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Evolution of forced magnetohydrodynamic waves
in a stratified fluid
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The evolution of a buoyancy disturbance in a stratified incompressible fluid permeated by a
uniform vertical magnetic field is investigated. Two regimes are considered in the absence
of background rotation – that of strong stratification, where the internal gravity wave
frequency ωA is much higher in magnitude than the magnetic (Alfvén) wave frequency
ωM , and that of strong magnetic field, where ωM is dominant. For small but finite
magnetic diffusion, perturbations that initially lie in the strong-field regime are shown
to cross over to the regime of strong stratification, so that small-scale motions may exist
as damped internal gravity waves at large times. The induced magnetic field propagates
as damped Alfvén waves for a much longer time than the velocity before undergoing
the above transition. With strong rotation, the unstably stratified system that satisfies
the inequality |ωC| > |ωM| � |ωA| � |ωη|, where ωC is the inertial wave frequency and
ωη is the diffusion frequency, is of relevance to convection-driven dynamos. Here, a
parameter space with |ωM/ωC| ∼ 0.1 is found wherein the flow intensity of the slow
magnetic-Archimedean-Coriolis (MAC) waves is of the same order of magnitude as that
of the fast MAC waves. Slow wave motions at horizontal length scales much smaller than
the width of the fluid layer can therefore generate substantial helicity in rapidly rotating
dynamos. The excitation of slow MAC waves at scales of ∼10 km in the Earth’s core may
play a crucial role in the generation of the axial dipole field.
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1. Introduction

The long-time decay of magnetohydrodynamic (MHD) turbulence at low magnetic
Reynolds number is characterized by the damping of Alfvén waves followed by diffusion
along the magnetic field lines (Moffatt 1967; Sommeria & Moreau 1982). With strong
background rotation, the decay of isolated disturbances consists of the damping of fast
magneto-Coriolis waves for long times followed by diffusion (Lehnert 1955; Sreenivasan
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& Narasimhan 2017). In a density-stratified fluid layer subject to a magnetic field, the
existence of hybrid MHD waves whose frequency differs considerably from that of internal
gravity waves is known (Hague & Erdélyi 2016). The magnetic damping of these waves,
an essential process in the decay of stratified MHD turbulence, has not received much
attention. Stably stratified layers permeated by magnetic fields are thought to exist at the
base of the solar convection zone (Barnes, MacGregor & Charbonneau 1998), the top
of the Earth’s outer core (Braginsky 2006; Buffett & Seagle 2010; Olson, Landeau &
Reynolds 2018) and in other planetary cores (Christensen & Wicht 2008). In unstable
stratification that drives convection in planetary cores, the evolution of isolated buoyancy
perturbations would be accompanied by their exponential increase as well as by magnetic
diffusion. However, in convection not far from linear onset and at times much shorter than
the time scale for exponential growth, the dynamics of MHD waves would be similar to
that in stable stratification.

Since the magnetic field within the Earth’s core may be much larger than the
observed radial field at the core–mantle boundary (Gillet et al. 2010), convection and
the dynamo process itself would be significantly affected by the self-generated magnetic
field. Sreenivasan & Jones (2011) hypothesized that a substantial magnetic field in the
initial condition generates the necessary kinetic helicity to maintain itself against magnetic
diffusion. Their analysis considered linear magnetoconvection in a spherical shell in the
limit of E → 0, where E = ν/2ΩL2 is the Ekman number that measures the ratio of
viscous to Coriolis forces. (Here, ν is the kinematic viscosity, Ω is the angular velocity
of rotation and L is the width of the fluid layer.) The above limit is well approximated
by a moderately driven, low-E dynamo that represents the thermally convecting regime
of early Earth. The growth of the dynamo field from a small seed value is accompanied
by a substantial growth of convection in the neighbourhood of the energy injection scale
(Sreenivasan & Kar 2018), a process that is absent in a kinematic dynamo which has the
Lorentz force set to zero. An axial dipole field emerges from a chaotic multipolar state
as the field-induced convection is fully developed. A kinematic dynamo with the same
parameters and initial conditions fails to produce the dipole, which implies that the axial
dipole field is not a mere consequence of having columnar convection with equatorially
antisymmetric z velocity. The generation and North–South segregation of kinetic helicity
through internally driven fast inertial waves (Ranjan et al. 2018), triggered by isolated
buoyant blobs released from the Earth’s inner core boundary (e.g. Shimizu & Loper 2000),
is well explored. That said, a better understanding is needed of the generation of helicity
via the slow magnetic-Archimedean-Coriolis (MAC) waves which coexist with the fast
waves in a strong-field dynamo. Early studies on small-scale turbulence in the Earth’s
core (Braginsky & Meytlis 1990; St. Pierre 1996) postulated the formation of plate-like
flow structures arising from the combined influence of Earth’s rotation and diffusion
along the magnetic field lines. However, these studies did not consider the dynamics of
MAC waves as they used the quasi-static approximation, where the rate of change of the
induced magnetic field b was neglected. The analysis of fast and slow magneto-Coriolis
(MC) waves originating from a flow disturbance in a freely decaying system (Sreenivasan
& Narasimhan 2017) showed that both waves coexist with equal intensity for Lehnert
number Le ∼ 0.1, which measures the initial ratio of the Alfvén wave to inertial wave
frequencies, (ωM/ωC)0. (The subscript ‘0’ refers to the initial state of the disturbance.)
For magnetic fields of intensity of ∼10 mT (Hori, Jones & Teed 2015), this regime would
be supported by flow length scales less than 10 km in the core. The present study builds
on earlier work by Sreenivasan & Narasimhan (2017) and examines a forced damped
system in which both fast and slow MAC waves originate from an isolated buoyancy
disturbance.
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For geophysical parameters, the Alfvén wave velocity is generally small compared
with ΩL, so the inequality |ωC| � |ωM| is appropriate (Busse et al. 2007). On the scale
of isolated buoyant blobs representing the energy-containing scales in the geodynamo,
however, the local value of |ωM/ωC| would not be far less than unity (Sreenivasan &
Narasimhan 2017). With moderate buoyancy, the inequality |ωC| > |ωM| � |ωA|, where
ωA is the internal gravity wave frequency, likely represents a parameter space where strong
fields exist. Here, fast inertial waves weakly modified by the magnetic field and buoyancy
(fast MAC waves) and slow MC waves modified by buoyancy (slow MAC waves) are
generated (Braginsky 1967; Acheson & Hide 1973; Soward 1979; Busse et al. 2007). Since
ω2

A < 0 in unstable density stratification, the slow MAC wave frequency would be lower
than the MC wave frequency, and when |ωA| > |ωM|, the slow MAC wave frequency
becomes purely imaginary. If the non-axisymmetric slow MAC waves should have a
significant role in dynamo field generation in the Earth (see Braginsky 1967), then the
helicity of columnar convection produced via the slow waves should be at least equal to
that produced by the fast waves. Motivated by this idea and recent dynamo simulations
that relate the generation of field-induced helicity and dipole formation (Sreenivasan &
Kar 2018), we examine the evolution of fast and slow MAC waves in a forced damped
system of finite magnetic diffusivity η. The unstably stratified regime given by |ωC| >
|ωM| � |ωA| � |ωη| is of relevance to a convection-driven dynamo operating not far from
onset. The local Elsasser number in this regime,Λ ∼ (ω2

M/(ωCωη))0, can be much greater
than unity. Numerical dynamo simulations at E ∼ 10−5 indicate that the peak value of Λ
can be at least O(10) while its volume-averaged value is O(1) (Sreenivasan & Gopinath
2017).

Noting that the molecular values of the viscous and thermal diffusivities (ν and κ) in
the core are much smaller than η (e.g. Anufriev, Jones & Soward 2005), we use ν = κ = 0
in the analysis for simplicity. However, as ωη is the lowest frequency at the scale of energy
injection and even the turbulent values of ν and κ would not be much greater than η,
we anticipate that the simplified analysis would apply to MAC waves generated in the
energy-containing scales of the geodynamo.

In § 2, we consider the long-time evolution of MHD waves initiated by a buoyancy
perturbation in a non-rotating, stably stratified fluid subject to a uniform axial magnetic
field. Two limits are considered, that of strong stratification, where the internal gravity
wave frequency is much higher than the Alfvén wave frequency, and that of strong
magnetic field, where the Alfvén wave frequency is dominant. With finite magnetic
diffusion, the regime of strong magnetic field is characterized by a Lundquist number,
S ∼ (ωM/ωη)0 � 1. As ωM/ωη decreases progressively with time, a regime of strong
stratification ensues, so that small-scale motions evolve as damped internal gravity
waves at large times. The strong-field case is a useful first step in the analysis of
the more involved problem with added background rotation, presented in § 3. Here,
the long-time evolution of disturbances under rapid rotation is studied by solving for
the approximate roots of the characteristic equation. Further, the unstably stratified
system operating in the regime |ωC| > |ωM| � |ωA| � |ωη| is analysed for times much
shorter than the time scale for exponential increase of the perturbations. The results
suggest that the slow MAC waves would be at least as effective as the fast waves
in generating helicity for |ωM/ωC| ∼ 0.1 and a flow length scale ≈ 10 km in the
Earth’s core. The slow waves may therefore have an important role in the generation
of the Earth’s axial dipole field. The main results of this paper are discussed in § 4.
The important symbols used in this paper and their descriptions are summarized in
Appendix A.
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Bz

ρ′g

∂ρ/∂z < 0

Figure 1. A density perturbation ρ′ sits in a stably stratified fluid layer permeated by a poloidal magnetic
field. In the present model, B is the uniform mean magnetic field acting in the z direction.

2. Forced MHD waves in a stratified fluid

A localized density disturbance ρ′ that occurs in a stably stratified fluid layer threaded by a
uniform axial magnetic field is considered. Since ρ′ is related to a temperature perturbation
θ by ρ′ = −ραθ , where ρ is the ambient density and α is the coefficient of thermal
expansion, an initial temperature perturbation is chosen in the form

θ0 = A exp[−2(s2 + z2)/δ2], (2.1)

where A is a constant and δ is the length scale of the perturbation. In cylindrical polar
coordinates (s, φ, z), this perturbation is symmetric about its own axis (independent of
φ). Figure 1 shows this initial perturbation which subsequently evolves under gravity g =
−gêz and a uniform ambient magnetic field B = Bêz. The initial temperature perturbation
(2.1) gives rise to a velocity field u, which in turn interacts with the mean field B to
generate the induced magnetic field b. The initial velocity u0 is zero, and since the
magnetic field perturbation takes finite time to develop by induction, the initial induced
field b0 is also zero. In the Boussinesq approximation, the following linearized MHD
equations describe the evolution of u, b and θ :

∂u
∂t

= − 1
ρ

∇p∗ + 1
μρ
(B · ∇)b − gαθ + ν∇2u, (2.2)

∂b
∂t

= (B · ∇)u + η∇2b, (2.3)

∂θ

∂t
= −β êz · u + κ∇2θ, (2.4)

∇ · u = ∇ · b = 0, (2.5)

where ν is the kinematic viscosity, κ is the thermal diffusivity, η is the magnetic
diffusivity, μ is the magnetic permeability, p∗ = p + b2/2μ and β = ∂T/∂z is the mean
axial temperature gradient. While the induction equation (2.3) is written in the limit of
magnetic Reynolds number Rm 	 1, it gives a close approximation for the field generation
at length scales of Rm ∼ 1 (Moffatt & Loper 1994).
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Evolution of forced MHD waves in a stratified fluid

2.1. Solutions of the initial value problem
As the initial temperature perturbation (2.1) gives rise to a purely poloidal flow, the
instantaneous state of the flow is uniquely defined by (Davidson, Sreenivasan & Aspden
2007)

u = ∇ × [(ψ/s)êφ], (2.6)

∇2
∗ψ = ∂2ψ

∂z2 + s
∂

∂s

(
1
s
∂ψ

∂s

)
= −sζφ, (2.7)

where ψ is the Stokes streamfunction of the velocity and ζ is the vorticity. In a similar
way, the induced magnetic field is expressed as

b = ∇ × [(ξ/s)êφ], (2.8)

∇2
∗ξ = −sμjφ, (2.9)

where ξ is the Stokes streamfunction of the induced magnetic field and j is the electric
current density.

Taking the φ components of the curl of (2.2) and (2.3) and using (2.7), an equation for
the evolution of ψ follows:[(

∂

∂t
− ν∇2

∗

)(
∂

∂t
− η∇2

∗

)
− V2

M
∂2

∂z2

]
(∇2

∗ψ) =
(
∂

∂t
− η∇2

)
gαs

∂θ

∂s
, (2.10)

where VM = B/
√
μρ is the magnetic (Alfvén) wave velocity. A similar approach gives the

equation for the evolution of ξ ,[(
∂

∂t
− ν∇2

∗

)(
∂

∂t
− η∇2

∗

)
− V2

M
∂2

∂z2

]
(∇2

∗ξ) = Bgαs
∂2θ

∂z∂s
. (2.11)

The Hankel–Fourier transforms

H1{ψ(s, z)} = ψ̂(ks, kz) = 1
2π2

∫ ∞

0

∫ ∞

0
ψ(s, z)J1(kss) e−ikzz ds dz, (2.12)

H0{θ(s, z)} = θ̂ (ks, kz) = 1
2π2

∫ ∞

0

∫ ∞

0
θ(s, z)J0(kss) e−ikzzs ds dz, (2.13)

where J0 and J1 are the zeroth- and first-order Bessel functions of the first kind, are applied
to (2.10), [(

∂

∂t
+ νk2

)(
∂

∂t
+ ηk2

)
+ V2

Mk2
z

]
ψ̂ = gα

ks

k2
∂θ̂

∂t
+ gαηksθ̂ , (2.14)

where k2 = k2
s + k2

z and the following identities are used:

H1{f ′(s)} = −ksH0{f (s)}, H1{s−1∇2
∗ [sf (s)]} = −k2H1{ f (s)}. (2.15a,b)

Since the zeroth-order Hankel transform of uz is given by

ûz = 1
2π2

∫ ∞

0

∫ ∞

0

(
1
s
∂ψ

∂s

)
J0(kss) e−ikzz s ds dz, (2.16)

= 1
2π2

∫ ∞

0

[∫ ∞

0

(
∂ψ

∂s

)
J0(kss) ds

]
e−ikzz dz, (2.17)
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integration by parts using the identity J′
0(s) = −J1(s) gives

ûz = ks

2π2

∫ ∞

0

∫ ∞

0
ψ(s, z)J1(kss) e−ikzz ds dz = ksψ̂, (2.18)

from (2.12). Consequently, the transform of (2.4),

∂θ̂

∂t
= −βksψ̂ − κk2θ̂ , (2.19)

is used in (2.14) to obtain the equation for the evolution of ψ̂ ,[(
∂

∂t
+ νk2

)(
∂

∂t
+ ηk2

)
+ V2

Mk2
z + gαβk2

s

k2

](
∂

∂t
+ κk2

)
ψ̂ = −gαk2

s (η − κ)βψ̂.

(2.20)
Seeking plane wave solution of the form ψ̂ ∼ eiλt for (2.20), we obtain the relation

(iλ+ ων)(iλ+ ωη)(iλ+ ωκ)+ ω2
M(iλ+ ωκ)+ ω2

A(iλ+ ωη) = 0, (2.21)

which consists of the fundamental frequencies ωM = VMkz (Alfvén wave), ωA =√
gαβks/k (internal gravity wave), ωη = ηk2 (magnetic diffusion), ων = νk2 (viscous

diffusion) and ωκ = κk2 (thermal diffusion). The subscripts M and A above represent
waves of magnetic and Archimedean origin.

Equation (2.21) is of the form

λ3 + a2λ
2 + a1λ+ a0 = 0, (2.22)

where
a2 = −i(ωη + ωκ + ων),

a1 = −(ω2
A + ωηωκ + ωηων + ωκων + ω2

M),

a0 = i(ω2
Aωη + ωκω

2
M + ωηωκων).

⎫⎪⎬
⎪⎭ (2.23)

To solve (2.22), we use the cubic formula (Dickson 1898; Dunham 1990). The solutions of
(2.21) are then given by

λ1,2 = ±
√

3
12

(
22/3Q + 2 3√2P

Q

)
+ i

12

(
4(ωη + ωκ + ων)− 22/3Q + 2 3√2P

Q

)
,

(2.24a)

λ3 = i
6

(
22/3Q − 2 3√2P

Q
+ 2(ωη + ωκ + ων)

)
, (2.24b)

where

P = 3(ω2
A + ω2

M + ωηωκ + (ωη + ωκ)ων)− (ωη + ωκ + ων)
2, (2.25)

Q = 3
√√

4P3 + R2 + R, (2.26)

R = 9ω2
A(2ωη − ωκ − ων)− 9ω2

M(ωη − 2ωκ + ων)

+ (ωη + ωκ − 2ων)(2ωη − ωκ − ων)(ωη − 2ωκ + ων). (2.27)

The solutions (2.24a)–(2.24b) for the frequency may also be obtained by taking the
transform of (2.11) for ξ .
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The general solutions for the transforms ψ̂ and ξ̂ are then given by

[ψ̂, ξ̂ ] =
3∑

m=1

[Am,Bm] eiλmt. (2.28)

The coefficients Am and Bm are evaluated from the initial conditions for ψ̂ and ξ̂ and their
time derivatives.

For a given time, the streamfunctions of the velocity (and induced magnetic field) may
be recovered from (2.28) by the inverse Hankel–Fourier transform

f (s, z) = 4πs
∫ ∞

0

∫ ∞

0
f̂ (ks, kz)J1(kss) eikzzks dks dkz. (2.29)

2.1.1. Evaluation of spectral coefficients
From (2.28), the initial conditions for ψ̂ and its time derivatives are given by

in
3∑

m=1

Amλ
n
m =

(
∂nψ̂

∂tn

)
0

= an+1, n = 0, 1, 2. (2.30)

where the subscript ‘0’ refers to the initial state. While the Hankel–Fourier transform of
initial condition (2.1) gives θ̂0 (Abramowitz & Stegun 1972), the conditions of zero initial
velocity and induced magnetic field are necessary to evaluate the initial time derivatives
of ψ̂ . Algebraic simplifications using the curl of (2.2) with (2.7) give the right-hand sides
of (2.30) as follows:

a1 = 0, (2.31)

a2 = gαks

k2 θ̂0 = gαksδ
3 e−k2δ2/8

16
√

2π3/2k2
, (2.32)

a3 = −gαks(ν + κ)θ̂0 = −gαks(ν + κ)δ3 e−k2δ2/8

16
√

2π3/2
. (2.33)

Equations (2.31)–(2.33) give the coefficients of the velocity transform,

A1 =− a3 − ia2(λ2 + λ3)

(λ1 − λ2)(λ1 − λ3)
, A2 =− a3 − ia2(λ1 + λ3)

(λ2 − λ3)(λ2 − λ1)
, A3 =− a3 − ia2(λ1 + λ2)

(λ3 − λ1)(λ3 − λ2)
.

(2.34a–c)
From (2.28), the initial conditions for ξ̂ and its time derivatives are given by

in
3∑

m=1

Bmλ
n
m =

(
∂nξ̂

∂tn

)
0

= bn+1, n = 0, 1, 2. (2.35)

The right-hand sides of (2.35) are obtained as follows:

b1 = b2 = 0, (2.36)

b3 = i
gαBkskzδ

3 e−k2δ2/8

16
√

2π3/2k2
. (2.37)
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The coefficients of the magnetic field transform are then given by

B1 = − b3 − ib2(λ2+λ3)

(λ1 − λ2)(λ1−λ3)
, B2 = − b3 − ib2(λ1+λ3)

(λ2 − λ3)(λ2−λ1)
, B3 = − b3 − ib2(λ1+λ2)

(λ3 − λ1)(λ3−λ2)
.

(2.38a–c)
In the sections below, we present approximate analytical solutions in the limit of zero
viscous and thermal diffusion that describe the long-time evolution of magnetically
damped waves initiated by a density perturbation in a stably stratified fluid. Two limits
are analysed, that of strong stratification and that of strong magnetic field. The theory is
then compared with computations of the general solution using ν, κ 	 η.

2.2. The case of strong stratification
In the limit of zero viscous and thermal diffusion (ν = κ = 0), the orders of magnitude
of the fundamental frequencies for this case are given by ωA � ωM � ωη. Since the
diffusion of disturbances along the magnetic field lines does not result in a reduction in
ωA, a diffusion-dominated regime where ωη � ωA is not anticipated.

When terms up to second order in (ωM/ωA) are considered, the frequencies
(2.24a)–(2.24b) are approximated by (Appendix B)

λ1,2 ≈ ±ωA

(
1 + ωM

2

2ωA
2

)
+ i
ωM

2ωη

2ωA2 = ±R1 + iI11, (2.39a)

λ3 ≈ iωη

(
1 − ωM

2

ωA2

)
= iI12. (2.39b)

The spectral coefficients in (2.34a–c) then take the approximate form

A1 ≈ i
a2

2ωA
, A2 ≈ −i

a2

2ωA
, A3 ≈ a2

2ωA

(
2ω2

Mωη

ω3
A

)
. (2.40a–c)

where a2 is given by (2.32). The transform of the velocity streamfunction is then,

ψ̂ ≈ A1e−iR1t−I11t + A2eiR1t−I11t, (2.41)

since A3 → 0. Further simplification using (2.40a–c) yields

ψ̂ ≈ i
a2

2ωA
(e−iR1t − eiR1t) e−I11t ≈ a2

ωA
e−I11t sin (R1t). (2.42)

A similar approach gives the spectral coefficients in (2.38a–c) in the approximate form

B1 ≈ b3

2ω2
A

(
−1 + i

ωη

ωA

)
, B2 ≈ b3

2ω2
A

(
−1 − i

ωη

ωA

)
, B3 ≈ b3

ω2
A
, (2.43a–c)

where b3 is given by (2.37). The transform of the induced field streamfunction is then,

ξ̂ ≈ B1 e−iR1t−I11t + B2 eiR1t−I11t + B3 e−I12t. (2.44)

Further simplification using (2.43a–c) yields

ξ̂ ≈ b3

ω2
A

[
− cos (R1t) e−I11t + ωη

ωA
sin (R1t) e−I11t + e−I12t

]
. (2.45)
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Evolution of forced MHD waves in a stratified fluid

2.2.1. Long-time evolution of kinetic energy
Since |û|2 = k2|ψ̂ |2, (2.42) gives

|û|2 ≈ |a2|2k2

ω2
A

e−2I11t sin2 (R1t). (2.46)

Using (2.31) and the expressions for the frequencies ωA, ωM and ωη in (2.42), we obtain

|û|2 ≈ exp
(

−k2δ2

4

)(
gαδ6

512π3β

)
exp

(
−V2

Mηk4k2
z

gαβk2
s

t

)
sin2

(√
gαβ

ks

k
t
)
. (2.47)

The initial temperature perturbation (2.1) releases energy into the poloidal flow on the time
scale

tA = 1√
gαβ

k0

ks0
, (2.48)

where k0 = √
6/δ is the initial wavenumber of the disturbance (Appendix C) and ks0 =

k0/
√

2. This flow subsequently undergoes magnetic damping on the time scale

t1 = gαβ

V2
Mηk4

0
, (2.49)

as kz0 = ks0. Since the kinetic energy is given by Parseval’s theorem as (Sreenivasan &
Narasimhan 2017)

Ek = 16π4
∫ ∞

0

∫ ∞

0
|û|2ks dks dkz, (2.50)

for t � t1, the kinetic energy is expanded as

Ek ≈ 16π4
∫ ∞

0

∫ ∞

0

(
gαδ6

512π3β

)
exp

(
−k2δ2

4

)
exp

(
−V2

Mηk4k2
z

gαβk2
s

t

)
ks dks dkz. (2.51)

Using the substitutions kz = k cosϑ and ks = k sinϑ (Sreenivasan & Narasimhan 2017),

Ek ≈ πgαδ6

32β

∫ ∞

0

∫ π/2

0
k2 exp

(
−k2δ2

4

)
exp

(
−V2

Mηk4 cot2 ϑ
gαβ

t

)
sinϑ dϑ dk. (2.52)

Letting x = cot2 ϑ , (2.52) may be rewritten as

Ek ≈ πgαδ6

64β

∫ ∞

0

∫ ∞

0
k2 exp

(
−k2δ2

4

)
exp

(
−V2

Mηk4x
gαβ

t

)
x−1/2(1 + x)−3/2 dx dk.

(2.53)
Using the relation (13.2.5 in Abramowitz & Stegun 1972)

Γ (a)U(a, b, z) =
∫ ∞

0
e−zτ τ a−1(1 + τ)b−a−1 dτ, (2.54)

where Γ is the gamma function, U is the confluent hypergeometric function, a = 1/2,
b = 0 and z = V2

Mηk4t/gαβ, (2.53) simplifies to

Ek ≈ πgαδ6

64β

∫ ∞

0
k2 exp

(
−k2δ2

4

)
Γ

(
1
2

)
U

(
1
2
, 0,

V2
Mηk4

gαβ
t

)
dk. (2.55)
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B. Sreenivasan and G. Maurya

Since the asymptotic value of U as z → ∞ is given by (13.1.8 in Abramowitz & Stegun
1972)

U(a, b, z) ∼ z−a[1 + O(|z|−1)], (2.56)

for t � t1, (2.55) further reduces to

Ek ≈ π3/2gαδ6

64β

∫ ∞

0
exp

(
−k2δ2

4

)(
t

k4
0t1

)−1/2

dk. (2.57)

Finally, integration over the wavenumber k yields

Ek ≈ 3π2gαδ3

32β

(
t
t1

)−1/2

, (2.58)

by using the relation k0δ = √
6 for the initial perturbation (2.1). Thus, for t � t1, the

kinetic energy decays as (t/t1)−1/2.

2.2.2. Long-time evolution of magnetic energy
Since |b̂|2 = k2|ξ̂ |2, (2.44) gives

|b̂|2 ≈ k2 |b3|2
ω4

A

[
e−2I12t − 2e−(I11+I12)t cos (R1t)+ e−2I11t cos2 (R1t)

+ 2 e−I12t ωη

ωA
e−I11t sin (R1t)− 2 e−2I11t ωη

ωA
cos (R1t) sin (R1t)

+ e−2I11t ω
2
η

ω2
A

sin2 (R1t)

]
. (2.59)

Noting that the inequality R1
−1 	 I12

−1 	 I11
−1 is satisfied by the time scales, the

long-time evolution of |b̂|2 is determined by the term that decays slowest,

|b̂|2 ≈ k2 |b3|2
ω4

A
e−2I11t. (2.60)

Since the magnetic energy is given by Parseval’s theorem as

Em = 16π4

μρ

∫ ∞

0

∫ ∞

0
|b̂|2ks dks dkz, (2.61)

using (2.37) and the expressions for the frequencies ωA, ωM and ωη in (2.60), we obtain
the magnetic energy for times t � t1,

Em ≈ πδ6V2
M

32β2

∫ ∞

0

∫ ∞

0

k2k2
z

k2
s

exp
(

−k2δ2

4

)
exp

(
−V2

Mηk4k2
z

gαβk2
s

t

)
ks dks dkz. (2.62)

Using the substitutions kz = k cosϑ and ks = k sinϑ ,

Em ≈ πδ6V2
M

32β2

∫ ∞

0

∫ π/2

0
k4 exp

(
−k2δ2

4
− V2

Mηk4 cot2 ϑ
gαβ

t

)
cot2 ϑ sinϑ dϑ dk. (2.63)
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Evolution of forced MHD waves in a stratified fluid

The integral in (2.63), of the form

IA =
∫ ∞

0
k4 exp(−ak2 − bk4) dk, (2.64)

where a = δ2/2 and b = (V2
Mη cot2 ϑ/gαβ)t, has the following solution (see 3.469,

Gradshteyn & Ryzhik 2007):

IA =
√

a exp(a2/8b)
32b5/2

[
(a2 + 2b)K1/4

(
a2

8b

)
− a2K3/4

(
a2

8b

)]
, (2.65)

where Kn(x) is the modified Bessel function of the second kind. In the limit b → ∞ (t �
t1), IA is approximated by (Sreenivasan & Narasimhan 2017)

IA ≈ Γ (1/4)b−5/4

16
+ O(b−7/4). (2.66)

Therefore, (2.63) simplifies to

Em ≈ 36
√

6πδV2
M

512β2 IϑΓ
(

1
4

)(
t
t1

)−5/4

, (2.67)

where the integral Iϑ is related to the beta function by (3.621, Gradshteyn & Ryzhik 2007)

Iϑ =
∫ π/2

0
(cot2 ϑ)−5/4 cot2 ϑ sinϑ dϑ = 1

2
B(5/4, 1/4), (2.68)

≈ 1.854. (2.69)

Thus, for t � t1, the magnetic energy decays as (t/t1)−5/4.

2.3. The case of strong magnetic field
In the limit of zero viscous and thermal diffusion (ν = κ = 0), the orders of magnitude
of the fundamental frequencies for this case are given by ωM � ωA � ωη. When terms
up to second order in (ωA/ωM) are considered, the frequencies (2.24a)–(2.24b) are
approximated by

λ1,2 ≈ ±ωM

(
1 + ωA

2

2ωM
2

)
+ i
ωη

2

(
1 − ωA

2

ωM2

)
= ±R2 + iI21, (2.70a)

λ3 ≈ i
ωA

2ωη

ωM2 = iI22. (2.70b)

The spectral coefficients in (2.34a–c) then take the approximate form

A1 ≈ a2

2ωM

(
− ωη

ωM
+ i
)
, A2 ≈ a2

2ωM

(
− ωη

ωM
− i
)
, A3 ≈ a2

2ωM

(
2ωη
ωM

)
,

(2.71a–c)
where a2 is given by (2.32). The transform of the velocity streamfunction is then,

ψ̂ ≈ A1 e(−iR2−I21)t + A2 e(iR2−I21)t + A3 e−I22t. (2.72)
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Further simplification using (2.71a–c) yields

ψ̂ ≈ a2

ωM

[(
− ωη

ωM

)
e−I21t cos(R2t)+ e−I21t sin(R2t)+

(
ωη

ωM

)
e−I22t

]
. (2.73)

A similar approach gives the spectral coefficients in (2.38a–c) in the approximate form

B1 ≈ b3

2ω2
M

(
−1 − i

ωη

2ωM

)
, B2 ≈ b3

2ω2
M

(
−1 + i

ωη

2ωM

)
, B3 ≈ b3

ω2
M
, (2.74a–c)

where b3 is given by (2.37). The transform of the induced field streamfunction is then,

ξ̂ ≈ B1 e(−iR2−I21)t + B2 e(iR2−I21)t + B3 e−I22t, (2.75)

≈ b3

ω2
M

[
−e−I21t cos(R2t)− ωη

2ωM
e−I21t sin(R2t)+ e−I22t

]
. (2.76)

Since |û|2 = k2|ψ̂ |2 and |b̂|2 = k2|ξ̂ |2, (2.73) and (2.76) give

|û|2 ≈ |a2|2k2

ω2
M

[(
ωη

ωM

)2

e−2I22t − 2 e−(I21+I22)t
(
ωη

ωM

)2

cos (R2t)

+ e−2I21t
(
ωη

ωM

)2

cos2 (R2t)+ 2 e−(I21+I22)t
(
ωη

ωM

)
sin (R2t)

−2 e−2I21t
(
ωη

ωM

)
cos (R2t) sin (R2t)+ e−2I21t sin2 (R2t)

]
, (2.77)

|b̂|2 ≈ |b3|2k2

ω4
M

[
e−2I22t − 2 e−(I21+I22)t cos (R2t)+ e−2I21t cos2 (R2t)

− ωη

ωM
e−(I21+I22)t sin (R2t)+ ωη

ωM
e−2I21t cos (R2t) sin (R2t)

+ ω2
η

4ω2
M

e−2I21t sin2 (R2t)

]
. (2.78)

We note that energy is released into the poloidal flow and field on the time scale

tM = (VMkz0)
−1. (2.79)

Since the inequality R2
−1 	 I21

−1 	 I22
−1 is satisfied by the time scales, for I21

−1 < t <
I22

−1,

|û|2 ≈ |a2|2k2

ω2
M

e−2I21t, |b̂|2 ≈ |b3|2k2

ω4
M

e−2I21t, (2.80a,b)

which gives

|û|2 = 1
μρ

|b̂|2 ≈ g2α2δ6

512π3V2
M

(
k2

s

k2
z k2

)
exp

[
−k2

(
δ2

4
+ ηt

)]
. (2.81)

The kinetic and magnetic energies evolve in equipartition in this Alfvénic regime.
The long-time decay of classical MHD turbulence would be diffusion dominated as the

Alfvén wave frequency progressively decreases and falls below the diffusion frequency
(Lehnert 1955; Moffatt 1967; Sreenivasan & Narasimhan 2017). However, as we see below,
stable stratification limits the dominance of magnetic diffusion as the frequency of internal
gravity waves remains large relative to that of diffusion.
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Evolution of forced MHD waves in a stratified fluid

2.3.1. Long-time evolution of energy
From the relative magnitudes of the time scales given by R2

−1 	 I21
−1 	 I22

−1, the
long-time evolution of |û|2 is described by the term that decays slowest in (2.77),

|û|2 ≈ |a2|2k2

ω2
M

(
ωη

ωM

)2

e−2I22t. (2.82)

In the strong-field limit of Lundquist number S → ∞, ωη/ωM → 0, so a finite kinetic
energy via (2.82) necessitates a progressive decrease of ωM until the two frequencies are of
the same order. In classical MHD turbulence at S � 1, the onset of diffusive decay occurs
when ωM ∼ ωη, at time t ∼ S1/2tη (Moffatt 1967). In a stratified MHD layer, however,
the decrease of ωM would lead to the regime ωA � ωM � ωη, in which the evolution of
kinetic energy is described by (2.58) (see § 2.2.1). We shall return to this point in § 2.4.

The long-time evolution of |b̂|2 is determined by the term that decays slowest in (2.78),

|b̂|2 ≈ |b3|2k2

ω4
M

e−2I22t, (2.83)

which remains finite for S → ∞. Using (2.37) and the expressions for the frequencies
ωA, ωM and ωη in (2.83), we obtain

1
μρ

|b̂|2 ≈ g2α2δ6

512π3V2
M

(
k2

s

k2
z k2

)
exp

(
−k2δ2

4

)
exp

(
−2gαβηk2

s

V2
Mk2

z
t

)
, (2.84)

which indicates that the magnetic energy undergoes damping on the time scale

t2 = V2
M

gαβη
. (2.85)

The transformation to polar coordinates (k, ϑ) gives the magnetic energy for times t � t2,

Em ≈ πg2α2δ6

32V2
M

∫ ∞

0

∫ π/2

0
exp

(
−k2δ2

4

)
exp

(
−2t

t2
tan2 ϑ

)
sin3 ϑ

cos2 ϑ
dϑ dk. (2.86)

Letting x = tan2 ϑ , and using the identity (2.54) with a = 2, b = 3/2 and z = 2t/t2,

Em ≈ πg2α2δ6

64V2
M

∫ ∞

0
exp

(
−k2δ2

4

)
Γ (2)U

(
2,

3
2
,

2t
t2

)
dk. (2.87)

The asymptotic value of U as z → ∞ (t � t2) is obtained from (2.56). Integration over
the wavenumber k in turn yields

Em ≈ π3/2g2α2δ5

256V2
M

(
t
t2

)−2

. (2.88)

For t � t2, the magnetic energy of the disturbances decays as (t/t2)−2.
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2.3.2. Wave transition time scales
As the waves generated in the regime ωM � ωA undergo progressive diffusion, ωM
decreases with time, and eventually, Alfvénic waves would be transformed into waves
whose frequency is buoyancy dominant. The kinetic energy undergoes this transition at
time t � t2 (§ 2.3.1). The time scale for the magnetic energy transition is obtained from
(2.88) and (2.67) as follows:

0.02175
g2α2δ5

V2
M

(
t
t2

)−2

≈ 3.637
δV2

M
β2

(
t
t1

)−5/4

, (2.89)

which gives

t ≈ 0.43M4/3t2, M = VM

δ
√

gαβ
, (2.90a,b)

where M measures the initial ratio of the Alfvén wave frequency to the internal gravity
wave frequency. The magnetic energy decays as t−2 in the regime of strong field until
t ∼ M4/3t2, and subsequently crosses over to the regime of strong stratification wherein it
decays as t−5/4.

2.4. Computations of the long-time evolution of an isolated disturbance
The general solution of the initial value problem, given by (2.28), is computed. The values
of the transforms ψ̂ and ξ̂ in (ks, kz) space and their respective energies are calculated
at several time points. The kinetic and magnetic energies are calculated from the exact
velocity and magnetic field transforms in (2.28) by Parseval’s theorem (see e.g. (2.50)
and (2.61)), where the upper limits of the integrals are the truncation values of ks and kz.
(The truncation value of the wavenumbers is set to 3/δ.) The computed energies are then
compared with their asymptotic values derived from the leading-order solutions of the
transforms in the limit of zero viscous and thermal diffusivities (ν = κ = 0).

In the calculations, both ν and κ are taken to be small relative to magnetic diffusivity
η. The magnetic Prandtl number, Pm = ν/η = 10−8 and the Roberts number q = κ/η =
10−7. The strong-field regime is studied using the parameters S = VMδ/η = 104 and M =
VM/δ

√
gαβ = 316. With small but finite magnetic diffusion, the frequencies in general

change with time because the wavenumbers on which they depend are time varying. To
compute the frequencies, the mean values of the wavenumbers are first calculated through
ratios of L2 norms; e.g.

k̄z = ‖kzψ̂k‖
‖ψ̂k‖ , k̄ = ‖ψ̂k2‖

‖ψ̂k‖ , (2.91a,b)

which are based on the velocity field. As we anticipate that the frequencies based on the
induced magnetic field would evolve differently, the mean wavenumbers based on ξ̂ are
also evaluated following the definitions in (2.91a,b).

In figure 2(a,b), the imaginary parts of the frequencies λ1 and λ3 in (2.24a,b) are
compared with the respective frequency approximations. The parameters are those for
the case of strong field, S = 104 and M = 316. The frequencies are calculated using the
mean wavenumbers based on the induced magnetic field, so that a transition to the regime
of dominant stratification may be observed, as predicted by theory. Here, Im(λ1) agrees
well with ωη/2(1 − ω2

A/ω
2
M) (see (2.70a)) until time t ∼ 103t2, and with ω2

Mωη/ω
2
A (see

(2.39a)) for t > 103t2. As the time scale for the strong-field regime to cross over to
the regime of strong stratification is t ≈ 928t2 (from (2.90a,b), shown by the vertical
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ω2
Mωη/(2ω2

A)

(ωη/2)(1 –  ω2
A/ω2

M)

Im(λ3)
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Figure 2. A comparison of the computed imaginary parts of the frequencies λ1 and λ3 (solid lines) with their
approximations (symbols) for the case of strong magnetic field. The frequencies are calculated using the mean
wavenumbers k̄z, k̄s and k̄ based on the induced magnetic field. The horizontal axis is normalized with respect to
the time scale t2, defined by (2.85). The vertical dash-dotted lines represent the theoretical time scale (2.90a,b)
for cross-over of the magnetic energy from the regime of strong magnetic field to that of strong stratification.

dashed-dotted lines in figure 2), it is apparent that the frequencies obey this transition.
Figure 3(a) compares the computed kinetic and magnetic energies with their asymptotic
solutions for the case of strong magnetic field. The energies are normalized by the
reference magnetic energy, given by (2.88). In the early phase that lasts until t ∼ t2, the
energies evolve in approximate equipartition, in line with (2.81). The ∼ t−1/2 decay of
Ek and Em with stratification is much slower than that in the absence of stratification,
where the energies would have decayed as ∼ (t/tη)−5/2 (Moffatt 1967). The contours of
the streamfunction in this early phase (figure 4), obtained from the inverse Hankel–Fourier
transform, reveal the predominantly Alfvénic character of the wave since the front
propagates as z/δ ≈ t/tM . (Here, tM is the Alfvén wave travel time.) The evolution of
energies is consistent with the time variation of the fundamental frequencies ωM , ωA
and ωη calculated using the mean wavenumbers. For t > t2, Ek continues on its ∼ t−1/2

decay as the frequencies calculated based on the velocity cross-over to the regime of
strong stratification, where ωA > ωM (figure 3c). The triangles in figure 3(a) represent the
asymptotic kinetic energy for strong stratification, given by (2.58). For a larger Lundquist
number S = 105, the transition to the regime of dominant ωA occurs at t < t2 (figure 3d),
so it is evident that the evolution of the velocity as damped Alfvén waves is confined to
this early period. The induced magnetic field, on the other hand, evolves as Alfvén waves
until t ≈ 0.43M4/3t2 (figure 3b), which explains why Em follows the t−2 decay law given
by (2.88) for the period t2 < t < 0.43M4/3t2. For t � M4/3t2, ωA � ωM , which explains
why Em follows the t−5/4 law given by (2.67).

In summary, stable stratification produces an important effect that is absent in the
classical evolution of disturbances in a strong magnetic field – the dominance of diffusion
over wave motion is considerably delayed as the regime ωM � ωA � ωη crosses over to
the regime ωA � ωM � ωη, which persists for long times. As in freely decaying MHD
turbulence at low Rm (Moffatt 1967), the induced magnetic field propagates as damped
Alfvén waves for a much longer time than the velocity. The strong-field case is a useful
first step in the analysis of the problem with added background rotation, presented in the
next section.
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Figure 3. (a) Computed kinetic and magnetic energies (solid and dashed lines respectively) compared with
asymptotic solutions (symbols) for the case of strong magnetic field. The triangles are obtained from (2.58),
and the circles are obtained from (2.88) and (2.67). (b) Fundamental frequencies calculated using the mean
wavenumbers based on the induced magnetic field. (c) and (d) Fundamental frequencies based on the velocity
field. The vertical dotted lines in (a) and (b) represent the theoretical time scale (2.90a,b) for cross-over of the
magnetic energy from the regime of strong magnetic field to that of strong stratification. The parameters used
are S = 104, M = 316 for (a)–(c) and S = 105, M = 316 for (d).

3. The effect of rotation

With background rotation, the equation of motion,

∂u
∂t

= − 1
ρ

∇p∗ − 2Ω × u + 1
μρ
(B · ∇)b − gαθ + ν∇2u, (3.1)

where Ω = Ω êz and p∗ = p − (ρ/2)|Ω × x|2 + b2/2μ, describes the evolution of u. The
initial temperature perturbation (2.1) produces a poloidal flow which interacts with Ω to
generate a toroidal flow, so that the instantaneous state of the flow is defined by

u = uφ êφ + ∇ × [(ψ/s)êφ], (3.2)
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Figure 4. Contour plots of the streamfunction ψ for (a) 10 and (b) 100 Alfvén wave times in a strong-field
calculation using the parameters S = 104 and M = 316.

and the instantaneous state of the induced magnetic field, determined by the induction
equation (2.3), is defined by

b = bφ êφ + ∇ × [(ξ/s)êφ]. (3.3)

Using the φ components of the curl of (3.1) and (2.3) with (2.7), we obtain,[(
∂

∂t
− ν∇2

∗

)(
∂

∂t
− η∇2

∗

)
− V2

M
∂2

∂z2

]
(∇2

∗ψ)

= gαs
(
∂

∂t
− η∇2

)
∂θ

∂s
− 2Ωs

(
∂

∂t
− η∇2

)
∂uφ
∂z
. (3.4)

Since the φ components of (3.1) and (2.3) together give[(
∂

∂t
− ν∇2

)(
∂

∂t
− η∇2

)
− V2

M
∂2

∂z2

]
uφ = −2Ω

(
∂

∂t
− η∇2

)
us, (3.5)

the use of (3.5) and (2.4) in (3.4) with the relation us = −s−1∂ψ/∂z gives the following
equation for evolution of ψ :[(

∂

∂t
− ν∇2

∗

)(
∂

∂t
− η∇2

∗

)
− V2

M
∂2

∂z2

]2 (
∂

∂t
− κ∇2

∗

)
(∇2

∗ψ)

= −4Ω2
(
∂

∂t
− κ∇2

∗

)(
∂

∂t
− η∇2

∗

)2
∂2ψ

∂z2

− gαβs
(
∂

∂t
− η∇2

∗

)[(
∂

∂t
− ν∇2

∗

)(
∂

∂t
− η∇2

∗

)
− V2

M
∂2

∂z2

]
∂

∂s

(
1
s
∂ψ

∂s

)
, (3.6)
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the Hankel–Fourier transform of which is given by

[(
∂

∂t
+ νk2

)(
∂

∂t
+ ηk2

)
+ V2

Mk2
z

]2 (
∂

∂t
+ κk2

)
ψ̂

= −4Ω2k2
z

k2

(
∂

∂t
+ ηk2

)2 (
∂

∂t
+ κk2

)
ψ̂

− gαβk2
s

k2

(
∂

∂t
+ ηk2

)[(
∂

∂t
+ νk2

)(
∂

∂t
+ ηk2

)
+ V2

Mk2
z

]
ψ̂. (3.7)

Seeking plane wave solutions of the form ψ̂ ∼ eiλt, we obtain the relation

[(iλ+ ων)(iλ+ ωη)+ ω2
M]2(iλ+ ωκ)+ ω2

C(iλ+ ωη)
2(iλ+ ωκ)

+ ω2
A(iλ+ ωη)[(iλ+ ων)(iλ+ ωη)+ ω2

M] = 0, (3.8)

where the fundamental frequencies are defined by

ωM = VMkz, ωA =
√

gαβ
ks

k
, ωC = 2Ωkz

k
, ων = νk2, ωη = ηk2, ωκ = κk2.

(3.9a–f )
While ωA gives the frequency of internal gravity waves in a stably stratified system, the
magnitude of ωA is a measure of the strength of buoyancy in an unstably stratified system.
The standard characteristic equation (3.8) is similar in form to that in Busse et al. (2007),
page 165. The special case ωC = 0 gives (2.21). As the focus of this study is on a system
where both viscous and thermal diffusion are much smaller than magnetic diffusion, we
set ν = κ = 0. In this limit, (3.8) takes the form

λ5 − 2 iωηλ4 − (ω2
A + ω2

η + 2ω2
M + ω2

C)λ
3 + 2 iωη(ω2

A + ω2
M + ω2

C)λ
2

+ (ω2
Aω

2
η + ω2

Aω
2
M + ω4

M + ω2
ηω

2
C)λ− iω2

Aωηω
2
M = 0. (3.10)

Although there are no closed form algebraic solutions for the general quintic equation,
approximate solutions for (3.10) may be obtained subject to the relative orders of
magnitudes of the fundamental frequencies (§§ 3.2 and 3.3 below). For the regime given
by |ωC| � |ωM| � |ωA| � |ωη|, two roots of (3.10) (λ1,2) represent damped fast inertial
waves modified by the magnetic field and buoyancy, two other roots (λ3,4) represent
damped slow magnetostrophic waves, and the fifth root (λ5) gives the frequency for the
long-time decay (growth) of a stably (unstably) stratified system. For simplicity, the waves
represented by λ1,2 and λ3,4 are called fast and slow MAC waves respectively.

The general solutions for the transforms of ψ , uφ , ξ and bφ are then given by

[ψ̂, ûφ, ξ̂, b̂φ] =
5∑

m=1

[Dm,Gm,Pm,Qm] eiλmt. (3.11)

As described in the following section, the coefficients Dm, Gm, Pm and Qm are evaluated
from the initial conditions for ψ̂ , ûφ , ξ̂ and b̂φ and their time derivatives.
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Evolution of forced MHD waves in a stratified fluid

3.1. Evaluation of spectral coefficients

From (3.11), the initial conditions for ψ̂ and its time derivatives are given by

in
5∑

m=1

Dmλ
n
m =

(
∂nψ̂

∂tn

)
0

= dn+1, n = 0, 1, 2, 3, 4. (3.12)

As the initial conditions of the velocity and induced magnetic field are the same as in the
case without rotation, algebraic simplifications give the right-hand sides of (3.12) in the
limit of ν = κ = 0, as follows:

d1 = d3 = 0, (3.13)

d2 = gαks

k2 θ̂0, (3.14)

d4 = gαks

k2

(
−V2

Mk2
z − gαβk2

s

k2 − 4Ω2k2
z

k2

)
θ̂0, (3.15)

d5 = gαηV2
Mk2

z ksθ̂0, (3.16)

where θ̂0 is the transform of the initial temperature perturbation. The quantity within
brackets in (3.15) gives the sum of the squares of the MAC frequencies, −(ω2

M + ω2
A +

ω2
C).
The coefficients of the fast and slow wave components of ψ̂ in (3.11) may now be

obtained using the roots of the characteristic (3.10). For example,

D1 = d5 − id4(λ2 + λ3 + λ4 + λ5)+ id2(λ2λ4λ5 + λ3λ4λ5 + λ2λ3λ4 + λ2λ3λ5)

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)(λ1 − λ5)
,

(3.17)

D3 = d5 − id4(λ1 + λ2 + λ4 + λ5)+ id2(λ1λ4λ5 + λ2λ4λ5 + λ1λ2λ4 + λ1λ2λ5)

(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)(λ3 − λ5)
.

(3.18)

From (3.11), the initial conditions for ûφ and its time derivatives are given by

in
5∑

m=1

Gmλ
n
m =

(
∂nûφ
∂tn

)
0

= gn+1, n = 0, 1, 2, 3, 4. (3.19)

Algebraic simplifications give the right-hand sides of (3.19) in the limit of ν = κ = 0, as
follows:

g1 = g2 = g4 = 0, (3.20)

g3 = 2 iΩkz

(
gαks

k2

)
θ̂0, (3.21)

g5 = −2 iΩkz

(
gαks

k2

)
(2ω2

M + ω2
C + ω2

A)θ̂0. (3.22)
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The coefficients of the fast and slow wave components of ûφ in (3.11) may now be obtained
using the roots of (3.10). For example,

G1 = g5 − g3(λ4λ5 + λ3λ4 + λ3λ5 + λ2λ3 + λ2λ4 + λ2λ5)

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)(λ1 − λ5)
, (3.23)

G3 = g5 − g3(λ4λ5 + λ2λ4 + λ2λ5 + λ1λ2 + λ1λ4 + λ1λ5)

(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)(λ3 − λ5)
. (3.24)

From (3.11), the initial conditions for ξ̂ and its time derivatives are given by

in
5∑

m=1

Pmλ
n
m =

(
∂nξ̂

∂tn

)
0

= pn+1, n = 0, 1, 2, 3, 4. (3.25)

The right-hand sides of (3.25) are obtained in the limit of ν = κ = 0, as follows:

p1 = p2 = 0, (3.26)

p3 = iBgα
kskz

k2 θ̂0, (3.27)

p4 = −iBgαηkskzθ̂0, (3.28)

p5 = iBkzd4 − ηk2p4, (3.29)

where d4 is given by (3.15). The coefficients of the fast and slow wave components of ξ̂ in
(3.11) may now be obtained using the roots of (3.10). For example,

P1 = p5 − ip4(λ2 + λ3 + λ4 + λ5)− p3(λ4λ5 + λ3λ4 + λ3λ5 + λ2λ3 + λ2λ4 + λ2λ5)

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)(λ1 − λ5)
,

(3.30)

P3 = p5 − ip4(λ1 + λ2 + λ4 + λ5)− p3(λ4λ5 + λ2λ4 + λ2λ5 + λ1λ2 + λ1λ4 + λ1λ5)

(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)(λ3 − λ5)
.

(3.31)

From (3.11), the initial conditions for b̂φ and its time derivatives are given by

in
5∑

m=1

Qmλ
n
m =

(
∂nb̂φ
∂tn

)
0

= qn+1, n = 0, 1, 2, 3, 4. (3.32)

The right-hand sides of (3.32) are obtained in the limit of ν = κ = 0, as follows:

q1 = q2 = q3 = 0, (3.33)

q4 = −2BΩgα
ksk2

z

k2 θ̂0, (3.34)

q5 = −ηk2q4. (3.35)

The coefficients of the fast and slow wave components of b̂φ in (3.11) may now be obtained
using the roots of (3.10). For example,

Q1 = q5 − iq4(λ2 + λ3 + λ4 + λ5)

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)(λ1 − λ5)
, (3.36)

Q3 = q5 − iq4(λ1 + λ2 + λ4 + λ5)

(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)(λ3 − λ5)
. (3.37)
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Evolution of forced MHD waves in a stratified fluid

3.2. Long-time evolution of a disturbance in rapid rotation
We consider a rapidly rotating system where the fundamental frequencies satisfy the
inequality |ωC| � |ωM| � |ωA| � |ωη|. To obtain the roots of the characteristic equation
(3.10) subject to the above inequality, we first consider the inertia-free limit (∂u/∂t = 0)
of the equation of motion (3.1), which, together with (2.3) and (2.4), yields the following
equation for plane waves in the limit ν = κ = 0:

λ3 − 2 iωηλ2 −
(
ω2
η + ω2

Aω
2
M

ω2
C

+ ω4
M

ω2
C

)
λ+ i

(
ω2

Aωηω
2
M

ω2
C

)
= 0. (3.38)

Letting x = ωA/ωC, y = ωη/ωC and z = ωM/ωC, we see that (3.38) is of the form

λ3 + a2λ
2 + a1λ+ a0 = 0, (3.39)

where

a2 = −2iyωC, a1 = −( y2 + x2z2 + z4)ω2
C, a0 = ix2yz2ω3

C. (3.40a–c)

The solution of the cubic equation (3.39) subject to the inequality z � x � y broadly
follows the procedure outlined in Appendix B, and gives the slow wave frequencies

λ3,4 ≈ ±1
2
(x2 + 2z2)ωC + i

(
y − x2y

2z2

)
ωC, (3.41)

and the decay frequency

λ5 ≈ i
x2y
z2 ωC. (3.42)

Now, polynomial long division using the roots in (3.41) of the characteristic equation
(3.10), written in the form

λ5 − 2iλ4yωC − λ3(1 + x2 + y2 + 2z2)ω2
C + 2iyλ2(1 + x2 + z2)ω3

C

+ λ( y2 + x2y2 + x2z2 + z4)ω4
C − ix2yz2ω5

C = 0, (3.43)

gives the cubic equation

λ3 − λ2i
x2y
z2 ωC + λ(−1 − x2 − 2z2)ω2

C + i
x2y
z2 ω

3
C − 2iy(z2 − x2)ω3

C = 0, (3.44)

with the remainder approximately zero. The roots of (3.44) in approximate form are once
again obtained through the cubic formula, as follows:

λ1,2 ≈ ±(1 + z2)ωC + iyz2ωC, (3.45)

λ5 ≈ i
x2y
z2 ωC. (3.46)

Substituting for x, y and z gives

λ1,2 ≈ ±
(
ωC + ω2

M
ωC

)
+ i
ω2

Mωη

ω2
C
, (3.47)

λ3,4 ≈ ±
(
ω2

M
ωC

+ ω2
A

2ωC

)
+ iωη

(
1 − ω2

A

2ω2
M

)
, (3.48)

λ5 ≈ i
ω2

Aωη

ω2
M
. (3.49)
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From (3.47)–(3.49), we note that the fast waves undergo damping on the time scale

t3 =
(

ω2
C

ω2
Mωη

)
0

= 4Ω2

ηV2
Mk4

0
, (3.50)

while the slow waves are damped on the time scale

tη = (ωη)
−1
0 = (ηk2

0)
−1, (3.51)

as for a freely decaying system (Sreenivasan & Narasimhan 2017). The long-time decay
the perturbations in a stratified fluid occurs on the time scale

t2 =
(
ω2

M

ω2
Aωη

)
0

= V2
M

gαβη
, (3.52)

which was obtained earlier for the strong-field case without rotation (see (2.85)).
A magnetically damped rotating system that initially lies in the regime |ωC| �

|ωM| � |ωA| � |ωη| would eventually evolve into the regime |ωA| � |ωη| � |ωC| �
|ωM| because frequencies ωM and ωC of the fast wave progressively decrease with time
(see figure 3 and also Sreenivasan & Narasimhan 2017). The approximate roots of the
characteristic equation (3.10) in the evolved state are given by

λ1,2 ≈ ±
(
ωA + ω2

C
2ωA

)
+ i
ωηω

2
M

2ω2
A
, (3.53)

λ3 = λ4 ≈ iωη, (3.54)

λ5 ≈ i
ω2

M
ωη
. (3.55)

Figure 5(a) shows the computed long-time evolution of the four fundamental
frequencies based on the velocity field for a Lehnert number Le = VM/2Ωδ = 5.8 ×
10−3, which represents rapid rotation. (The above definition of Le follows from (ωM/ωC)0,
introduced in § 1.) The dimensionless parameters S and M are set to 104 and 316
respectively, as for the non-rotating system considered in § 2.4. The progressive decrease
of ωM and ωC due to the small but finite magnetic diffusion is evident. In figure 5(b)–(d),
the computed real and imaginary parts of the frequency roots λ1, λ3 and λ5 are compared
with their respective approximations in the initial and final regimes, given by (3.47)–(3.49)
and (3.53)–(3.55), respectively. The time is normalized by the time scale t3, defined
in (3.50). The approximations of the frequency roots in the initial and final phases of
evolution closely match the actual (computed) frequencies. The long-time evolution should
hence be characterized by damped internal gravity waves. In the final phase of decay, the
general solution for the transform of ψ is given by

ψ̂ = D1 eiλ1t + D2 eiλ2t + (D3 + D4t) eiλ3t + D5 eiλ5t, (3.56)
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Evolution of forced MHD waves in a stratified fluid

the coefficients Di of which are approximated by

D1 ≈ d2

(
ωηω

2
M

2ω4
A

− i
2ωA

)
, D2 ≈ d2

(
ωηω

2
M

2ω4
A

+ i
2ωA

)
,

D3 ≈ d2

(
2ω2

C

ω2
Aωη

+ ω2
M

ω2
Aωη

− ωηω
2
M

ω4
A

)
,

D4 ≈ d2

(
ω2

C

ω2
A

+ ω2
ηω

2
M

ω4
A

)
,

D5 ≈ d2

(
− 2ω2

C

ω2
Aωη

− ω2
M

ω2
Aωη

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.57)

Noting that the real part of D1 is much smaller than the imaginary part, we obtain

ψ̂ ≈ id2

ωA
sin(ωAt) exp

(
−ωηω

2
M

2ω2
A

t

)
, (3.58)

|û|2 ≈ k2 d2
2

ω2
A

sin2(ωAt) exp

(
−ωηω

2
M

ω2
A

t

)
. (3.59)

Since the long-time decay of energy takes place on the time scale (see (2.49))

t1 =
(

ω2
A

ωηω
2
M

)
0

= gαβ

V2
Mηk4

0
, (3.60)

for t � t1,

Ek ≈ 16π4
∫ ∞

0

∫ ∞

0
k2 d2

2

ω2
A

exp

(
−ωηω

2
M

ω2
A

t

)
ks dks dkz, (3.61)

which gives

Ek ≈ 3π2gαδ3

32β

(
t
t1

)−1/2

, (3.62)

in line with the analysis in § 2.2.1. Likewise, we expect the long-time evolution of magnetic
energy to be similar to that in the absence of rotation (see (2.67) and figure 3a). Thus, the
long-time evolution of disturbances in a rapidly rotating stratified medium would be that
of damped internal gravity waves.

3.3. The role of slow magnetostrophic waves in unstable stratification
The regime |ωC| > |ωM| � |ωA| � |ωη|, where ω2

A < 0, is of relevance to a large region
of the parameter space where convection-driven dipole-dominated dynamos exist. Notably,
here the local value of |ωM/ωC| is not far less than unity. To obtain the approximate roots
of the characteristic (3.10) in this regime, we consider the limit of zero magnetic diffusion
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Figure 5. (a) Long-time evolution of the magnitudes of the four fundamental frequencies in a rapidly rotating
system with the dimensionless parameters Le = 5.8 × 10−3, S = 104 and M = 316. (b), (c) and (d) Comparison
of the numerical frequency roots λ1, λ3 and λ5 of the characteristic equation (3.10) (solid and dashed lines)
with their analytical approximations (symbols) for the initial and final regimes of evolution given by |ωC| �
|ωM | � |ωA| � |ωη| and |ωA| � |ωη| � |ωC| � |ωM | respectively. Here, Re(λ1) and Im(λ1) evolve in time
from their approximations in (3.47) to those in (3.53); Re(λ3) and Im(λ3) evolve from their approximations in
(3.48) to those in (3.54). The imaginary root λ5 evolves from its approximation in (3.49) to that in (3.55).

(ωη = 0), in which (3.10) reduces to

λ4 − λ2(ω2
A + ω2

C + 2ω2
M)+ ω2

Aω
2
M + ω4

M = 0. (3.63)

The roots of (3.63) are given by

λ1,2 = ± 1√
2

√
ω2

A + ω2
C + 2ω2

M +
√
ω4

A + 2ω2
Aω

2
C + 4ω2

Mω
2
C + ω4

C, (3.64)
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λ3,4 = ± 1√
2

√
ω2

A + ω2
C + 2ω2

M −
√
ω4

A + 2ω2
Aω

2
C + 4ω2

Mω
2
C + ω4

C. (3.65)

Letting ωM/ωC = z and ωA/ωC = x, we obtain,

λ1 = ωC√
2

√
1 + x2 + 2z2 +

√
1 + 2x2 + x4 + 4z2, (3.66)

λ3 = ωC√
2

√
1 + x2 + 2z2 −

√
1 + 2x2 + x4 + 4z2, (3.67)

for the forward-travelling fast and slow waves respectively. In the regime |ωC| > |ωM| �
|ωA| considered in this section, the frequencies in (3.66) and (3.67) are approximated by
first expanding the inner square root,

f =
√

1 + 2x2 + x4 + 4z2, (3.68)

as series expansions until second order in x and sixth order in z, sequentially. Algebraic
simplifications give

f ≈ 1 + x2 − z2(2x2 − 2)− 2z4 + 4z6, (3.69)

by neglecting terms of O(x2z4) and O(x2z6). Therefore,

λ1 ≈ ωC

√
1 + x2 + 2z2 − x2z2 − z4 + 2z6, (3.70)

λ3 ≈ ωC

√
x2z2 + z4 − 2z6. (3.71)

Further approximation of (3.71) using series expansions until second order in x and fourth
order in z gives

λ3 ≈ ωC

(
z2 + x2

2
− z4 + x2z2

2
+ 3x2z4

4

)
. (3.72)

Neglecting the terms of O(x2z2) and O(x2z4) and substituting for z and x, we obtain

λ3 ≈ ω2
M
ωC

+ ω2
A

2ωC
− ω4

M

ω3
C
. (3.73)

Following a similar approach, (3.70) is approximated by

λ1 ≈ ωC + ω2
M
ωC

+ ω2
A

2ωC
− ω4

M

ω3
C
. (3.74)

For small but finite magnetic diffusion, the imaginary parts of the frequency roots λ1 and
λ3 are taken from (3.47) and (3.48), respectively. The root λ5 remains the same as in (3.49).

Figure 6 compares the approximations for λ1 and λ3 with their numerical values for
ks = kz for the fixed parameters Eη = 10−5 and Fη = 0.1, defined by

Eη = η

2Ωδ2 , Fη = η

|√gαβ|δ2 , (3.75a,b)

measuring the initial ratios of the diffusion frequency to the rotation frequency
and buoyancy frequency, respectively. A good agreement between the computed and
approximate roots is obtained until ωM/ωC ≈ 0.3.

922 A32-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.565


B. Sreenivasan and G. Maurya

0.004 0.150 0.300 0.450 0.600 0.730
10–2

10–1

100

101

102

103

104(a) (b)

10–6

10–5

10–4

10–3

10–2

10–1

0.004 0.150 0.300 0.450 0.600 0.730

ωC +  ω2
M/ωC +  ω2

A/(2ωC) – ω4
M/ω3

C

ω2
M/ωC +  ω2

A/(2ωC) – ω4
M/ω3

C

Re(λ1)
ω2

Mωη/ω
2
C

ωM/ωC ωM/ωC

Im(λ1)

ωη

Im(λ3)Re(λ3)

Figure 6. Comparison of the computed real and imaginary parts of the fast and slow MAC wave frequencies
(solid and dashed lines) with their approximations (symbols) for wavenumbers ks = kz = k0/

√
2. The fast and

slow wave frequencies are given by λ1 and λ3, respectively. The fixed parameters are Eη = 10−5 and Fη = 0.1,
defined in (3.75a,b).

Since the general solutions for the velocity and magnetic field transforms (3.11) consist
of linear superpositions of the fast and slow MAC wave parts, the energy carried by each
part can be evaluated separately. (See Sreenivasan & Narasimhan (2017) for a similar
separation of fast and slow MC wave solutions.) For the frequency inequality considered
here, the exponential increase of the perturbations occurs on a much larger time scale than
magnetic diffusion. For times t � tη, the poloidal and toroidal kinetic energies,

Ek,p = 16π4
∫

ks

∫
kz

(kψ̂)2ks dks dkz, Ek,t = 16π4
∫

ks

∫
kz

û2
φks dks dkz, (3.76a,b)

may be obtained from the fast and slow wave parts of ψ̂ and ûφ , respectively. Similar
integrals for the magnetic energy are calculated based on ξ̂ and b̂φ .

The total kinetic and magnetic energies carried by the fast and slow MAC wave parts of
the solution are examined separately in figures 7–9. The ratio Fη is set to 0.1. Because the
times considered are much smaller than the time scale t2 (3.52), the values of the energy
for unstable stratification are nearly the same as for stable stratification. For B aligned
with Ω (as in this study), the instantaneous value of ωM/ωC is nearly the same as its
initial value, of O(Le). For a spherical shell dynamo, we anticipate that ωM/ωC would be
higher than Le as the azimuthal wavenumber is much greater than the axial wavenumber
in fully developed columnar convection. In figures 7–9, we present the fast and slow wave
energies at different values of ωM/ωC. For Eη = 10−5 (figure 7), the fast wave kinetic
energy is dominant with weak magnetic fields while the slow wave energy matches the
fast wave energy with stronger fields (ωM/ωC ≈ 0.25). The equivalence of the slow and
fast wave kinetic energy persists at higher ωM/ωC. The magnetic energy carried by the
slow MAC wave is consistently greater than that of the fast wave (figure 7c). Because the
z vorticity makes the dominant contribution to the enstrophy, we evaluate

Wz = 16π4
∫

ks

∫
kz

(ksûφ)2ks dks dkz, (3.77)

for the slow and fast waves. The z enstrophy of the slow waves matches that of the
fast waves for ωM/ωC = 0.24 (figure 7d). For the case Eη = 4 × 10−5, which represents
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Figure 7. Computed evolution of the total kinetic energy (Ek) magnetic energy (Em) and the z enstrophy (Wz)
carried by the fast and slow MAC waves. The ratio of Alfvén to inertial wave frequencies (ωM/ωC) is given
above each panel. The fixed parameters in the calculations are Eη = 10−5 and Fη = 0.1, defined in (3.75a,b).
The energy is normalized by the steady state value of the fast wave. The symbols represent the energy calculated
from the frequency approximations in figure 6.

perturbations of smaller length scale δ, the parity between the slow and fast wave kinetic
energy for ωM/ωC = 0.24 approximately holds (figure 8b), although the slow wave
energy would fall much below that of the fast wave for higher values of Eη (∼ 10−3)
representing still smaller scales. The progressive increase of the z enstrophy of the slow
wave with ωM/ωC (figure 8c,d) is a significant result. The generation of z vorticity by
the Lorentz force – an essential process in the generation of helicity u · ζ in rapidly
rotating dynamos (Sreenivasan & Jones 2011) – may be interpreted through the enhanced
vorticity of the slow MAC waves. The Elsasser numberΛ = V2

M/2Ωη, which follows from
(ω2

M/(ωCωη))0, takes values of ≈ 22 and 250 for the two cases considered in figure 8.
For parity between the intensities of the fast and slow wave motions, the leading-order
slow wave frequency ω2

M/ωC can be O(102) times the diffusion frequency ωη on the scale
of the buoyancy perturbations.
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Figure 8. Computed evolution of the kinetic energy (Ek) and z enstrophy (Wz) carried by the fast and slow
MAC waves for two values of ωM/ωC. The fixed parameters in the calculations are Eη = 4 × 10−5 and Fη =
0.1. The energy is normalized by the steady state value of the fast wave.

Figure 9 indicates that the progressive increase of ωM/ωC brings the fast wave magnetic
energy closer to that of the slow wave, which is consistent with the result that the energies
of both waves would merge and tend to the Alfvén wave energy at much stronger fields
given by the regime ωM � ωC (Sreenivasan & Narasimhan 2017).

The analysis of isolated disturbances in a forced damped system presents an interesting
comparison with that in an unforced freely decaying system; here, the kinetic energy
of the slow MC waves is much smaller than that of the fast MC waves while the
respective magnetic energies are approximately equal (Sreenivasan & Narasimhan 2017).
With added buoyancy, the kinetic energies of the slow and fast MAC waves are equal
while the magnetic energy of the slow waves surpasses that of the fast waves. Therefore,
the generation of helicity in rapidly rotating dynamos can occur through slow MAC
wave motions at horizontal length scales much smaller than the width of the fluid layer.
Furthermore, the generation of the induced magnetic field may occur predominantly
through the slow waves.
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Figure 9. Evolution of the magnetic energy (Em) carried by the fast and slow MAC waves for progressively
increasing ωM/ωC. The fixed parameters in the calculations are Eη = 4 × 10−5 and Fη = 0.1. The energy is
normalized by the steady state value of the fast wave.

4. Concluding remarks

This study investigates the evolution of damped MHD waves originating from a buoyancy
disturbance in a stratified fluid with and without background rotation. Of particular
interest is the regime where the Alfvén wave frequency ωM is much higher in magnitude
than the buoyancy frequency ωA. The magnetic damping of waves in this regime is an
essential process in the decay of stratified turbulence in a strong magnetic field, which has
not received much attention. Furthermore, the evolution of MHD waves in an unstably
stratified fluid layer – which influences convective dynamo action – is well understood
at times much shorter than the time scales of exponential increase of the buoyancy
perturbations.

It is apparent from earlier work on damped waves in the absence of buoyancy
(Sreenivasan & Narasimhan 2017) that the energy of wave motions is independent of the
orientation of the magnetic field. In this study, the evolution of buoyancy perturbations
subject to a uniform axial magnetic field is considered. Since the fundamental frequencies
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vary in time in the presence of finite magnetic diffusion (figure 3), perturbations that
initially lie in the strong-field regime ωM � ωA � ωη cross over to the regime of strong
stratification ωA � ωM � ωη. While the velocity field undergoes this transition by time
t ∼ t2 (given by (2.85)), the induced field evolves as damped Alfvén waves until t ∼
M4/3t2, where M is the initial ratio of Alfvén to internal gravity wave frequencies, before
undergoing the above transition. As a consequence, small-scale disturbances of Rm ∼ 1 or
less may exist as damped wave motions for long times in the face of magnetic diffusion.

While slow magnetostrophic waves might play an important role in the dynamo process
in the Earth’s core (Braginsky 1967), the conditions for the generation of helicity, and in
turn an axial dipole field, through these waves are not understood. Here, we address this
problem by considering the evolution of damped fast and slow MAC waves originating
from an isolated buoyancy disturbance. The regime given by |ωM| � |ωA| is a fair physical
approximation of dynamo convection not far from onset. In spherical shell dynamos at
low Ekman number, the instantaneous value of |ωM/ωC| would be higher than O(Le) due
to the inherent anisotropy of convection columns. Although the dominant field outside
the tangent cylinder in these dynamos is thought to be azimuthal (e.g. Sreenivasan &
Jones 2011), we anticipate that the value of |ωM/ωC| < 1 that gives parity between the
fast and slow wave motion intensities would not be much different from that in the present
study, where B is aligned with Ω . The magnetic energy of the slow waves would be much
higher than that of the fast waves in this regime. For weak fields of |ωM/ωC| 	 1, the
slow wave magnetic energy would still be dominant. However, the generation of helical
convection through slow waves, a prerequisite for dynamo action through these waves,
would be absent.

For a magnetic diffusivity η = 0.6 m2 s−1 in the core (Pozzo et al. 2012; Jones 2015),
the ratio Eη = 4 × 10−5 represents density anomalies of length scale ≈10 km, which in
turn give a magnetic Reynolds number Rm ≈ 8 for a velocity u = 5 × 10−4 ms−1. For
these scales, the helicity of the slow waves would likely be of the same order of magnitude
as that of the fast waves for magnetic field intensity in the range 5–16 mT, corresponding
to the range ωM/ωC = 0.07–0.24 (figure 8). In this regime, the induced field generated
by the slow MAC waves would be clearly dominant (figure 9a). Curiously, however, the
scales at which convection is magnetically excited in a dynamo (Sreenivasan & Kar 2018)
have an approximate global balance between the buoyancy and Coriolis forces in the
vorticity equation, which suggests an approximate geostrophic balance in the momentum
equation at these scales (Aubert, Gastine & Fournier 2017; Aurnou & King 2017). Helicity
generation in this energy-containing range of the dynamo spectrum would then result from
the local magnetostrophy at several points where the magnetic flux concentrations make
the Lorentz force comparable to the Coriolis force. The present study suggests that the
local Elsasser number Λ at these points can be O(102) even as its volume-averaged value
is O(1). The role of the slow magnetostrophic waves in helicity generation in nonlinear
planetary dynamo models would be the subject of a separate study.

The limit of ν = κ = 0 used in our analysis of the forced and damped system is
motivated in part by the argument that the molecular values of ν and κ are much smaller
than η in liquid metal planetary cores. That said, the energy-containing scales in the
dynamo spectrum are not strongly influenced by diffusion, so helicity generation and
formation of the axial dipole in dynamo simulations that use ‘turbulent’ values of ν and κ
(= η) may be explained by magnetically damped slow wave motions triggered by isolated
buoyancy disturbances.
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Appendix A. Symbols and their descriptions

Symbol Description

Ω angular velocity of rotation
L width of the fluid layer
ν kinematic viscosity
κ thermal diffusivity
η magnetic diffusivity
α coefficient of thermal expansion
ρ ambient density
ρ′ density perturbation
μ magnetic permeability
T mean temperature
β mean axial temperature gradient ∂T/∂z
θ , θ0 temperature perturbation, initial temperature perturbation
δ length scale of the perturbation
g gravitational acceleration
B uniform mean magnetic field
u velocity field
b induced magnetic field
ψ streamfunction of the velocity
ξ streamfunction of the induced magnetic field
ζ vorticity
j electric current density
ks, kz, k radial (s), axial (z) and effective wavenumbers
k̄s, k̄z, k̄ mean wavenumbers based on ψ̂ or ξ̂ ; e.g. (2.91a,b)
VM Alfvén wave velocity, B/

√
μρ

λm roots of characteristic equations
ωM Alfvén wave frequency, VMkz
ωA Internal gravity wave frequency,

√
gαβks/k

ωC Inertial wave frequency, 2Ωkz/k
ωη magnetic diffusion frequency, ηk2

tA buoyancy time scale, (ωA)
−1
0

tM Alfvén wave time scale, (ωM)
−1
0

t1 damping time scale for strong stratification, gαβ/(ηV2
Mk4

0)

t2 damping time scale for strong magnetic field, V2
M/(gαβη)

t3 damping time scale for fast MAC waves, 4Ω2/(ηV2
Mk4

0)

tη damping time scale for slow MAC waves, (ηk2
0)

−1

E Ekman number, ν/(2ΩL2)
Rm magnetic Reynolds number, uδ/η
S Lundquist number, VMδ/η

M VM/(δ
√

gαβ)
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Symbol Description

Le Lehnert number, VM/(2Ωδ)
Eη η/(2Ωδ2)

Fη η/(|gαβ|δ2)

Λ Elsasser number, V2
M/(2Ωη)

Ek,Em kinetic and magnetic energies
W enstrophy

Appendix B. Approximation of frequency roots

To obtain the approximate roots of (2.21) for the case of strong stratification (ωA � ωM �
ωη), we let ωM/ωA = x and ωη/ωA = y. In the limit of ν = κ = 0, the expressions in
(2.25)–(2.27) are rewritten as

P = 3
(

1 + x2 − y2

3

)
ω2

A, (B1)

Q =
⎡
⎣18y

(
1− x2

2
+ y2

9

)
ω3

A + ω3
A

√
108

(
1 + x2− y2

3

)3

+ 324y2
(

1 − x2

2
+ y2

9

)2
⎤
⎦

1/3

,

(B2)

R = 18y
(

1 − x2

2
+ y2

9

)
ω3

A. (B3)

Algebraic simplification involving a second-order series expansion about x = 0 and a
first-order series expansion about y = 0 gives

Q ≈
(

21/3
√

3 + 21/3y +
√

3x2

22/3

)
ωA, (B4)

and using (B1) with (B4) in the real part of λ1 (2.24a), we obtain

Re(λ1) ≈ 4x2(6 + √
3y)+ 4(6 + 2

√
3y)

4(6 + 3x2 + 2
√

3y)
ωA, (B5)

by neglecting terms of O(x4) and O( y2). Further simplification via a first-order series
expansion about y = 0 gives

Re(λ1) ≈ 2ωA

x2 + 2
+ 2x2ωA

x2 + 2
+ x4yωA√

3(x2 + 2)2
, (B6)

which is in turn approximated as follows by retaining terms up to O(x2):

Re(λ1) ≈ ωA + 1
2 x2ωA. (B7)

Following a similar approach, we obtain

Im(λ1) ≈ 1
2 x2yωA, (B8)
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so that

λ1 ≈ ωA + 1
2

x2ωA + i
2

x2yωA. (B9)

In a similar manner, the remaining two roots are obtained in approximate form as follows:

λ2 ≈ −
(
ωA + 1

2
x2ωA

)
+ i

2
x2yωA, (B10)

λ3 ≈ iyωA(1 − x2). (B11)

Substituting for x and y, the approximations (B9)–(B11) are rewritten as (2.39a) and
(2.39b).

Appendix C. Evaluation of the initial wavenumber, k0

We have,

k0 =

⎡
⎢⎢⎣
∫ ∞

0

∫ ∞

0
k2|θ̂0|2ks dks dkz∫ ∞

0

∫ ∞

0
|θ̂0|2ks dks dkz

⎤
⎥⎥⎦

1/2

. (C1)

Noting the transform of the initial temperature perturbation,

θ̂0 = δ3

16
√

2π3/2
exp

(
−k2δ2

8

)
, (C2)

and using the substitutions ks = k sinϑ and kz = k cosϑ , we obtain

k0 =

⎡
⎢⎢⎢⎣
∫ ∞

0

∫ π/2

0
k4 exp (−k2δ2/4) sinϑ dϑ dk∫ ∞

0

∫ π/2

0
k2 exp (−k2δ2/4) sinϑ dϑ dk

⎤
⎥⎥⎥⎦

1/2

. (C3)

Evaluation of the integrals in (C3) yields

k0 =
[(

12
√

π

δ5

)(
2
√

π

δ3

)−1
]1/2

=
√

6
δ
. (C4)
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