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Abstract. Continuous and precise space-based photometry has made it possible to measure the
orbital frequency modulation of pulsating stars in binary systems with extremely high precision
over long time spans. We present the phase modulation (PM) method for finding binaries among
pulsating stars. We demonstrate how the orbital elements of a pulsating binary star can be ob-
tained analytically from photometry alone, without spectroscopic radial velocity measurement.
Frequency modulation (FM) caused by binary orbital motion also manifests itself in the Fourier
transform, as a multiplet with equal spacing of the orbital frequency. The orbital parameters
can also be extracted by analysing the amplitudes and phases of the peaks in these multiplets.
We derive analytically the theoretical relations between the multiplet properties and the orbital
parameters, and present a method for determining these parameters, including the eccentric-
ity and the argument of periapsis. This, too, is achievable with the photometry alone, without
spectroscopic radial velocity measurements. We apply these two methods to Kepler mission data
and demonstrate that the results are in good agreement with each other. These methods are
used to search for invisible binary companions, including planets and invisible massive objects
such as neutron stars and stellar-mass black holes.
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1. Introduction
Binary orbital motion causes a periodic variation in the path length travelled by light

emitted from a star and arriving at Earth. Hence, if the star is pulsating, the observed
phase of the pulsation varies over the orbit (see Sect. 2). Conversely, once we have ob-
served such phase variation, or multiplets in the frequency spectrum (see Sect. 4), we can
extract information about the binary orbit from photometry alone. This problem was first
discussed by Woltjer (1922) and later by Irwin (1952). However, the required photometric
and timing precision was not reachable at that time, hence application of their methods
was not practical. In contrast, recent space-based photometry has made it possible to
measure the orbital phase variation of pulsating stars in binary systems with extremely
high precision over long time spans. This variation also manifests itself in the Fourier
transform, as a multiplet with spacing equal to the orbital frequency. We have developed
two complementary methods for this problem: one, called the FM method, dealing with
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modulation in the frequency domain (Shibahashi & Kurtz 2012†, Shibahashi, Kurtz &
Murphy 2015; see also Koen 2014), and the other, called the PM method, analyzing the
phase modulation in the time domain (Murphy et al. 2014, Murphy & Shibahashi 2015;
see also Balona 2014). In this paper, we outline how the orbital elements of a pulsating
binary star can be obtained analytically. These methods are used to search for invisible
binary companions in Kepler data, including planets and invisible massive objects such
as neutron stars and stellar-mass black holes.

2. The light travel time effect
Let us consider a star sinusoidally pulsating with a single angular frequency ω0 in a

binary. The observed luminosity variation, whose amplitude is assumed to be unity, at
time t is then given by

ΔL(t) = cos
{

ω0

[
t − 1

c

∫ t

0
vrad(t′) dt′

]}
, (2.1)

where c is the speed of the light and vrad(t) denotes the radial velocity, due to the orbital
motion, of the pulsating star at the time t, where the epoch is the time at which the star
passes the nodal point directed towards us. The second term in the square bracket on
the right-hand side, which is hereafter denoted as τ , is the the time delay caused by the
light travel time effect. With knowledge of celestial mechanics, τ is expressed as a series
of sine functions with the orbital angular frequency Ω (see Shibahashi, Kurtz & Murphy
(2015) for more details):

ΔL(t) = cos

[
(ω0t + φ) + α

∞∑
n=1

ξn sin(nΩt + ϑn )

]
, (2.2)

where α := a1ω0 sin i/c is the ratio between the light travel time across the projected
semi-major axis, a1 sin i/c, and the pulsation period of the mode in consideration, ξn

and ϑn are functions of the eccentricity, e, the angle between the nodal point and the
periapsis, �, and the time of periapsis passage, tp .

The larger the orbit, the larger the light travel time effect. Thus, the combination of
high pulsation frequency and long orbital period is favourable to large values of α.

3. PM method
In the PM method, first of all, the pulsation frequencies are measured in the Fourier

transform. Then the light curve is divided into short segments and, with the frequencies
fixed, the pulsation phase in each segment is measured by a least-squares method. This
provides us with the time delays (TDs) as a function of time (see the upper panel of
Fig. 1). The orbital angular frequency Ω is obtained from the Fourier transform of the
time delays (the lower panel of Fig. 1). The presence of harmonics indicates that the orbit
deviates from a circle. The amplitude ratio between the first two components provides us
with a good initial guess for e. The epochs at which the TD curve reaches its maxima and
minima correspond to the orbital phase at which the star passes the farthest point and the
nearest point from us, respectively. Hence the eccentric anomalies of these two points are
different from each other by π radians. This constraint allows us to determine the time of
periapsis passage, tp . Once the orbital phase of periapsis passage is determined, the true
anomalies at the nearest point and at the farthest point, at which vrad should be zero, are

† Their table 4 is corrected in Shibahashi & Kurtz (2013).
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Figure 1. Upper panel: An example of a TD curve (KIC 9651065) using nine different pulsation
modes, including one in the super-Nyquist frequency range (cf. Murphy, Shibahashi & Kurtz
2013). The weighted average is shown as filled black squares. Lower panel: Fourier transform
of the TD curve shown in the left panel. The peak frequency provides us the orbital frequency,
and the amplitude ratio between the two highest peaks gives the eccentricity. Both panels were
reproduced from Murphy & Shibahashi (2015).

then determined. Whether vrad = 0 is fulfilled for the given values of true anomalies and
eccentricity is dependent on the value of periapsis �. Then, the requirement of vrad = 0
at the extrema of the TD curve gives the value of �. Once e and � are determined, the
projected semi-major axis, a1 sin i/c, is determined with the help of the difference between
the extrema in τ , τmax − τmin , by a1 sin i/c = (τmax − τmin)

(
1 − e2 cos 2�

)−1/2
/2. For

more details with more graphical display, see Murphy & Shibahashi (2015).
With the initial guesses for the orbital parameters thus obtained, we get a reasonable

TD curve that fits the observations. We may search for the best-fitting values of the
orbital parameters by minimizing the sum of the squares of the residuals, χ2-fitting, or
by Markov chain Monte Carlo methods (the left panel of Fig. 2). The mass function
is eventually derived from Ω and a1 sin i/c. The radial velocity (RV) is obtained by
vrad = cdτ/dt, but it is provided only as a visualization (the right panel of Fig. 2): the
computation of radial velocities is not a necessary step in solving the orbit.
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Figure 2. Left panel: The best-fitting TD curve for KIC 9651065. The periapsis passage was
chosen as the orbital phase of zero. Reproduced from Murphy & Shibahashi (2015). Right panel:
The photometrically obtained RV of KIC 9651065. This is provided only as a visualization, and
is not required for the derivation of the orbital parameters.

Figure 3. (a) The amplitude spectrum for KIC 8264492, around the highest peak. Sidelobes
are visible without pre-whitening the central peak, but in panel (b) the same region is shown
with the central peak pre-whitened (at the dashed red line). Arrows show four pairs of sidelobes.
Reproduced from Shibahashi, Kurtz & Murphy (2015).

4. FM method
The Fourier transform of the luminosity variation given in equation (2.2) leads a fre-

quency multiplet around the intrinsic frequency ω0 in the frequency spectrum, and each
component of the multiplet is separated from its neighbouring components by the orbital
frequency Ω (see Fig. 3):

ΔL(t) = �
{
A0eiω0 t +

∞∑
m=1

(
A+m ei(ω0 +mΩ)t + A−m ei(ω0 −mΩ)t

)}
, (4.1)

where A0 and A±m are the complex amplitudes. For α < 1, the eccentricity e is esti-
mated from the amplitude ratio between the second sidelobes (A±2) and the first sidelobes
(A±1). On the other hand, the ratio between the first sidelobes and the central component
gives αξ1 . The phase difference between the average of the first sidelobes, (φ+1 +φ−1)/2,
and the central component, φ0 , is dependent on the angle between the nodal point and
the periapsis, �, and αξ2 . The same is true for the relative difference of the amplitude
of the first sidelobes, (A+1 −A−1)/(A+1 +A−1), and their αξ2-dependence is in common.
So, the value of � can be extracted from the first sidelobes and the central component.
Once the values of e and � are obtained, we estimate ξ1(e,�). The value of α is ob-
tained by dividing αξ1 by ξ1 , and then the projected semi-major axis is derived by
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Figure 4. Left panel: The RV curve, derived from the Kepler photometric data with the FM
method, of KIC 8264492. The periapsis passage was chosen as the orbital phase of zero. Right
panel: The TD curve of KIC 8264492, derived with the FM method. It is in good agreement
with TDs derived by the PM method. Taken from Shibahashi, Kurtz & Murphy (2015).

a1 sin i/c = α/ω0 . We may iterate the above-mentioned process. The mass function is
eventually derived from the parameters thus obtained. For more details with more graph-
ical display, see Shibahashi, Kurtz & Murphy (2015).

The RV curve is derived from the orbital parameters thus obtained (the left panel of
Fig. 4). The TD is also derived with the FM method. The right panel of Fig. 4 shows that
the TD thus obtained is in good agreement with the observed TDs.

We have also demonstrated the validity of the FM method by showing the consistent
results obtained from it when compared to a traditional eclipsing binary light curve
analysis (Kurtz et al. 2015).

5. Discussion
Historically, detection of an invisible companion was first successfully done by astrom-

etry (Bessel 1844), and then by spectroscopy (Vogel 1890, Pickering 1890). Spectroscopic
observations of the Doppler shift of spectral lines have been widely used for exoplanet
hunting. A promising application of our photometric methods is in the search for exo-
planets or brown dwarfs orbiting pulsating upper main-sequence stars. It is expected,
from our simulation, that companion stars in the mid-to-low mass range of brown dwarfs
are detectable in the case of 2M� δ Sct stars. Another application is at the opposite
extreme, in the search for invisible massive companions in binary systems. We know of
binary systems composed of a neutron star or a stellar-mass black hole and either an
early-type massive star, or a cool star. Hence it seems natural to expect a binary sys-
tem of a neutron star or a stellar-mass black hole and an A-type δ Sct star. The present
methods provide a unique, promising way of finding such exotic systems.
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