© Canadian Mathematical Society 2016

Condition C_{\wedge}^{\prime} of Operator Spaces

Yuanyi Wang

Abstract

In this paper, we study condition C_{\wedge}^{\prime}, which is a projective tensor product analogue of condition C^{\prime}. We show that the finite-dimensional OLLP operator spaces have condition C_{\wedge}^{\prime} and $M_{n}(n>2)$ does not have that property.

1 Introduction

The theory of operator spaces is very recent. An operator space is a norm closed subspace of $B(H)$, the operator algebra of all bounded linear operators on the Hilbert space H. The theory of operator spaces is a very important tool in the study of operator algebras. Since the discovery of an abstract characterization of operator spaces by Ruan [19], there have been many more applications of operator spaces to other branches in functional analysis.

In the field of operator algebras, questions revolving around the local property have been a fruitful and important area of investigation. Archbold and Batty [1] introduced conditions C and C^{\prime} for C^{*}-algebras. Local reflexivity and condition $C^{\prime \prime}$ were introduced by Effros and Haagerup [5]. Exactness was defined by Kirchberg [13]. Subsequently, he proved that this condition is equivalent to condition C^{\prime} [15]. Kirchberg also introduced the definition of LLP and LP for C^{\star}-algebra and proved a C^{\star}-algebra A has LLP if and only if $A \otimes_{\max } \mathbb{B}=A \otimes_{\min } \mathbb{B}$ [14]. With the development of the theory of operator spaces, the various versions of local properties have a similar impact on the field. Some local properties of operator spaces, such as local reflexivity, exactness, nuclear, and OLLP, were intensively studied in [$4,6-10,12,16,17$].

In this paper, we study a new local theory of operator spaces. The property is called condition C_{\wedge}^{\prime}, which is a projective tensor product analogue of condition C^{\prime}. In Section 1, we recall some notation for operator spaces. In Section 2, we give the definition of condition C_{\wedge}^{\prime}. We show that finite-dimensional OLLP operator spaces have condition C_{\wedge}^{\prime} and that the operator space $M_{n}(n>2)$ does not have condition C_{\wedge}^{\prime}.

We refer the reader to $[11,18]$ for the basics on operator spaces. Only the concepts and results that are essential in the article will be recalled in this section.

Let $B(H)$ be the space of all bounded linear operator on a Hilbert space H. For each $n \in \mathbb{N}$, there is a canonical norm $\|\cdot\|_{n}$ on $M_{n}(B(H))$ given by identifying $M_{n}(B(H))$ with $B\left(H^{n}\right)$. We call this family of norms an operator space matrix norm on $B(H)$. An operator space is a norm closed subspace of $B(H)$ equipped with the operator space matrix norm inherited from $B(H)$. The morphisms in the category of operator spaces are completely bounded linear maps. Given operator spaces V

[^0]and W, a linear map $\varphi: V \rightarrow W$ is completely bounded if the corresponding linear maps $\varphi_{n}: M_{n}(V) \rightarrow M_{n}(W)$ defined by φ assigning $\left[\varphi\left(x_{i, j}\right)\right]$ to $\varphi_{n}\left(\left[x_{i, j}\right]\right)$ are uniformly bounded; i.e., $\|\varphi\|_{c b}=\sup \left\{\left\|\varphi_{n}\right\|: n \in \mathbb{N}\right\}$ is finite. A map is completely contractive (resp. completely isometric, or completely quotient) if $\|\varphi\|_{c b} \leq 1$ (resp. for each n in \mathbb{N}, φ_{n} is an isometry or a quotient map). We let $C B(V, W)$ be the space of all completely bounded linear maps from V to W. The dual space V^{*} of V has an operator space structure induced by natural isomorphisms from $M_{n}\left(V^{*}\right)$ onto $C B\left(V, M_{n}(\mathbb{C})\right)$. Let us suppose that we are given operator spaces V and W and a linear mapping $\varphi: V \rightarrow W$. Then φ is a complete isometry if and only if $\varphi^{*}: W^{*} \rightarrow V^{*}$ is an exact complete quotient mapping. If V and W are complete, then $\varphi: V \rightarrow W$ is a complete quotient mapping if and only if φ^{*} is a complete isometry. In the latter case, $\varphi^{*}\left(W^{*}\right)$ is weak ${ }^{*}$ closed, and φ^{*} is a weak ${ }^{*}$ homeomorphism in the topologies defined by V and W, respectively.

We use the notation $V \check{\otimes} W$ and $V \widehat{\otimes} W$ for the injective and projective operator space tensor products [2,3]. The operator space tensor products share many of the properties of Banach space analogues. For example, we have the natural complete isometries $C B\left(V, W^{*}\right)=(V \widehat{\otimes} W)^{*}, C B\left(W, V^{*}\right)=(V \widehat{\otimes} W)^{*}$, and the completely isometric injection $V^{*} \check{\otimes} W \hookrightarrow C B(V, W)$.

2 Condition C_{\wedge}^{\prime} of Operator Spaces

Let V and W be operator spaces. Given a bounded linear function φ on $V \widehat{\otimes} W$ and $v_{0} \in V$, we define the bounded linear function $v_{0} \varphi$ on W by $v_{0} \varphi(w)=\varphi\left(v_{0} \otimes w\right)$ for $w \in W$. We define a linear map $\Phi_{V, W}^{R}: V \otimes W^{* *} \rightarrow(V \widehat{\otimes} W)^{* *}$ by

$$
\Phi_{V, W}^{R}\left(v \otimes w^{* *}\right)(\varphi)=\left\langle{ }_{v} \varphi, w^{* *}\right\rangle_{W^{*}, W^{* *}}
$$

for $v \in V, w^{* *} \in W^{* *}$ and $\varphi \in(V \widehat{\otimes} W)^{*}$. It is clear that $\Phi_{V, W}^{R}$ is weak ${ }^{*}$ continuous on the second component.

We denote by Φ the natural map form $V \widehat{\otimes} W \rightarrow V \check{\otimes} W$, and by Ψ the natural map from $V^{*} \widehat{\otimes} W^{*} \rightarrow(V \dot{\otimes} W)^{*}$, which are both completely contractive. Then we have the following diagram:

where $C B_{F}^{\sigma}\left(V^{*}, W^{* *}\right)$ denote the space of weak*-continuous completely bounded linear maps from V^{*} to $W^{* *}$ with finite ranks. This diagram is commutative, since
for any $v_{0}^{*} \in V^{*}, v \in V^{*}, w^{* *} \in W^{* *}, w_{0}^{*} \in W^{*}$ and $w_{\alpha} \rightarrow w^{* *}$ in the weak ${ }^{*}$-topology,

$$
\begin{aligned}
\left\langle\Psi^{*} \Phi^{* *} \Phi_{V, W}^{R}\left(v \otimes w^{* *}\right), v_{0}^{*} \otimes w_{0}^{*}\right\rangle & =\left\langle\Phi^{* *} \Phi_{V, W}^{R}\left(v \otimes w^{* *}\right), \Psi\left(v_{0}^{*} \otimes w_{0}^{*}\right)\right\rangle \\
& =\left\langle{ }_{v}\left(\Phi^{*}\left(v_{0}^{*} \otimes w_{0}^{*}\right)\right), w^{* *}\right\rangle \\
& =\lim _{\alpha \rightarrow \infty}\left\langle\Phi^{*}\left(v_{0}^{*} \otimes w_{0}^{*}\right), v \otimes w_{\alpha}\right\rangle \\
& =\lim _{\alpha \rightarrow \infty}\left\langle v_{0}^{*} \otimes w_{0}^{*}, v \otimes w_{\alpha}\right\rangle=\left\langle\left\langle v, v_{0}^{*}\right\rangle w^{* *}, w_{0}^{*}\right\rangle .
\end{aligned}
$$

Thus, the linear map $\Phi_{V, W}^{R}$ is injective, and the tensor product $V \otimes W^{* *}$ may be given the operator space structure inherited from the operator space $(V \widehat{\otimes} W)^{* *}$.

Definition 2.1 An operator space V satisfies condition C_{\wedge}^{\prime} if the linear map

$$
\Phi_{V, W}^{R}: V \widehat{\otimes} W^{* *} \longrightarrow(V \widehat{\otimes} W)^{* *}
$$

is isometric for every operator space W.
It is equivalent to suppose that $\Phi_{V, W}^{R}$ is a complete isometry, since, if the linear map $\Phi_{V, W}^{R}: V \widehat{\otimes} W^{* *} \rightarrow(V \widehat{\otimes} W)^{* *}$ is isometric for every operator space W, it is completely isometric for every operator space W, by the following isometric embedding

$$
T_{n}\left(V \widehat{\otimes} W^{* *}\right)=V \widehat{\otimes} T_{n}\left(W^{* *}\right) \hookrightarrow\left(V \widehat{\otimes} T_{n}(W)\right)^{* *}=T_{n}(V \widehat{\otimes} W)^{* *}
$$

For operator spaces V and W, we consider the following complete isometry

$$
\theta:(V \widehat{\otimes} W)^{*}=C B\left(V, W^{*}\right) \longrightarrow C B\left(W^{* *}, V^{*}\right)=\left(V \widehat{\otimes} W^{* *}\right)^{*},
$$

where $\theta(\varphi)=\varphi^{*}$. Then we have $\varphi^{*}\left(v \otimes w^{* *}\right)=\left\langle\varphi, v \otimes w^{* *}\right\rangle=\left\langle_{v} \varphi, w^{* *}\right\rangle_{W^{*}, W^{* *}}$ for any $v \in V$ and $w^{* *} \in W^{* *}$. Thus, for any $u \in V \widehat{\otimes} W^{* *}, \varphi^{*}(u)=\left\langle\Phi_{V, W}^{R}(u), \varphi\right\rangle$.

Proposition 2.2 The map $\Phi_{V, W}^{R}$ is completely contractive.
Proof Suppose $u \in M_{n}\left(V \widehat{\otimes} W^{* *}\right)$, for any $\varphi \in M_{n}\left((V \widehat{\otimes} W)^{*}\right)$, and φ is completely isometric to $\varphi^{*} \in M_{n}\left(\left(V \widehat{\otimes} W^{* *}\right)^{*}\right)$. Then

$$
\begin{aligned}
\left\|\left(\Phi_{V, W}^{R}\right)_{n}(u)\right\| & =\sup _{\|\varphi\|_{c b} \leq 1}\left\|\left\langle\left\langle\left(\Phi_{V, W}^{R}\right)_{n}(u), \varphi\right\rangle\right\rangle\right\|=\sup _{\|\varphi\|_{c b} \leq 1}\left\|\varphi_{n}^{*}(u)\right\| \\
& \leq \sup _{\left\|\varphi^{*}\right\|_{c b} \leq 1}\left\|\varphi_{n}^{*}(u)\right\|=\|u\| .
\end{aligned}
$$

Thus, $\Phi_{V, W}^{R}$ is a completely contractive map.
For giving examples of operator spaces that have condition C_{\wedge}^{\prime}, we recall an operator space V has OLLP if given any unital C^{\star}-algebra A with ideal $J \subseteq A$ and a complete contraction $\varphi: V \rightarrow A / J$, for every finite-dimensional subspace L of V, there exists a complete contraction $\widetilde{\varphi}: L \rightarrow A$ such that $\pi \circ \widetilde{\varphi}=\left.\varphi\right|_{L}$, where $\pi: A \rightarrow A / J$ is the canonical quotient mapping.

Proposition 2.3 If a finite-dimensional operator space has OLLP, then it has condition C_{\wedge}^{\prime}.

Proof Suppose L is a finite-dimensional operator space with OLLP; then for any $\varepsilon>0$, there exists a completely bounded isomorphism $r: L \rightarrow Q$, where Q^{*} is a operator subspace of M_{n}, such that $\|r\|_{c b}\left\|r^{-1}\right\|_{c b}<1+\varepsilon$ (see [16, theorem 2.5]). We have a commutative diagram

The columns are complete quotient mappings, and the top row is a completely isometric isomorphism. Thus, $Q \widehat{\otimes} W^{* *}=(Q \widehat{\otimes} W)^{* *}$.

We have a diagram

The diagram is commutative, since for any $l \in L, w^{* *} \in W^{* *}, \varphi \in(L \widehat{\otimes} W)^{*}$ and any $w_{\alpha} \in W$ such that $w_{\alpha} \rightarrow w^{* *}$ in the weak ${ }^{*}$ topology,

$$
\begin{aligned}
& \left\langle\left(r^{-1} \otimes \mathrm{id}\right)^{* *} \circ \Phi_{Q, W}^{R} \circ(r \otimes \mathrm{id})\left(l \otimes w^{* *}\right), \varphi\right\rangle \\
& \quad=\left\langle\Phi_{Q, W}^{R}\left(r(l) \otimes w^{* *}\right),\left(r^{-1} \otimes \mathrm{id}\right)^{*}(\varphi)\right\rangle \\
& \quad=\left\langle_{r(l)}\left(\left(r^{-1} \otimes \mathrm{id}^{*} \varphi\right), w^{* *}\right\rangle=\lim _{\alpha}\left\langle_{r(l)}\left(\left(r^{-1} \otimes \mathrm{id}\right)^{*} \varphi\right), w_{\alpha}\right\rangle\right. \\
& \quad=\lim _{\alpha}\left\langle\left(r^{-1} \otimes \mathrm{id}\right)^{*} \varphi, r(l) \otimes w_{\alpha}\right\rangle=\lim _{\alpha}\left\langle\varphi, l \otimes w_{\alpha}\right\rangle \\
& \quad=\left\langle{ }_{l} \varphi, w^{* *}\right\rangle=\left\langle\Phi_{L, W}^{R}\left(l \otimes w^{* *}\right), \varphi\right\rangle .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|\left(\Phi_{L, W}^{R}\right)^{-1}\right\|_{c b} & =\left\|\left(\left(r^{-1} \otimes \mathrm{id}\right)^{* *} \circ \Phi_{Q, W}^{R} \circ(r \otimes \mathrm{id})\right)^{-1}\right\|_{c b} \\
& =\left\|\left(r^{-1} \otimes \mathrm{id}\right) \circ\left(\Phi_{Q, W}^{R}\right)^{-1} \circ(r \otimes \mathrm{id})^{* *}\right\|_{c b} \\
& \leq\left\|r^{-1}\right\|_{c b}\left\|\left(\Phi_{Q, W}^{R}\right)^{-1}\right\|_{c b}\|r\|_{c b}<1+\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, $\left(\Phi_{L, W}^{R}\right)^{-1}$ is a completely contractive. On the other hand, since $\Phi_{L, W}^{R}$ is completely contractive, $\left(\Phi_{L, W}^{R}\right)^{-1}$ is a norm-increasing linear mapping. Thus, $\left(\Phi_{L, W}^{R}\right)^{-1}$ is completely isometric; i.e., L has condition C_{\wedge}^{\prime}.

For constructing examples of operator spaces that do not have condition C_{\wedge}^{\prime}, we need a lemma first.

Lemma 2.4 ([11, corollary 14.5.2]) There is a sequence offinite groups G_{k} and homomorphisms $\theta_{k}: F_{n} \rightarrow G_{k}$ such that $\operatorname{ker} \theta_{1} \supseteq \operatorname{ker} \theta_{2} \supseteq \cdots$ and $\cap \operatorname{ker} \theta_{k}=\{e\}$.

We let λ_{k} be the regular representation of G_{k} on the Hilbert space $\mathbb{C}^{d(k)}=\ell_{2}\left(G_{k}\right)$, where $d(k)$ is the cardinality of G_{k}. We let

$$
\pi_{k}=\lambda_{k} \circ \theta_{k}: F_{n} \longrightarrow M_{d(k)}
$$

be the corresponding unitary representations of F_{n}, and we let I stand for the sequence $(d(k))$. These determine a unitary representation

$$
\pi: F_{n} \longrightarrow \mathcal{M}_{I}=\prod_{k \in \mathbb{N}} M_{d(k)} \subseteq B\left(\oplus \mathbb{C}^{d(k)}\right)
$$

where $\pi(g)=\left(\pi_{k}(g)\right)$. We let $\beta \mathbb{N}$ be the spectrum of the C^{\star}-algebra $\ell_{\infty}(\mathbb{N})$, and we fix an element $\omega \in \beta \mathbb{N} \backslash \mathbb{N}$, which corresponds to a free ultrafilter on \mathbb{N}. We can regard the elements of $\ell_{\infty}(\mathbb{N})$ as continuous functions on $\beta \mathbb{N}$, and given a bounded sequence $\alpha=\left(\alpha_{k}\right) \in \ell_{\infty}(\mathbb{N})$, we define $\lim _{k \rightarrow \omega} \alpha_{k}=\alpha(\omega)$. We let τ_{m} be the normalized trace on M_{m}. Owing to the fact that $\tau_{d(k)}$ is a state on $M_{d(k)}$,

$$
\left|\tau_{d(k)}\left(\alpha_{k}\right)\right| \leq\left\|\alpha_{k}\right\|
$$

We define a trace τ_{0} on \mathcal{M}_{I} by letting $\tau_{0}(\alpha)=\lim _{k \rightarrow \omega} \tau_{d(k)}\left(\alpha_{k}\right)$. The set

$$
\mathcal{J}_{\omega}=\left\{\alpha \in \mathcal{M}_{I}: \tau_{0}\left(\alpha^{*} \alpha\right)=0\right\} .
$$

is a closed two-sided ideal in \mathcal{M}_{I}, and we let π denote the quotient mapping of $\mathcal{M}_{\omega}=$ $\mathcal{M}_{I} / \mathcal{J}_{\omega}$. We can prove that the C^{\star}-algebra \mathcal{M}_{ω} is a Π_{1} factor [11].

Recall an operator space W is \mathcal{T}-locally reflexive if for any $L \subseteq T_{n}, n \in \mathbb{N}$, every complete contraction $\varphi: L^{*} \rightarrow W^{* *}$ is the point weak* limit of a net of linear mappings $\varphi_{\alpha}: L^{*} \rightarrow W$ with $\left\|\varphi_{\alpha}\right\|_{c b} \leq 1$. The following two lemmas are only small modifications of [4, theorem 5.2 and corollary 5.4].

Lemma 2.5 Suppose that W is an operator space. Then the following are equivalent:
(i) W is \mathfrak{T}-locally reflexive.
(ii) For any $L \subseteq T_{n}, n \in \mathbb{N}$, we have the isometry $L^{*} \widehat{\otimes} W^{*}=(L \dot{\otimes} W)^{*}$.
(ii)' For any $L \subseteq T_{n}, n>2$, we have the isometry $L^{*} \widehat{\otimes} W^{*}=(L \dot{\otimes} W)^{*}$.
(iii) For any $n \in \mathbb{N}$, we have the isometry $M_{n} \widehat{\otimes} W^{*}=\left(T_{n} \dot{\otimes} W\right)^{*}$.
(iii)' For any $n>2$, we have the isometry $M_{n} \widehat{\otimes} W^{*}=\left(T_{n} \check{\otimes} W\right)^{*}$.

Proof (i) \Leftrightarrow (ii) \Leftrightarrow (iii) have been proved in [4, theorem 5.2]. We could also prove (ii) ${ }^{\prime} \Leftrightarrow(\text { iii })^{\prime}$ by mimicking the proof of (ii) \Leftrightarrow (iii) in [4, theorem 5.2].
(ii) $\Rightarrow(\text { (ii })^{\prime}$: This is obvious.
$(\text { (ii) })^{\prime} \Rightarrow$ (ii): For any subspace $L \subseteq T_{2}$, the mapping $L \hookrightarrow T_{n}(n \geq 3)$ is a completely isometric embedding. So $T_{n}^{*} \rightarrow L^{*}(n \geq 3)$ is a complete quotient mapping. We have the commutative diagram

The top row is a completely isometric isomorphism, and the columns are complete quotient mappings. We have $L^{*} \widehat{\otimes} W^{*}=(L \dot{\otimes} W)^{*}$.

Lemma 2.6 For any $n>2$, we have that $\left(M_{n} \widehat{\otimes} W\right)^{* *}=M_{n} \widehat{\otimes} W^{* *} \Leftrightarrow W^{*}$ is \mathcal{T} locally reflexive.

Proof Sufficiency: This is from [4, corollary 5.4].
Necessity: Since $\left(M_{n} \widehat{\otimes} W\right)^{* *}=\left(T_{n} \stackrel{\otimes}{\otimes} W^{*}\right)^{*}$, we have $M_{n} \widehat{\otimes} W^{* *}=\left(T_{n} \dot{\otimes} W^{*}\right)^{*}$ for $n>2$. By the above lemma, we get that W^{*} is \mathcal{T}-locally reflexive.

Theorem 2.7 For any $n>2, M_{n}$ does not have condition C_{\wedge}^{\prime}.
Proof Assume that $M_{n}(n>2)$ has condition C_{\wedge}^{\prime}, i.e., $M_{n} \widehat{\otimes} W^{* *}=\left(M_{n} \widehat{\otimes} W\right)^{* *}$ for any operator space W and $n>2$. We get that W^{*} is \mathcal{T}-locally reflexive. From Lemma 2.5 , for $n \in \mathbb{N}$

$$
\left(T_{n} \check{\otimes} W^{*}\right)^{* *}=\left(T_{n}^{*} \widehat{\otimes} W^{* *}\right)^{*}=C B\left(T_{n}^{*}, W^{* * *}\right)=T_{n} \check{\otimes} W^{* * *} .
$$

Let $W=\mathcal{M}_{I *}$; we have $\left(T_{n} \dot{\otimes} \mathcal{M}_{I}\right)^{* *}=T_{n} \dot{\otimes} \mathcal{M}_{I}^{* *}$. Since MAX ℓ_{1}^{n} is the diagonal operator subspace of T_{n}, we have the commutative diagram

The columns are completely isometric embeddings, and the bottom row is a completely isometric isomorphism. Thus MAX $\ell_{1}^{n} \ddot{\otimes} \mathcal{M}_{I}^{* *}=\left(\operatorname{MAX}_{1}^{n} \ddot{\otimes} \mathcal{M}_{I}\right)^{* *}$. Let π be the quotient mapping form $\mathcal{M}_{I} \rightarrow \mathcal{M}_{\omega}$. The weak ${ }^{\star}$ closure $\overline{\mathcal{J}}_{\omega}$ of \mathcal{J}_{ω} is a closed twosided ideal in the von Neumann algebra $\mathcal{M}_{I}^{* *}$, and thus it has the form $\mathcal{M}_{I}^{* *} e$ for some central projection e in $\mathcal{M}_{I}^{* *}$. Since

$$
\mathcal{M}_{\omega}^{* *}=\left(\mathcal{M}_{I} / \mathcal{J}_{\omega}\right)^{* *} \cong \mathcal{M}_{I}^{* *} / \overline{\mathcal{J}}_{\omega}=\mathcal{M}_{I}^{* *}(1-e),
$$

the complete quotient mapping $\pi^{* *}: \mathcal{M}_{I}^{* *} \rightarrow \mathcal{M}_{\omega}^{* *}$ has a completely contractive lifting given by the canonical inclusion $\mathcal{M}_{I}^{* *}(1-e) \rightarrow \mathcal{M}_{I}^{* *}$. It follows from [11, proposition 8.1.5] that $\operatorname{id} \otimes \pi^{* *}:$ MAX $_{1}^{n} \dot{\otimes} \mathcal{M}_{I}^{* *} \rightarrow$ MAX $_{1}^{n} \dot{\otimes} \mathcal{M}_{\omega}^{* *}$ is a complete quotient mapping. Since MAX ℓ_{1}^{n} is finite-dimensional, we have $\operatorname{ker}(\mathrm{id} \otimes \pi)=\operatorname{MAX} \ell_{1}^{n} \dot{\otimes} \mathcal{J}_{\omega}$ and $\operatorname{ker}\left(\mathrm{id} \otimes \pi^{* *}\right)=\operatorname{MAX} \ell_{1}^{n} \check{\otimes}_{\overline{\mathcal{J}}}^{\omega}$. Therefore, we obtain a complete isometry

$$
\left(\operatorname{MAX} \ell_{1}^{n} \ddot{\otimes} \mathcal{M}_{I}^{* *}\right) /\left(\operatorname{MAX} \ell_{1}^{n} \check{\otimes} \overline{\mathcal{J}}_{\omega}\right) \cong \operatorname{MAX} \ell_{1}^{n} \ddot{\otimes} \mathcal{M}_{\omega}^{* *}
$$

We have the complete isometry $\operatorname{MAX} \ell_{1}^{n} \check{\otimes} \mathcal{M}_{I}^{* *}=\left(\operatorname{MAX} \ell_{1}^{n} \check{\otimes} \mathcal{M}_{I}\right)^{* *}$ and thus the complete isometries

$$
\begin{aligned}
& \left(\left(\operatorname{MAX} \ell_{1}^{n} \check{\otimes} \mathcal{M}_{I}\right) /\left(\operatorname{MAX}_{1}^{n} \dot{\otimes} \mathcal{J}_{\omega}\right)\right)^{* *} \\
& \quad \cong\left(\left(\operatorname{MAX} \ell_{1}^{n} \dot{\otimes} \mathcal{J}_{\omega}\right)^{\perp}\right)^{*} \cong\left(\operatorname{MAX} \ell_{1}^{n} \check{\otimes} \mathcal{M}_{I}\right)^{* *} /\left(\operatorname{MAX} \ell_{1}^{n} \check{\otimes} \mathcal{J}_{\omega}\right)^{\perp \perp} \\
& \left.\quad \cong\left(\operatorname{MAX} \ell_{1}^{n} \check{\otimes} \mathcal{M}_{I}\right)^{* *} / \overline{\left(\operatorname{MAX} \ell_{1}^{n} \dot{\otimes} \mathcal{J}_{\omega}\right.}\right) \cong\left(\operatorname{MAX}_{1}^{n} \dot{\otimes} \mathcal{M}_{I}^{* *}\right) /\left(\operatorname{MAX} \ell_{1}^{n} \dot{\otimes} \overline{\mathcal{J}}_{\omega}\right) .
\end{aligned}
$$

It follows that the columns in the following diagram are completely isometric injections, and the bottom row is a completely isometric isomorphism:

and thus the top row is a complete isometry. So id $\otimes \pi: \operatorname{MAX} \ell_{1}^{n} \dot{\otimes} \mathcal{M}_{I} \rightarrow \operatorname{MAX} \ell_{1}^{n} \dot{\otimes} \mathcal{M}_{\omega}$ is a complete quotient mapping. We have the commutative diagram

where the columns are complete isometries and the top row is a complete quotient mapping. It follows that the bottom row is a complete quotient mapping, and thus given $\varepsilon>0$, any $\varphi \in C B\left(\operatorname{MIN} \ell_{\infty}^{n}, \mathcal{M}_{\omega}\right)$ has a lifting ψ with $\|\psi\|_{c b}<\|\varphi\|_{c b}+\varepsilon$, which is impossible for $n>2$ see [11, lemma 14.5.3].

References

[1] R. J. Archbold and C. J. Batty, C*-tensor norms and slice maps. J. London Math. Soc. 22(1980), no. 1, 127-138. http://dx.doi.org/10.1112/jlms/s2-22.1.127
[2] D. P. Blecher, Tensor products of operator spaces. II. Canad. J. Math. 44(1992), no. 1, 75-90. http://dx.doi.org/10.4153/CJM-1992-004-5
[3] D. P. Blecher and V. I. Paulsen, Tensor products of operator spaces. J. Funct. Anal. 99(1991), 262-292. http://dx.doi.org/10.1016/0022-1236(91)90042-4
[4] Z. Dong, The OLLP and T-local reflexivity of operator spaces. Illinois J. Math. 51(2006), 1103-1122.
[5] E. G. Effros and U. Haagerup, Lifting problems and local reflexivity for C^{\star}-algebras. Duke Math. J. 52(1985), 103-128. http://dx.doi.org/10.1215/S0012-7094-85-05207-X
[6] E. G. Effros, M. Junge, and Z.-J. Ruan, Integral mapping and the principle of local reflexive for non-commutative L^{1} spaces. Ann. of Math. 151(2000), no. 1, 59-92. http://dx.doi.org/10.2307/121112
[7] E. G. Effros and Z.-J. Ruan, On approximation properties for operator spaces. Internat. J. Math. 1(1990), 163-181. http://dx.doi.org/10.1142/S0129167X90000113
[8] , Mapping spaces and liftings for operator spaces. Proc. London Math. Soc. 69(1994), 171-197. http://dx.doi.org/10.1112/plms/s3-69.1.171
[9] ——The Grothedieck-Pietsch and Dvoretzky-Rogers theory for operator spaces. J. Funct. Anal. 122(1994), 428-450. http://dx.doi.org/10.1006/jfan.1994.1075
[10] \quad, On the analogues of integral mappings and local reflexivity for operator spaces. Indiana Univ. Math. J. 46(1997), 1289-1310. http://dx.doi.org/10.1512/iumj.1997.46.1429
[11] Operator spaces. London Mathematical Society Monographs. New Series, 23, The Clarendon Press, Oxford University Press, New York, 2000.
[12] K. H. Han, An operator space approach to condition C. J. Math. Anal. Appl. 336(2007), 569-576. http://dx.doi.org/10.1016/j.jmaa.2007.02.074
[13] E. Kirchberg, The Fubini theory for exact C^{*}-algebras. J. Operator Theory 10(1983), 3-8.
[14] , On non-semisplit extensions, tensor products and exactness of group C^{*}-algebras. Invent. Math. 112(1993), 449-489. http://dx.doi.org/10.1007/BF01232444
[15] , On subalgebras of the CAR-algebra. J. Funct. Anal. 129(1995), 35-63. http://dx.doi.org/10.1006/jfan.1995.1041
[16] N. Ozawa, On the lifting property for universal C^{*}-algebras of operator spaces. J. Operator Theory 46(2001), no. 3, 579-591.
[17] G. Pisier, Exact operator spaces. Recent advances in operator algebras (Orléans, 1992). Astérisque 233(1995), 159-186.
[18] _ Introduction to operator space theory. London Mathematical Society Lecture Note Series, 294, Cambridge University Press, Cambridge, 2003. http://dx.doi.org/10.1017/CBO9781107360235
[19] Z.-J. Ruan, Subspaces of C^{\star}-algebras. J. Funct. Anal. 76(1988), 217-230. http://dx.doi.org/10.1016/0022-1236(88)90057-2

School of Information Engineering, College of Science and Technology, Ningbo University, Ningbo, China e-mail: wngyny@163.com

[^0]: Received by the editors November 19, 2015; revised April 5, 2016.
 Published electronically November 2, 2016.
 AMS subject classification: 46L07.
 Keywords: operator space, local theory, tensor product.

