Proposition 5.1. In the situation of Setup 1.2, the divisor BX is not nef. If BX is
effective, then h0(X,OX(BX)) = 1 and BX is a normal prime divisor.

Proof. Consider the exact sequence

0→OX(−MX)→OX(BX)→OY (B)→ 0.

We have h0(X,OX(−MX)) = 0 since otherwise −MX , and thus its restriction −M to the

general anticanonical divisor Y, is effective. Thus, we have an injection

H0(X,OX(BX)) ↪→H0(Y ,OY (B)).

Since h0(Y ,OY (B)) = 1 by Fact 2.2, we have h0(X,OX(BX)) ≤ 1. By Lemma 3.7, this

implies that BX is not nef.

If BX is effective, it is a normal prime divisor since its restriction to the ample divisor
Y is the normal prime divisor B.

Proposition 5.2. Let Y be a Q-factorial threefold with canonical Gorenstein singularities

such that c1(Y ) = 0. Let A be an ample Cartier divisor with h0(Y ,OY (A))≥ 2 such that

Bs(|A|) has pure dimension two. Let A � M +B be the decomposition into mobile part
and fixed part B. Then A+M is a nef and big divisor.

Proof. We choose a general element M in the mobile part, so by Theorem 2.11, the
pair (Y ,M +B) is lc. If A+M is not nef, there exists an irreducible curve γ such that

(A+M) ·γ < 0. Since A is ample, we have M ·γ ≤−2. In particular, we have γ ⊂Bs(|M |).
Since |M | is the mobile part of |A|, we have Bs(|M |)⊂ Bs(|A|). By assumption, Bs(|A|)
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has pure dimension two, so it coincides with B. Thus, we have γ ⊂B, and hence,

γ ⊂M ∩B.

The surface M +B is slc by Theorem 2.7, so it has normal crossing singularities in

codimension one. Therefore, B and M are smooth in the generic point of γ; in particular,

γ is not contained in the singular locus of M. Since

−KM ·γ =−M ·γ ≥ 2,

we know by Fact 2.4 that the curve γ deforms in M. In particular, M contains a positive-

dimensional family of curves γt such that M · γt < 0. Yet M is a mobile divisor and
dimY = 3, so this is impossible.

Corollary 5.3. In the situation of Setup 1.2, the divisor −KX +MX is nef and has

numerical dimension at least three. In particular,

Hq(X,OX(MX)) = 0 ∀ q ≥ 2.

Proof. By Theorem 2.10, we know that −KX +MX is nef if and only if the restriction
to Y is nef. Thus, nefness follows from Proposition 5.2. The numerical dimension is at

least three since the restriction to Y is big, so of numerical dimension three. Finally, the

vanishing follows from

Hq(X,OX(MX)) =Hq(X,OX(KX +(−KX +MX)))

and the numerical Kawamata-Viehweg vanishing theorem [39, Example 4.3.7].

Proposition 5.4. In the situation of Setup 1.2, assume that MX is not nef. Then we

have

Hq(X,OX(KX +MX)) = 0 ∀ q ≥ 3.

For the proof, we start with a general lemma which is essentially contained in Küronya’s
paper [38]:

Lemma 5.5. Let Y be a normal projective threefold with canonical Gorenstein singu-

larities, and let D be an effective Cartier divisor on Y such that for every irreducible

component D′ ⊂D, the restriction D|D′ is pseudoeffective. Then

Hq(Y ,OY (KY +D)) = 0 ∀ q ≥ 2

unless (maybe) D is nef of numerical dimension at most one.

Proof. Since the restriction D|D′ is pseudoeffective and dimD′ = 2, there are at most

finitely many curves γ ⊂ Y such that D · γ < 0. In particular, for a general very ample

divisor A⊂ Y , the restriction D|A is nef. Moreover,

(D|A)2 =D2 ·A=D|D ·A|D ≥ 0,

and equality holds if and only if the pseudoeffective classD|D is zero. Hence, if (D|A)2 =0,

the restriction D|D is numerically trivial and D is nef with numerical dimension at most

https://doi.org/10.1017/S1474748024000604 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000604


Fano fourfolds with large anticanonical base locus 1037

one. If (D|A)2 > 0, the restriction D|A is nef and big and we obtain the vanishing by [38,

Theorem C].3

Proof of Proposition 5.4. We twist the exact sequence

0→OX(−Y )�OX(KX)→OX →OY → 0

with MX to get

0→OX(KX +MX)→OX(MX)→OY (M)→ 0.

Since M is mobile, it satisfies the conditions of Lemma 5.5; by assumption, MX (and

thus M ) is not nef, so we have Hq(Y ,OY (M)) = 0 for q ≥ 2. By the exact sequence in

cohomology, this implies

Hq(X,OX(KX +MX)) =Hq(X,OX(MX)) ∀ q ≥ 3.

Yet the right-hand side vanishes by Corollary 5.3.

Corollary 5.6. In the situation of Setup 1.2, assume that MX is not nef. Then the

divisor class BX is effective.

Proof. We twist the restriction sequence

0→OX(−Y )�OX(−(MX +BX))→OX →OY → 0

with BX to get

0→OX(−MX)→OX(BX)→OY (B)→ 0.

By Serre duality and Proposition 5.4, one has

H1(X,OX(−MX)) =H3(X,OX(KX +MX)) = 0.

Therefore, h0(Y ,OY (B)) = 1 implies that BX is effective.

Proposition 5.7. In the situation of Setup 1.2, the divisor class MX is effective and

mobile.

Remark. If MX is nef, the linear system |MX | might have fixed components. Neverthe-

less, the class being nef, it is mobile. If MX is not nef, the proof will show that

h0(X,OX(MX)) = h0(X,OX(−KX))−1.

Proof. If MX is nef, this is immediate from Lemma 3.7. If MX is not nef, we know by

Corollary 5.6 that BX is effective. Thus, BX is normal prime divisor by Proposition 5.1,

and we can twist the restriction sequence for BX by KX +BX to get an exact sequence

0→OX(KX)→OX(KX +BX)→OBX
(KX +BX)�OBX

(KBX
)→ 0.

3The statement in [38] is for a manifold, but it is straightforward to see that the proof works
in our setup.
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Taking cohomology, we get a sequence

. . . →H3(X,OX(KX))→H3(X,OX(KX +BX))→H3(BX,OBX
(KBX

))

→H4(X,OX(KX))→H4(X,OX(KX +BX))→ 0.

Using Serre duality on X and BX , this transforms into

. . . →H1(X,OX) = 0→H3(X,OX(KX +BX))→H0(BX,OBX
) = C

→H0(X,OX) = C→H0(X,OX(−BX)) = 0→ 0.

In conclusion, we get

Hq(X,OX(KX +BX)) = 0 ∀ q ≥ 3.

Now we twist the restriction sequence to Y by MX to get

0→OX(−BX)→OX(MX)→OY (M)→ 0.

By Serre duality and what precedes,

H1(X,OX(−BX)) =H3(X,OX(KX +BX)) = 0.

Thus, the restriction map

H0(X,OX(MX))→H0(Y ,OY (M))

is surjective. In particular,

Bs(|M |) = Bs(|MX |)∩Y.

Since Y is ample and M is mobile, this shows that dimBs(|MX |) ≤ 2. Thus, |MX | is
mobile.

The divisor MX being effective by Proposition 5.7, the divisor class −KX +MX is big.

Since −KX +MX is also nef by Corollary 5.3, we finally obtain the following:

Corollary 5.8. In the situation of Setup 1.2, the divisor −KX +MX is nef and big.

Proposition 5.9. In the situation of Setup 1.2, assume that h0(X,OX(BX)) �= 0. Then
the pair (X,BX) is log-canonical. Moreover, the log-canonical centres are the prime divisor

BX and (possibly) some smooth curves C ⊂BX such that BX ·C < 0.

Proof. We have h0(X,OX(BX)) = 1 by Proposition 5.1. Thus, BX is the unique effective
divisor in its linear system, and hence general. Since (Y ,B) = (Y ,Y ∩BX) is log-canonical

by Corollary 2.12, we know by Lemma 3.8 that (X,BX) is lc.

Let us now describe its lc centres: since BX − (KX +BX) = −KX is ample, we know
by [17, Theorem 8.1] that for every lc centre Z ⊂X, the restriction morphism

H0(X,OX(BX))→H0(Z,OZ(BX))

is surjective. Since Z ⊂BX and h0(X,OX(BX)) = 1, we obtain that H0(Z,OZ(BX)) = 0.

This immediately excludes the possibility that dimZ = 0. Since BX is normal by

Proposition 5.1, there are no two-dimensional lc centres.
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The unique remaining possibility is that dimZ = 1 and the centre is minimal. Thus, by
Kawamata subadjunction [27], the curve Z is normal and there exists an effective divisor

ΔZ on Z such that

KZ +ΔZ ∼Q (KX +BX)|Z .

In particular,

BX |Z − (KZ +ΔZ)∼Q −KX |Z
is ample. Thus, if BX ·Z ≥ 0, a Riemann-Roch computation shows that h0(Z,OZ(BX))>

0, a contradiction.

We now come to the key technical result of this section:

Lemma 5.10. In the situation of Setup 1.2, assume that h0(X,OX(BX)) �= 0. Then we

have a surjective restriction morphism

H0(X,OX(−KX))→H0(BX,OBX
(−KX)).

Proof. By Proposition 5.9, the pair (X,BX) is lc, and BX is an lc centre for this pair.

By Fujino’s extension theorem [18, Theorem 1.11], we have to show that

−KX − (KX +BX) =−KX +MX

is nef and log big (i.e., the restriction of −KX +MX to every lc centre of (X,BX) is big).

By Corollary 5.8, the nef divisor −KX +MX is big on X. Since MX is mobile by
Proposition 5.7, the restriction MX |BX

is pseudoeffective, so (−KX +MX)|BX
is big. By

Proposition 5.9, an lc centre Z that is distinct from BX is a curve such that BX ·Z < 0.

Therefore, MX ·Z > 0, and hence (−KX +MX)|Z , is ample.

Proposition 5.11. In the situation of Setup 1.2, assume that h0(X,OX(BX)) �= 0. Then

we have an injection

H0(B,OB(−KX)) ↪→H1(BX,OBX
)∼=H1(B,OB).

Moreover, we have

h0(BX,OBX
(−KX)) = 1.

Proof. We have B = Y ∩BX , so B ⊂ BX is a Cartier divisor that is linearly equivalent

to −KX |BX
. Thus, we have an exact sequence

0→OBX
→OBX

(−KX)→OB(−KX)→ 0.

Let us first show that the restriction map

H0(BX,OBX
(−KX))→H0(B,OB(−KX))

is zero. Since B ⊂ Bs(|−KX |), the restriction map

H0(X,OX(−KX))→H0(B,OB(−KX))
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is zero. Since H0(X,OX(−KX))→H0(BX,OBX
(−KX)) is surjective by Lemma 5.10, we

get the claim.
This already implies the second statement since the kernel of the restriction map is

H0(BX,OBX
) = C. Since the restriction map is zero, we have an injection

H0(B,OB(−KX))→H1(BX,OBX
).

Now consider the exact sequence

0→OBX
(KX)→OBX

→OB → 0.

The pair (X,BX) is lc by Proposition 5.9, and BX is normal by Proposition 5.1, so BX

is a threefold with lc singularities. Since KX |BX
is an antiample Cartier divisor, we can

apply Kodaira vanishing [36, Corollary 6.6] to get

H1(BX,OBX
(KX)) = 0 =H2(BX,OBX

(KX)).

Thus, we have an isomorphism H1(BX,OBX
) � H1(B,OB), and the first statement

follows.

Corollary 5.12. In the situation of Setup 1.2, assume that h0(X,OX(BX)) �= 0. Then
the pair (X,BX) is plt (i.e., the threefold BX has canonical Gorenstein singularities).

Proof. By Proposition 5.11, we have h0(B,OB(−KX)) ≤ q(B). By Corollary 2.12, the

conditions of Lemma 4.2 are satisfied. Thus, we know that B has canonical singularities.

By inversion of adjunction (Theorem 2.7), the pair (BX,B) = (BX,Y ∩BX) is plt near B.

Thus, (BX,0) is plt (i.e., klt) near B. Since BX is Gorenstein, this implies that BX has
canonical singularities near B. Since B = BX ∩Y is an ample divisor, the non-canonical

locus of BX is at most a finite set.

By Proposition 5.9, the pair (X,BX) is lc, and the lc centres of dimension at most
two are irreducible curves C. Again by inversion of adjunction, the non-canonical locus

of BX coincides with the union of lower-dimensional lc centres which has pure dimension

one. By the first paragraph, the non-canonical locus has dimension at most zero, so it is
empty.

We are now ready for the first reduction step in the proof of Theorem 1.3:

Theorem 5.13. In the situation of Setup 1.2, the divisor MX is nef.

Proof. We argue by contradiction and assume that MX is not nef. By the cone theorem,

there exists a KX -negative extremal ray R+γ such that MX ·γ < 0. Since MX is mobile
by Proposition 5.7, the extremal ray is small. Thus, by Kawamata’s classification [26,

Theorem 1.1], a connected component of the exceptional locus is a P2 ⊂ X such that

OP2(−KX) � OP2(1). Thus, the intersection Y ∩P2 is either a line or the whole surface
P2. In the latter case, we would have P2 ⊂M ⊂ Y , in contradiction to the mobility of M.

Therefore, Y ∩P2 is a smooth rational curve l such that M · l < 0. Thus,

l ⊂ Bs(|M |)⊂ Bs(|−KX |Y |) =B

shows that the effective divisor M |B contains a smooth rational curve.
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Since MX is not nef, the divisor BX is effective by Corollary 5.6. Thus, Proposition 5.11
implies that we have an injection

H0(B,OB(−KX)) ↪→H1(B,OB).

By Corollary 2.12, the surface B satisfies the conditions of Proposition 4.4. Thus, the

support of M |B does not contain a smooth rational curve, in contradiction to the first

paragraph.

6. Auxiliary results about linear systems, part II

Theorem 5.13 shows the nefness of the divisor class MX which by Fact 2.3 will give us
a morphism X → T that adds additional structure to all the varieties appearing in our

setup. In this section, we prove further technical results that use these structures.

We start with a statement that is a variation of Kollár’s injectivity theorem [32,

Theorem 2.2].

Proposition 6.1. Let Y be a normal Q-factorial projective variety with klt singularities

such that c1(Y ) = 0. Assume that Y admits a fibration ψ : Y →C onto a smooth projective

curve, and let F be a general fibre. Let A be a nef and big Cartier divisor such that

A≡mF +B

with B an effective divisor such that (Y ,B) is lc. If m> 1, the restriction map

H0(Y ,OY (A))→H0(F,OF (A))

is surjective.

Proof. It is clearly sufficient to show that

H1(Y ,OY (A−F )) = 0.

Since Y has klt singularities and (Y ,B) is lc, the pair (Y ,εB) is klt for every ε < 1

[31, Corollary 2.35(5)]. In particular, (Y , 1
mB) is klt. Now we write

A−F ≡KY +(m−1)F +B = (KY +
1

m
B)+(m−1)(F +

1

m
B).

Since A ≡m(F + 1
mB) and m> 1, the Q-divisor class (m− 1)(F + 1

mB) is nef and big.

Now we conclude with Kawamata-Viehweg vanishing [11, Theorem 7.26].

Lemma 6.2. Let Y be a normal projective Q-factorial threefold with terminal singulari-

ties such that KY �OY . Suppose that Y admits an elliptic fibration

ϕ : Y → T

onto a surface T. Let A be a nef and big Cartier divisor such that we have A �M +B,

where M � ϕ∗MT with MT a nef and big Cartier divisor on T and B is an effective

divisor such that B ⊂ Bs(|A|).
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Then we have an injection

H0(B,OB(KB +M)) ↪→H0(T,OT (KT +MT )). (4)

Proof. Since Y is a terminal, Gorenstein, Q-factorial threefold, it is factorial [25, Lemma

5.1]. Thus, all the Weil divisors on Y are Cartier.

Consider the exact sequence

0→OY (M)→OY (A)→OB(A)→ 0

and the long exact sequence in cohomology

H0(Y ,OY (A))→H0(B,OB(A))→H1(Y ,OY (M))→H1(Y ,OY (A)).

By Kawamata-Viehweg vanishing, we have H1(Y ,OY (A)) = 0. Since B ⊂ Bs(|A|), the
restriction map H0(Y ,OY (A))→H0(B,OB(A)) is zero, so we have an isomorphism

H0(B,OB(KB +M))�H0(B,OB(A))�H1(Y ,OY (M)). (5)

By the Leray spectral sequence, we have an exact sequence

0→H1(T,ϕ∗OY (M))→H1(Y ,OY (M))→H0(T,R1ϕ∗OY (M)).

By the canonical bundle formula [2], there exists a boundary divisor ΔT on T such that

(T,ΔT ) is klt and KT +ΔT ∼Q 0. Since ϕ∗OY (M)�OT (MT ) is nef and big, we can apply
the Kawamata-Viehweg vanishing theorem [11, Theorem 7.26] to see that

H1(T,ϕ∗OY (M)) = 0.

By the projection formula, we have

R1ϕ∗OY (M)�R1ϕ∗OY ⊗OT (MT ),

so R1ϕ∗OY (M) is torsion-free by [32, Theorem 2.1].
Since KY �OY and ϕ is flat over a big open susbset of T, we have by relative duality

[30]

(R1ϕ∗OY )� (ϕ∗OY (KY/T ))
∗ �OT (KT )

in the complement of finitely many points. Since R1ϕ∗OY (M) is torsion-free, the

morphism

R1ϕ∗OY (M)�OT (KT )⊗OT (MT )→OT (KT +MT )

is thus injective and yields an inclusion

H0(T,R1ϕ∗OY (M))→H0(T,OT (KT +MT )).

The statement now follows from (5).

We need the following characterisation of Example 4.3, a singular variant of [14,

Theorem 0.2] and its proof.
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Proposition 6.3. Let S be a normal projective surface with canonical singularities such
that H1(S,OS) �= 0. Let A be an ample, effective Cartier divisor such that A2 = 1 and

KS ·A=−1. Then S is a P1-bundle f : P(V )→C over an elliptic curve C such that A is

the tautological divisor.

Proof. Since KS ·A=−1, the canonical bundle is not pseudoeffective, so S is uniruled.

Since H1(S,OS) �= 0, the surface is not rationally connected, and the MRC fibration
coincides with the Albanese map f : S→Alb(S). In particular, f contracts all the rational

curves on S and π1(S)�π1(C), where C is the image of f. Our goal is to show that q(S)= 1

and f is a P1-bundle.

Since the Cartier divisor A is effective and A2 = 1, the divisor A is an integral curve.
By the adjunction formula, the arithmetic genus of A is one, so either A is smooth or its

normalisation is P1. Since the ample divisor A is not contracted by the fibration f, we

see that A is a smooth elliptic curve. Now recall that canonical surface singularities are
hypersurface singularities, so by Goresky-MacPherson’s Lefschetz theorem for homotopy

groups [39, Theorem 3.1.21, Remark 3.1.41], the morphism

Z2 � π1(A)→ π1(S)

is surjective; in particular, q(S) = 1 and C is also an elliptic curve. Since

π1(A)→ π1(S)� π1(C)

is surjective, the étale map map A→C is an isomorphism. Thus, A is a section of f. Since
A is ample and has degree one on the fibres, all the f -fibres are integral curves. Thus, f

is a P1-bundle by [34, II,Theorem 2.8]. Since A ·f = 1, we have S � P(f∗OS(A)).

Remark 6.4. An elementary computation [20, V, Proposition 2.21] shows that in the

situation of Proposition 6.3, the divisor A is adjoint (i.e., we have

A�KS +ΔS

with ΔS an ample divisor with Δ2
S = 3).

Proposition 6.5. Let Z be a normal projective threefold with canonical Gorenstein

singularities such that q(Z) = 1 and −KZ is nef. Let S ⊂ Z be a normal surface with

canonical singularities such that S is an ample Cartier divisor in Z. Suppose that

h0(Z,OZ(S)) = 1, and S · (−KZ)
2 ≥ 2.

Then either KS ≡ 0 or S is a ruled surface over an elliptic curve.

Proof. Let τ : Z ′ → Z be a terminalisation of Z. Then −KZ′ � τ∗(−KZ) is nef and
hi(Z ′,OZ′) = hi(Z,OZ) for all i∈N. Since τ∗S ·(−KZ′)2 = S ·(−KZ)

2 > 0, the nef divisor

−KZ′ is not trivial. Thus, Z ′ is uniruled, and hence, h3(Z ′,OZ′) = 0. Since q(Z) = 1 by

assumption, we obtain χ(Z ′,OZ′)≥ 0. Since τ∗S is nef and big and −KZ′ is nef, we have

Hj(Z ′,OZ′(τ∗S)) =Hj(Z ′,OZ′(KZ′ +(−KZ′ + τ∗S))) = 0 ∀ j ≥ 1
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by Kawamata-Viehweg vanishing. Thus, the Riemann-Roch formula (Fact 2.6) yields

1 = h0(Z ′,OZ′(τ∗S)) = χ(Z ′,OZ′(τ∗S)) (6)

≥ 1

12
τ∗S · τ∗(S−KZ) · τ∗(2S−KZ)+

1

12
τ∗S · c2(Z ′).

Since −KZ′ is nef and τ∗S is nef, we have τ∗S ·c2(Z ′)≥ 0 by [45, Corollary 1.5]. Applying
the projection formula, we obtain

S · (S−KZ) · (2S−KZ)≤ 12.

Set A :=S|S and H =−KZ |S . Then A is an ample Cartier divisor on S, and H is a nef and

big Cartier divisor on S such thatH2 ≥ 2. By the Hodge index inequality (A ·H)2 ≥A2 ·H2

[8, Proposition 2.5.1], this implies A ·H ≥ 2. Since

12≥ S · (S−KZ) · (2S−KZ) = 2A2+3A ·H+H2 ≥ 4+3A ·H,

we actually have A ·H = 2. Moreover, we have A2 ≤ 2.
1st case. Suppose that A2 = 2. Then we have equality in the Hodge index inequality,

and therefore, A≡H by [8, Corollary 2.5.4]. Since

KS � (KZ +S)|S �−H+A,

we obtain KS ≡ 0.
2nd case. Suppose that A2 = 1. Since

KS � (KZ +S)|S �−H+A,

we have KS ·A=−1. Finally, we have the Riemann-Roch inequality

h0(S,OS(A))≥
1

2
A2+

1

2
(−KS ·A)+χ(OS).

Since S is an ample divisor in a threefold and Z has canonical singularities, we can
use Kodaira vanishing to show that q(S) = q(Z) = 1. In particular, χ(OS) ≥ 0, and by

the Riemann-Roch inequality, h0(S,OS(A)) > 0, so A is an effective divisor. Thus, the

polarised surface (S,A) satisfies the conditions of Proposition 6.3.

7. The nef case

The goal of this section is to show the following.

Theorem 7.1. In the situation of setup 1.2, the divisor MX is not nef.

Setup 7.2. For the proof of Theorem 7.1, we will argue by contradiction and assume
that MX is nef. By the Fact 2.3, there exists a morphism with connected fibres

ϕ :X → T (7)

such that MX �ϕ∗MT for some ample Cartier divisor MT → T . Note that BX is ϕ-ample

since BX ∼ϕ −KX .
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Since X is a Fano, there exists a boundary divisor such that (X,Δ) is klt and Δ ∼Q

−KX . Thus, we apply Ambro’s theorem [2] to see that T is klt. Note that it is not clear

whether T is Q-factorial.

Lemma 7.3. In the situation of Setup 7.2, we have H1(X,OX(−MX)) = 0 unless T � P1

and MT �OP1(m) with m≥ 2.

Proof. Since −KX is ϕ-ample, we have Rjϕ∗OX = 0 for every j ≥ 1 by relative Kodaira

vanishing. Since MX � ϕ∗MT , we deduce that Rjϕ∗OX(−MX) = 0 for j ≥ 1 by the

projection formula. Thus, we have

H1(X,OX(−MX))�H1(T,OT (−MT )),

and the latter is zero by Kodaira vanishing on the klt space T unless T is a curve. The

rest is now straightforward.

Corollary 7.4. In the situation of Setup 7.2, we have H0(X,OX(BX)) �=0 unless T � P1

and MT �OP1(m) with m≥ 2.

Proof. Immediate from Lemma 7.3 and the exact sequence

0→OX(−MX)→OX(BX)→OY (B)→ 0.

We will prove Theorem 7.1 by making a case distinction in terms of the dimension of
the base T.

Proposition 7.5. In the situation of Setup 7.2, we have dimT > 1.

Proof. If dimT = 1, the fibration ϕ has as general fibre a smooth Fano threefold F (the
divisor −KF �−KX |F is ample) and T � P1.

Choose Y ∈ |−KX | a general element, and denote by ψ : Y → P1 the restriction of ϕ

to Y. Denote by FY the general ψ-fibre; that is, FY = F ∩Y . We have a commutative
diagram

H0(X,OX(−KX))

��

�� �� H0(Y ,OY (−KX))

rY

��

H0(F,OF (−KX)) �� �� H0(FY ,OFY
(−KX)),

and the horizontal maps are surjective since q(X) = 0 = q(F ).
1st case. Suppose that OT (MT )�OP1(m) with m≥ 2. We have −KX |Y � ψ∗MT +B;

moreover, the pair (Y ,B) is lc by Corollary 2.12. Thus, by Proposition 6.1, the restriction

map rY is surjective. Since −KX |Y � ψ∗MT +B and B is a fixed component of the linear
system |−KX |Y |, the image of rY is generated by a section vanishing on B∩FY . Thus,

rY is a surjective map of rank one, and therefore, h0(FY ,OFY
(−KX)) = 1. The restriction

map H0(F,OF (−KX))→H0(FY ,OFY
(−KX)) has kernel H0(F,OF ) � C, so we deduce
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h0(F,OF (−KX)) = 2. Yet −KF � −KX |F , and for a smooth Fano threefold, we always

have h0(F,OF (−KF ))≥ 3 by [24, Corollary 2.1.14].
2nd case. Suppose that OT (MT )�OP1(1). By Corollary 7.4, this implies that BX is an

effective divisor. Since −KX � ϕ∗MT +BX � F +BX , the divisor BX is relatively ample.

We claim that

H1(Y ,OY (−KX |Y −FY )) =H1(Y ,OY (B)) = 0.

As in the first case, this yields the surjectivity ofH0(Y ,OY (−KX))→H0(FY ,OFY
(−KX))

and the desired contradiction.

Proof of the claim. By Proposition 5.1, we know that BX is not nef, so there exists aKX -
negative extremal ray R+γ such that BX ·γ < 0. Since BX is effective, the corresponding

contraction

μ :X →X ′

must be birational with exceptional locus contained in BX . Since BX is ϕ-ample and μ-
antiample, the intersection of any μ-fibre with a ϕ-fibre must be finite. Thus, the fibres of

μ have dimension at most one. By Ando’s theorem [3, Theorem 2.3], this implies that μ is a

smooth blowup along a surface. In particular, we have (−KX +BX) ·γ = 0, so −KX +BX

is non-negative on the extremal ray R+γ. Since γ was an arbitrary BX -negative extremal
ray, the cone theorem implies that −KX +BX is nef. Since BX is effective, the divisor

−KX +BX is nef and big. Therefore,

Hj(X,OX(BX)) =Hj(X,KX +OX(−KX +BX)) = 0

for j ≥ 1 by Kawamata-Viehweg vanishing. Now consider the exact sequence

0→OX(−MX)→OX(BX)→OY (B)→ 0.

Since MX � ϕ∗MT and dimT = 1, we have H2(X,OX(−MX)) �H2(T,OT (−MT )) = 0.

By the long exact sequence in cohomology, the map 0=H1(X,OX(BX))→H1(Y ,OY (B))
is surjective, and we are finally done.

Proposition 7.6. In the situation of Setup 7.2, we have dimT < 3.

Proof. Assume that dimT ≥ 3. Since Y is an ample divisor, the morphism ϕ|Y : Y → T

is generically finite onto its image, so M � ϕ∗MT |Y is nef and big. Consider the exact
sequence

0→OY (M)→OY (−KX)→OB(−KX)→ 0.

Since H1(Y ,OY (M)) = 0, by Kawamata-Viehweg vanishing, the restriction morphism

H0(Y ,OY (−KX))→H0(B,OB(−KX))

is surjective. Since B is in the base locus of |−KX |Y |, we obtain H0(B,OB(−KX)) = 0.
Since dim T ≥ 3, we have h0(X,OX(BX)) �= 0 by Corollary 7.4. Thus, Proposition 5.11

shows that we have an injection

H0(B,OB(−KX)) ↪→H1(B,OB).
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By Corollary 2.12, the surface B satisfies the conditions of Proposition 4.2. Thus, we have
q(B)> 0, and the inclusion H0(B,OB(−KX)) ↪→H1(B,OB) is an equality. Since the first

space has dimension zero, this is a contradiction.

Proposition 7.7. In the situation of Setup 7.2, we have dimT �= 2

This is the part of the proof that requires the most work. We will use properties of the

anticanonical divisor Y and the effective divisor BX to determine some of the invariants

of the base T. Then we will use the smoothness of X to reach a contradiction.

Proof. Assume that dimT = 2. By Corollary 7.4, the divisor BX is effective. By Corol-

lary 5.12, the divisor BX has canonical Gorenstein singularities, and by Proposition 5.11,
we have

h0(BX,OBX
(−KX)) = 1 and q(BX) = q(B).

Since Y ⊂X is an ample divisor, the fibration ϕ induces an elliptic fibration

ψ : Y → T

such that −KX |Y � ψ∗MT +B. By Theorem 2.8 and Corollary 2.9, the threefold Y

satisfies the conditions of Lemma 6.2. Hence, we have an injection

H0(B,OB(KB +M)) ↪→H0(T,OT (KT +MT )). (8)

Observe that the induced morphism ϕ|BX
is surjective onto T since BX is ϕ-ample.

Step 1. We show that h0(T,OT (KT +MT )) = 0 unless KT �−MT . By the adjunction

formula,

−KBX
�MX |BX

� (ϕ∗MT )|BX

is nef with numerical dimension two. Since BX has canonical singularities, we can apply

[13, Theorem 3.1] to see that there exists a boundary divisor ΔT on T such that (T,ΔT )
is klt and

KBX
∼Q (ϕ∗(KT +ΔT ))|BX

.

Thus, we have KT +ΔT ≡ −MT , and hence, KT +MT = −ΔT is not pseudoeffective

unless ΔT = 0. Therefore, h0(T,OT (KT +MT )) = 0 unless ΔT = 0. In the latter case,

h0(T,OT (KT +MT )) �= 0 implies that KT �−MT ; in particular, KT is Cartier.
Step 2. We reach a contradiction. By Proposition 5.11, we have an injection

H0(B,OB(−KX)) ↪→H1(B,OB).

By Corollary 2.12, the surface B satisfies the conditions of Proposition 4.2. In particular,

B has canonical singularities, positive irregularity q(B) > 0, and the inclusion above is

an equality. Since

H0(B,OB(−KX)) =H0(B,OB(KB +M)),

the injection (8) and the first step show that

H0(B,OB(−KX)) =H1(B,OB) =H0(T,OT (KT +MT ) = C.
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In particular, KT � −MT by the first step (i.e., T is a del Pezzo surface with at most

canonical singularities).

Since B is the complete intersection of BX and Y, the surface B ⊂ BX is an ample
Cartier divisor, and the restriction of ϕ|BX

to B is still surjective onto the surface T.

Since q(T ) = 0 and q(B) = 1, and the irregularity is a birational invariant of varieties

with rational singularities, the map

τ := ϕ|T :B → T

is not birational. Thus, τ is generically finite of degree at least two and

(MX |B)2 = (τ∗MT )
2 = degτ ·M2

T ≥ 2.

Thus, q(BX) = q(B) = 1, −KBX
�MX |BX

is nef, B⊂BX is an ample Cartier divisor with

h0(BX,OBX
(B)) = h0(BX,OBX

(−KX)) = 1 and B ·(−KBX
)2 ≥ 2. Thus, the threefold BX

and the surface B ⊂BX satisfy the conditions of Proposition 6.5, and we have two cases:

Case a) We have KB ≡ 0. Since KB �B|B , this implies that B is nef. Thus, BX is nef
by Theorem 2.10, a contradiction to Proposition 5.1.

Case b) B is a ruled surface over an elliptic curve. Since ρ(P(V )) = 2 and the map τ is

surjective, the del Pezzo surface T has Picard number at most two (canonical singularities
are Q-factorial, [31, Proposition 4.11]). By Remark 6.4, the nef and big class MX |B is

ample and (MX |B)2 = 3. Since MX |B � τ∗MT � τ∗(−KT ) is ample, the generically finite

map τ is actually finite. Moreover, τ having degree at least two, we deduce that τ has
degree three and (−KT )

2 = 1. Thus, T is a del Pezzo surface of degree one and Picard

number at most two; in particular, it is not smooth. By [4, Proposition 1.3], this implies

that the fibration ϕ :X → T is not equidimensional, so there exists a prime divisor D⊂X

that is contracted onto a point in T.
Since the effective divisors BX and Y are ϕ-ample, the intersection

D∩BX ∩Y =D∩B

is non-empty. Hence, there exists a curve E ⊂B that is contracted by τ . Yet we showed

above that τ is finite, a contradiction.

Remark. It may seem annoying that the case of a fibration X → T with T a del Pezzo

surface of degree one requires so much additional effort. Note, however, that this situation
is very close to Example 3.2, so our arguments must be specific enough to rule out this

situation.

8. The conclusion.

Proof of Theorem 1.3. Assume that a general anticanonical divisor Y ∈ |−KX | is Q-

factorial, so we satisfy the Assumption 1.4 from the Setup 1.2. By Theorem 5.13, the

divisor MX is nef, yet this contradicts Theorem 7.1.
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