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Abstract In this paper we study a non-standard eigenvalue problem which arises in the context of
a thermal wave propagation problem, and some generalizations thereof. The eigenvalue distribution is
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1. Introduction

There is a variety of industrial processes where a fuel, typically propane or butane, is
burnt with the help of a catalyst. This usually results in a lower reaction temperature
than is normal and will therefore produce less pollution (see [2,3], in which the modelling
of the above processes is discussed in detail). If this takes place in a tube, with the catalyst
coating the inner surface of the tube, then the governing equations for the gas flow and
temperature (θ) can, in certain physical limits, be combined and cast into the form,

[c + 2(1 − x2)]
∂θ

∂ξ
=

1
x

∂

∂x

(
x

∂θ

∂x

)
+

1
q2

∂2θ

∂ξ2

for 0 < x < 1, −∞ < ξ < ∞. The partial differentiation equation in which c and q are
positive physical constants and x and ξ are coordinates along the radius and axis of the
tube respectively, needs to be solved subject to the boundary conditions:

∂θ

∂x
= 0 on x = 0, −∞ < ξ < ∞;

∂θ

∂x
= 0 on x = 1, −∞ < ξ < 0;

∂θ

∂x
= µ(1 − θ) on x = 1, 0 < ξ < ∞;

θ → 0 as ξ → −∞, θ → 1 as ξ → +∞ for all 0 � x � 1.
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The solution to this linear elliptic boundary value problem is complicated by the split
boundary conditions on x = 1 and the variable coefficient in the θξ term and the use of a
Wiener–Hopf technique is hampered by this complication. If an eigenfunction expansion
involving terms of the form φ(x, z) = eλξψ(x) is attempted in the domain ξ < 0, then
one is faced with attempting to solve

1
x

d
dx

(
x

dψ

dx

)
+

[
λ2

q2 − λ(c + 2(1 − x2))
]
ψ = 0, 0 < x < 1,

subject to ψx(0) = ψx(1) = 0.
This eigenvalue problem, which is the subject of this paper, is linear in the function ψ

but nonlinear in the eigenvalue parameter λ and therefore is of a non-standard form and
has some interesting and unusual properties. These are investigated in both a rigorous
analytic and asymptotic manner in the first part of this paper including §§ 2 and 3.
The second, rather shorter, part of the paper describes an efficient numerical method to
construct the eigenvalues and eigenfunctions and confirms the asymptotic results, which
are presented in § 4.

2. The eigenvalue problem

We now examine the eigenvalue problem,

[xψ′]′ +
[
λ2

q2 − λG(x)
]
xψ = 0, x ∈ (0, 1), (2.1)

ψ(x), ψ′(x) bounded as x → 0, (2.2)

ψ′(1) = 0, (2.3)

with λ being the eigenvalue parameter. Here q > 0 is a constant, and G : [0, 1] → R is
given by

G(x) = 2(1 − x2) + c ∀x ∈ [0, 1], (2.4)

with the constant c > 0. We observe that

G(x) > 0 ∀x ∈ [0, 1]. (2.5)

We say that λ = λ∗ ∈ C is an eigenvalue of (2.1)–(2.3) (which we henceforth refer to
as (E)) if there exists a non-trivial function ψ = ψ∗ : [0, 1] → C, with ψ∗ ∈ C[0, 1] ∩
C2(0, 1) ∩ C1(0, 1] such that ψ = ψ∗ solves (E) when λ = λ∗. We now examine the
structure of the set of eigenvalues to (E). We begin with the following proposition.

Proposition 2.1. The eigenvalues of (E) are all real.

Proof. Let λ∗ ∈ C be an eigenvalue of (E) with eigenfunction, ψ∗ : [0, 1] → C. Then
ψ∗(x) �≡ 0 on [0, 1]. We normalize ψ∗ so that

∫ 1

0
xψ∗(x)ψ̄∗(x) dx = 1. (2.6)
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Now from Equation (2.1) we obtain

[xψ∗′ψ̄∗]10 −
∫ 1

0
xψ∗′(ψ̄∗)′ dx +

λ∗2

q2

∫ 1

0
xψ∗ψ̄∗ dx − λ∗

∫ 1

0
xG(x)ψ∗ψ̄∗ dx = 0. (2.7)

However, (ψ̄∗)′ = (ψ∗′), and so, using conditions (2.2), (2.3) and (2.6), we find that λ∗

must be a root of the quadratic equation

Λ2 + bΛ + c = 0, (2.8)

where

b = −q2
∫ 1

0
xG(x)|ψ∗(x)|2 dx < 0 and c = −q2

∫ 1

0
x|ψ∗(x)′|2 dx < 0 (2.9)

Now using (2.9) we have

b2 − 4c = q4
{ ∫ 1

0
xG(x)|ψ∗(x)|2 dx

}2

+ 4q2
∫ 1

0
x|ψ∗(x)′|2 dx > 0,

and so any root Λ ∈ C of (2.8) must be real, and hence λ∗ ∈ R, as required. �

Thus, we may now restrict attention to (E) with λ ∈ R. To begin with, we consider
the modified problem:

[xφ′]′ + [γ − λG(x)]xφ = 0, x ∈ (0, 1), (2.10)

φ(x), φ′(x) bounded as x → 0, (2.11)

φ′(1) = 0, (2.12)

which we will refer to as P[λ]. Here, γ ∈ C, λ ∈ R, and for each fixed λ ∈ R, we will
regard P[λ] as an eigenvalue problem with eigenvalue parameter γ ∈ C. An examination
of P[λ] shows that for each fixed λ ∈ R, then P[λ] is a singular Sturm–Louiville eigenvalue
problem, with eigenvalue parameter γ ∈ C. In particular, for any γ ∈ C, let φ+(x) and
φ−(x) be two linearly independent solutions of Equation (2.10) on [0, 1]. Then φ+(x) may
be chosen so that it is analytic at x = 0, while φ−(x) is singular at x = 0. Specifically,
φ+(x) may be chosen so that

φ+(x) = 1 +
1
4

[
λ(2 − c) − λ2

q

]
x2 + O(x3) as x → 0+,

while φ−(x) has
φ−(x) = log x + O(x2 log x) as x → 0+.

The principle solution of Equation (2.10) is thus φ+(x), and it is readily verified that the
singular Sturm–Louiville problem P[λ] is in the limit circle non-oscillatory class. Thus,
the classical Sturm–Louiville theory (see, for example, [1, Chapter 8]) applies to P[λ] for
each fixed λ ∈ R, which establishes the following statements for P[λ].
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(i) All of the eigenvalues of P[λ] are real, and form a countably infinite set, say,
γ0(λ), γ1(λ), . . . , with

−∞ < γ0(λ) < γ1(λ) < γ2(λ) < · · ·

and
γn(λ) → ∞ as n → ∞.

(ii) Each eigenvalue γ = γn(λ) has a one-dimensional eigenspace with normalized eigen-
function φn : [0, 1] → R, such that

∫ 1

0
xφn(x, λ)2 dx = 1.

(iii) Distinct eigenvalues γ = γn(λ) and γ = γm(λ) have orthogonal eigenfunctions, that
is, for n �= m, ∫ 1

0
xφn(x, λ)φm(x, λ) dx = 0.

Now, for each fixed n = 0, 1, 2, . . . , we may regard γ = γn(λ) as a function of λ ∈ R, and
it follows from the analytic dependence of Equation (2.10) on λ and γ that γn : R → R

is continuous and has continuous derivative, that is γn ∈ C1(R). Moreover, via (i),
the curves γ = γn(λ) are non-intersecting in the (λ, γ)-plane. In addition, it is also
straightforward to establish, via Froebenius theory, that for each n = 0, 1, 2, . . . , then
φn(x, λ) is such that φn ∈ C3([0, 1] × R), and, moreover,

φnx(0, λ) = 0 ∀λ ∈ R. (2.13)

Now, for each fixed n = 0, 1, 2, . . . , we examine the properties of the corresponding
function γ = γn(λ) in more detail. For γ = γn(λ), the corresponding eigenfunction
φ = φn(x, λ) then satisfies

[xφnx]x + [γn(λ) − λG(x)]xφn = 0, x ∈ (0, 1), (2.14)

φnx(0, λ) = φnx(1, λ) = 0. (2.15)

Since φn ∈ C3([0, 1] × R) and γn ∈ C1[R], we can differentiate through both (2.14) and
(2.15) with respect to λ to obtain

[xχnx]x + [γn(λ) − λG(x)]xχn = −[γ′
n(λ) − G(x)]xφn, x ∈ (0, 1), (2.16)

χnx(0, λ) = χnx(1, λ) = 0, (2.17)

where χn(x, λ) = φnλ(x, λ) for all (x, λ) ∈ [0, 1] × R. Therefore, χn(x, λ) provides a
solution to (2.16), (2.17) for any λ ∈ R. However, we can regard (2.16), (2.17) as an
inhomogeneous boundary value problem for χn(x, λ) on x ∈ [0, 1], and since φn(x, λ) is
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a non-trivial solution of the homogeneous part, and χn(x, λ) = φnλ(x, λ) solves (2.16),
(2.17), then the Fredholm theory (see, for example, [4]) demands that∫ 1

0
[γ′

n(λ) − G(x)]xφ2
n(x, λ) dx = 0 (2.18)

and so, using (ii) in (2.18), we must have

γ′
n(λ) =

∫ 1

0
G(x)xφ2

n(x, λ) dx > 0 (2.19)

for each λ ∈ R and n = 0, 1, 2, . . . . Thus we have the following proposition.

Proposition 2.2. The functions γn : R → R, for each n = 0, 1, 2, . . . , are such that
γn(λ) are strictly monotone increasing with λ ∈ R, and satisfy the inequalities

cλ + µ2
n � γn(λ) � (2 + c)λ + µ2

n for all λ � 0,

while
(2 + c)λ + µ2

n � γn(λ) � cλ + µ2
n for all λ � 0.

Moreover,
γn(0) = µ2

n for n = 0, 1, 2, . . . ,

where
0 = µ0 < µ1 < µ2 < · · ·

are the non-negative roots of the equation J1(X) = 0, with J1(X) being the Bessel
function of order one.

Proof. For fixed n = 0, 1, 2, . . . , strict monotonicity of γn(λ) with λ ∈ R follows from
(2.19). We next observe that

c � G(x) � 2 + c for all x ∈ [0, 1]. (2.20)

Thus, it follows from (ii) and (2.19) that

c � γ′
n(λ) � 2 + c for all λ ∈ R. (2.21)

Application of
∫ λ

0 · · ·ds to (2.21) establishes that, for λ � 0,

cλ + γn(0) � γn(λ) � (2 + c)λ + γn(0). (2.22)

Similarly, application of
∫ 0

λ
· · ·ds to (2.21) establishes that, for λ � 0,

(2 + c)λ + γn(0) � γn(λ) � cλ + γn(0). (2.23)

Now, when λ = 0, P[0] is

[xφ′]′ + γxφ = 0, x ∈ (0, 1),

φ(x), φ′(x) bounded as x → 0,

φ′(1) = 0,
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and it is readily established that the eigenvalues of P[0] are given by γ = µ2
n, n =

0, 1, 2, . . . , where
0 = µ2

0 < µ2
1 < µ2

2 < µ2
3 < · · ·

and µn, n = 0, 1, 2, . . . , are the non-negative zeros of the Bessel function J1(µ). Hence,
we conclude that

γn(0) = µ2
n, n = 0, 1, 2, . . . ,

and substitution into (2.22) and (2.23) completes the proof. �

Proposition 2.3. For each n = 0, 1, 2, . . . , the function γn : R → R has a unique zero
(which is simple) at, say, λ = σn, with

0 = σ0 > σ1 > σ2 > · · ·

and σn → −∞ as n → ∞.

Proof. Fix n = 0, 1, 2, . . . , then it follows from Proposition 2.2 that γn(λ) is strictly
monotone increasing with λ ∈ R, and that

γn(λ) →
{

+∞ as λ → +∞,

−∞ as λ → −∞.

We conclude that γn(λ) has a unique (simple, since γ′
n(λ) > 0) zero at, say, λ = σn. It

also follows from the inequalities in Proposition 2.2 that γ0(0) = 0 and γn(0) > 0 for
n = 1, 2, . . . , and so σ0 = 0 and σn < 0 for all n = 1, 2, . . . . Moreover, the ordering in (i)
requires that

0 = σ0 > σ1 > σ2 > σ3 > · · · .

In addition, the inequalities in Proposition 2.2 give

−µ2
n

c
� σn � − µ2

n

2 + c
for each n = 0, 1, 2, . . . ,

and so
σn → −∞ as n → ∞.

The proof is complete. �

We also have the following proposition.

Proposition 2.4. For each n = 0, 1, 2, . . . , the function γn : R → R is such that

γn(λ) →
{

+∞ as λ → +∞,

−∞ as λ → −∞.

and
γn(λ) = O(λ) as |λ| → ∞.

Proof. This follows directly from the inequalities in Proposition 2.2. �
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λ

λγ = c

γ

0γ0γ1γ2γ3γ4

λγ = (2 + c)

Figure 1. The functions γn(λ), n = 0, 1, 2, . . . , in the (λ, γ)-plane.

We can now sketch the functions γn(λ) for each n = 0, 1, 2, . . . , and this is illustrated
in Figure 1.

We now state the following theorem.

Theorem 2.5. The two-parameter eigenvalue problem (2.10)–(2.12) has a non-trivial
solution if and only if

(λ, γ) ∈
∞⋃

n=0

Λn,

where Λn = {(λ, γ) ∈ R
2 : γ = γn(λ)}.

Proof.

(⇐) Suppose that (λ∗, γ∗) ∈
⋃∞

n=0 Λn, then γ∗ = γn(λ∗) for some n = 0, 1, 2, . . . . How-
ever, γn(λ∗) is an eigenvalue of P[λ∗], and so (2.10)–(2.12) has a non-trivial solution
when (λ, γ) = (λ∗, γ∗), as required.

(⇒) Suppose for (λ, γ) = (λ∗, γ∗) that (2.10)–(2.12) has a non-trivial solution. Then γ∗

must be an eigenvalue of P[λ∗], and so γ∗ = γn(λ∗) for some n = 0, 1, 2, . . . , which
requires (λ∗, γ∗) ∈ Λn for some n = 0, 1, 2, . . . and hence (λ∗, γ∗) ∈

⋃∞
n=0 Λn.

�

Remark 2.6. For each (λ, γ) ∈
⋃∞

n=0 Λn, (2.10)–(2.12) has a one-dimensional family
of non-trivial solutions, which, for (λ, γ) ∈ Λn (n = 0, 1, 2, . . . ), is spanned by ψ =
φn(x, λ) : [0, 1] → R.

We are now in a position to locate the eigenvalues of (E). We first require three
preliminary results.

Lemma 2.7. λ∗ ∈ R is an eigenvalue of (E) if and only if (λ∗, λ∗2/q2) ∈
⋃∞

n=0 Λn.
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Proof.

(⇒) Suppose λ∗ ∈ R is an eigenvalue of (E), then there exists a non-trivial solution
ψ∗ : [0, 1] → C of (2.1)–(2.3) when λ = λ∗. However, φ = ψ∗ provides a non-trivial
solution to (2.10)–(2.12) when (λ, γ) = (λ∗, λ∗2/q2), and so, via Theorem 2.5,
(λ∗, λ∗2/q2) ∈

⋃∞
n=0 Λn, as required.

(⇐) Suppose (λ∗, λ∗2/q2) ∈
⋃∞

n=0Λn, then there exists a non-trivial solution φ∗ : [0, 1] →
C of (2.10)–(2.12), when λ = λ∗ and γ = λ∗2/q2, after which it is readily verified
that ψ = φ∗ provides a non-trivial solution to (2.1)–(2.3) when λ = λ∗. Hence,
λ = λ∗ is an eigenvalue of (E), as required.

�

Lemma 2.8. For each n = 0, 1, 2, . . . , the function fn : R → R, given by

fn(λ) = γn(λ) − λ2

q2 , λ ∈ R,

has exactly two zeros, say, λ = λ+
n and λ = λ−

n , with

0 < λ+
0 < λ+

1 < λ+
2 < · · ·

and

0 = λ−
0 > λ−

1 > λ−
2 > · · · .

Moreover,
λ+

n → +∞ and λ−
n → −∞ as n → ∞

while

q2c + [q4c2 + 4q2µ2
n]1/2

2
� λ+

n � q2(2 + c) + [q4(2 + c)2 + 4q2µ2
n]1/2

2
(2.24)

and

q2(2 + c) − [q4(2 + c)2 + 4q2µ2
n]1/2

2
� λ−

n � q2c − [q4c2 + 4q2µ2
n]1/2

2
(2.25)

for each n = 0, 1, 2, . . . .

Proof. For n = 0, 1, 2, . . . , consider fn : R → R, given by

fn(λ) = γn(λ) − λ2

q2 , λ ∈ R.

It follows directly from Propositions 2.2–2.4 that fn(λ) has exactly two zeros, at, say,
λ = λ+

n and λ = λ−
n , with λ−

0 = 0 and λ+
0 > 0, while λ−

n < 0 and λ+
n > 0 for n = 1, 2, . . . .

Moreover, the orderings in (i) require that

· · · < λ−
2 < λ−

1 < λ−
0 = 0 < λ+

0 < λ+
1 < λ+

2 · · · .

In addition, the inequalities (2.24) and (2.25) are direct consequences of the inequalities
in Proposition 2.2, while (2.24) and (2.25) establish that λ+

n → +∞ and λ−
n → −∞ as

n → ∞. �
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Remark 2.9. We observe from (2.24) and (2.25) that

λ+
n ∼ qµn as n → ∞,

λ−
n ∼ −qµn as n → −∞.

Lemma 2.10. Let A = {(λ, γ) ∈ R
2 : γ = λ2/q2}. Then

A ∩
[ ∞⋃

n=0

Λn

]
= {(λ+

n , λ+2
n /q2) : n = 0, 1, 2, . . . } ∪ {(λ−

n , λ−2
n /q2) : n = 0, 1, 2, . . . }.

Proof. Let (λ∗, γ∗) ∈ A ∩ [
⋃∞

n=0 Λn]. Then γ∗ = λ∗2/q2 and γ∗ = γr(λ∗) for some
r = 0, 1, 2, . . . . Hence,

λ∗2

q2 = γr(λ∗)

for some r = 0, 1, 2, . . . , and so fr(λ∗) = 0. Thus λ∗ = λ+
r or λ−

r , so that γ∗ = λ+2
r /q2 or

λ−2
r /q2 accordingly, and we conclude that

(λ∗, γ∗) ∈ {(λ+
n , λ+2

n /q2) : n = 0, 1, 2, . . . } ∪ {(λ−
n , λ−2

n /q2) : n = 0, 1, 2, . . . }

and so

A∩
[ ∞⋃

n=0

Λn

]
⊆ {(λ+

n , λ+2
n /q2) : n = 0, 1, 2, . . . }∪{(λ−

n , λ−2
n /q2) : n = 0, 1, 2, . . . }. (2.26)

Now consider (λ+
r , λ+2

r /q2) for any r = 0, 1, 2, . . . . Then clearly (λ+
r , λ+2

r /q2) ∈ A. Also
λ+2

r /q2 = γr(λ+
r ), by definition, so that (λ+

r , λ+2
r /q2) ∈ Λr. Hence,

(λ+
r , λ+2

r /q2) ∈ A ∩
[ ∞⋃

n=0

Λn

]
.

A similar conclusion follows if we start with (λ−
r , λ−2

r /q2) for any r = 0, 1, 2, . . . . We
conclude that

{(λ+
n , λ+2

n /q2) : n = 0, 1, 2, . . . }∪{(λ−
n , λ−2

n /q2) : n = 0, 1, 2, . . . } ⊆ A∩
[ ∞⋃

n=0

Λn

]
. (2.27)

The result follows immediately from (2.26) and (2.27). �

We now have the following theorem.

Theorem 2.11. The set of eigenvalues of (E) is given by

E = {λ ∈ R : λ = λ+
n , n = 0, 1, 2, . . . } ∪ {λ ∈ R : λ = λ−

n , n = 0, 1, 2, . . . }.

Proof.

(⇒) Let λ∗ be an eigenvalue of (E), then (λ∗, λ∗2/q2) ∈
⋃∞

n=0 Λn, via Lemma 2.7. Hence,
(λ∗, λ∗2/q2) ∈ A ∩ [

⋃∞
n=0 Λn], and so, via Lemma 2.10, λ∗ ∈ E .
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Figure 2. Eigenvalue distribution for c = 1 and q = 1, 2, 3, 4, 5, 6.

(⇐) Let λ∗ ∈ E , then, without loss of generality, we have λ∗ = λ+
r for some r =

0, 1, 2, . . . . It follows from Lemma 2.10 that

(λ∗, λ∗2/q2) ∈ A ∩
[ ∞⋃

n=0

Λn

]

and then, via Lemma 2.7, that λ∗ is an eigenvalue of (E).

�

Remark 2.12. Each eigenvalue λ = λ±
r (r = 0, 1, 2, . . . ) of (E) has a one-dimensional

space of eigenfunctions spanned by ψ = φr(x, λ±
r ) : [0, 1] → R. We also note that the

eigenfunctions φ0(x, λ±
0 ) both have no zeros for x ∈ [0, 1], while the eigenfunctions

φr(x, λ±
r ) have exactly r zeros for x ∈ [0, 1] (r = 1, 2, . . . ).

3. Generalizations

The approach of the previous section can be applied directly to the following generaliza-
tion of the eigenvalue problem (E), namely

[xψ′]′ + [H(λ) − λG(x)]xψ = 0, x ∈ (0, 1),

ψ(x), ψ′(x) bounded as x → 0,

ψ′(1) = 0,

which we will denote as (E′). Here, G : [0, 1] → R is now such that G is analytic and
strictly positive on [0, 1], while H : C → C is such that H(R) ⊆ R. As in § 3, we can define
functions γn : R → R (0, 1, 2, . . . ), which inherit all the properties of the corresponding
functions defined in § 3. Following § 3, it is now straightforward to conclude that the set
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Figure 3. The normalized eigenfunctions associated with
eigenvalues λ+

0 , λ+
1 and λ+

2 when c = 1 and q = 4.

of real eigenvalues of (E′) are precisely those values of λ ∈ R such that

λ ∈
∞⋃

n=0

Kn,

where
Kn = {λ ∈ R : γn(λ) = H(λ)}.

An interesting point to note is that should H(λ) ≡ γr(λ), for some r = 0, 1, 2, . . . , on
λ ∈ [α, β], say, then λ∗ is an eigenvalue of (E′) for each λ∗ ∈ [α, β], and the set of real
eigenvalues of (E′) is no longer discrete. Indeed, if it happens that H(λ) ≡ γr(λ) for
all λ ∈ R (some r = 0, 1, 2, . . . ), then λ∗ is an eigenvalue of (E′) for each λ∗ ∈ R. In
addition, it is clearly possible, for suitable choices of the function H(λ), to construct
examples where the set E ′ of real eigenvalues of (E′) has a number of the following
properties:

(i) E ′ is unbounded above and below;

(ii) E ′ is bounded below and unbounded above;

(iii) E ′ is bounded above and unbounded below;

(iv) E ′ is bounded both above and below;

(v) E ′ contains an interval of the real line;

(vi) E ′ is wholly discrete;
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Table 1. Computed eigenvalues (λ) for c = 1 and q = 4, 5, 6 in the range (−100, 100).

q = 4 q = 5 q = 6

−99.0847
−88.4678

−89.6966 −83.2243
−74.3559 −73.3269

−65.6560
−62.0843 −58.3841
−49.9184 −48.5985

−43.7603
−37.9265

−32.4021
−29.6925

−26.2477
−17.7634

−16.6899
−15.2044

−6.1012
−5.9278

−5.6526
0 0 0

26.9486
40.4813

45.0086
53.7315

56.4381
64.0854

66.5173
75.5442

77.8091
87.4354

89.2618
91.3499

99.5462

(vii) E ′ is wholly an interval of the real line;

(viii) E ′ has an accumulation point.

4. Numerical method and results

To numerically find the eigenvalues and eigenfunctions of (E), we first use the invariance
of the differential equation under scaling transformations in ψ and the boundedness of

https://doi.org/10.1017/S0013091504000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000215


Analysis of an eigenvalue problem 703

Table 2. Convergence of ratio of nth eigenvalues.

n 500 1000 2000 3000 4000

λ+
n /λ−

n −0.999 30 −0.999 64 −0.999 81 −0.999 88 −0.999 91

solution near the origin to turn it into an initial value problem of the form

(xy′)′ +
(

λ2

q2 − λG(x)
)

xy = 0, x ∈ (0, 1),

y(0) = 1, y′(0) = 0.

⎫⎪⎬
⎪⎭ (4.1)

This can be readily integrated, using the NAG routine D02BBF, for any given λ to find
y(1) and y′(1). An interval search for changes in sign of y′(1) will give rough estimates
of the positions of the eigenvalues which can be then found more precisely by Newtonian
iteration. For any particular eigenvalue the eigenfunction is easily found and a simple
quadrature will give

∫ 1
0 xy2(x) dx = a. The normalized eigenfunction can then be defined

as ỹ = y/
√

a. This scheme was efficient and successful in finding the eigenvalues for any
positive values of q and c. The results of computations for the eigenvalues for q varying
and c fixed at unity are shown in Figure 2 and are typical of the results we found.
This figure, which should be interpreted qualitatively, demonstrates that as q increases
the number of positive eigenvalues within a fixed range, −100 � λ � +100, decreases
with the first strictly positive eigenvalues growing in size. There is a slight decrease in
the number of negative eigenvalues as q increases but this is not so marked as with
the positive ones. There is always an O(1) negative eigenvalue whose size does not vary
significantly as q varies. Furthermore, the negative eigenvalues are far more uniformly
spaced than the positive ones. This is in line with the inequalities (2.24) and (2.25) when
q � 1.

Table 1 gives precise quantitative information about the size of the eigenvalues for
q = 4, 5, 6. The numerical results can also be used to confirm the asymptotic results
λ±

n ∼ ±q
√

µn as n → ∞ to three decimal places. In Table 2 we have displayed λ+
n /λ−

n

as a function of n when q = 4, and the approach is accurate to four decimal places for
n = 4000.

Finally, Figure 3 shows the first three normalized eigenfunctions associated with eigen-
values λ+

0 , λ+
1 and λ+

2 for c = 1, q = 4. It is worth pointing out that the first eigenfunction
has no zeros and that the second and third have one and two zeros, respectively, in [0, 1],
in accordance with Remark 2.12.
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