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BONFERRONI-TYPE INEQUALITIES AND THE METHODS OF
INDICATORS AND POLYNOMIALS

FRED M. HOPPE*, McMaster University
EUGENE SENETA**, University of Sydney

Abstract

A difficulty in the application [5] of the method of polynomials as exposited
by Galambos is investigated. The method, recast as the method of
indicators, in a form due originally to Renyi [6], is applied to the situation
of non-constant coefficients.

MONOTONICITY;

INEQUALITIES

NON-CONSTANT COEFFICIENTS; SOBEL-UPPULURI

1. Introduction and motivation

Let A 1, · · · , An be events on a probability space, Br,n, 0~ r ~ n, the event that exactly r of
the A's occur, Sk,n = E P(A;lA;2 ... A;k)' summed on all 1~ t, < i2... < ik~ n with SO,n = 1.
The method of polynomials is a device described in [2] for deducing linear inequalities for
P(Br,n) in terms of the Sk,n, k = 0, 1, ... after such inequalities have been obtained in the
case of Bernoulli trials (that is, independent events having the same probability P(A;) of
occurrence). Galambos' statement ([2], Theorem 3) of this procedure may be given as
follows. Let {dk } be a sequence of real numbers with r fixed. Then (1) equivalent to (2)
where:
(1) (n)pr(1_ p)n-r~ i dk(n)pk for all n ~O and all O~p ~ 1;

r k=O k

(2)
n

P(Br,n)~ L dkSk,n
k=O

for all n ~O and all events {A 1 , ••• , An}.

It is part of this formulation that (1) hold for all n. But if the coefficients {d k } depend on n
then the equivalence need not be valid. Thus (1), in the case of the Sobel-Uppuluri [7]
bounds (taking r =0 in (1» reads

(3) (1- p)";a ~ (_1t(n)pk _ 2u + 1 ( n )p2U+1
k=O k n 2u + 1

(where u;;;;; 1 is fixed and we use the convention that (:) = 0 if n < k), the coefficient

d2u+1= -(2u + 1)/n depending on n, so the step to (2) cannot be made with the technology
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cited. For this reason in [4], p. 263, there is a remark about the need for monotonicity of
coefficients in n. (We are grateful for this and other remarks on an earlier draft to Professor J.
Galambos.) However, in the case actually considered in [4] the coefficients are independent
of n. We clarify this issue.

Further it is indicated in [4], through an example, that it is sufficient to obtain an
inequality in the Bernoulli case only for P(Bo,n) for all n ~ O. A general version of this stated
without detail in [5], Section 2 is the implication (4)::} (5) where:

(4) (1- Pt:£ ~o dk(n)(~)pk for all n 6;;0 and all O:£p ~ 1 (where do(O) = 1);

(5) P(Br,n):£~r dk-r(n - r)(~)Sk.n for all n 6;;0 and all events {At. · · . , An}.

The logic behind the assertion is as follows: (4) implies

( n) n-r (n - r) (n). n (k) (n)pr(l- pr: ~ ~ di(n - r). r'" = L dk-r(n - r) pk
r 1=0 l r k=r r k

following which (I)::} (2) would result in (5). Again, the deduction from (1) to (2), giving in

this case (5) from (4) is inappropriate, since the coefficient of (~)pk, namely dk-r(n - r) X

e), depends in general on n. In fact, it is not true that (4) implies (5). To see this let the

triangular array {dk(n)}, O~k~n, n~O, be defined as follows: do(O) = 1; do(I ) = I ,
d t (l ) = -1; do(2)=5, dt(2) = -7, d2(2)= 10; and for n ~ 3, do(n) = 1; dt(n) = -1, d2(n) = 1,
and dk(n) =0 for 3~ k ~ n. Then it is easily verified that (4) is satisfied for n = 0 (obviously);
for n = 1 (both sides are 1- p); for n = 2 (the left-hand side is (1- p)2 while the right-hand
side is 5 -14p + 10p2, which is larger for 0~p ~ 1; and for n ~ 3 since (4) is then just an
ordinary Bonferroni inequality P(Bo,n) = 1 - P(UAi) ~ So,n - St,n + S2,n' Yet, with n = 2 and
r = 0, (5) asserts

P(BO,2) ~ do(2)SO,2 + d t(2)St,2+ d2(2)S2,2 =5 - 7St,2+ 10S2,2

while with the choices At = Q, the sample space, and A 2 =0, the left-hand side of this
inequality is 0, whereas the right-hand side is -2.

The question which needs clarification therefore is when (4)::} (5), with the triangular array
{dk(n)}, 0~ k ~ n, n ~ 0, satisfying a condition more general than: dk(n) is constant as n
increases, for fixed k. We shall ultimately show that (5) holds if, in a~dition to (4), for fixed k

(6) dk(n)~dk(n+l) n~O.

Further, if (4) and (6) hold with inequalities reversed, then (5) holds with its inequality
reversed. Such conditions are sufficient to permit the deduction of the Sobel-Uppuluri
inequalities from corresponding Bernoulli inequalities such as (3). Actually we shall find that
onlyp = 1 in the Bernoulli trials is required and so to arrive at such conclusions it is necessary
first to consider the implication (I)::} (2) in the setting of indicator functions.

2. Results and discussion

When the coefficients dk depend on n then we are dealing with a system of inequalities,
dk(n) replacing dk in (2), and we have shown that without additional care it is not sufficient
merely to validate the case (1) of Bernoulli trials. The difficulty lies in requiring (1) to hold
for all n. To deal with a triangular array it becomes appropriate to first fix n thereby clarifying
the role played by Bernoulli trials in the passage from (1) to (2) and we shall formulate our
results accordingly. This leads back to the method of indicators in a form due to Renyi [6]
whose original results were stated, more generally, for inequalities involving Boolean
polynomials, of which (2) is an example.

https://doi.org/10.2307/1427607 Published online by Cambridge University Press

https://doi.org/10.2307/1427607


Letters to the editor 243

Let n be fixed, let r, °~ r ~ n, be fixed, let a be real (and positive, without loss of
generality), and define ~t,r = 1 or °as t = r or t =1= r. The method of indicators [6] states
(7)~ (8) where:

(7) «s..« ~o dkG) for all t = 0, 1, ... ,n;

(8)
n

aP(Br,n) ~ L dkSk,n for any n events At, ... , An·
k=O

Note that if (8) holds for n events, by taking some of them to be Q, the rest 0, then (8) is
seen to hold for fewer than n events. The method thus asserts the principle that an inequality
is valid for n or fewer (that is, t) events if and only if it is valid when these n or fewer events
are each Q.

By applying this idea twice we deduce (9) ~ (10) where:

(9)
n

aP(Bo,n) ~ L dkSk,n
k=O

for any n + r events At, ... , An+ron+r (k)
aP(Br,n+r) ~ L dk- r s,»:

k=r r
Proof. (9) is (8) with r = 0, equivalent therefore by (7), to

aD"o -s ~o dkG),

(10)

for all t = 0, 1, ... , n. But,

f-r (t-r) 1 I (k)(t)
a~t,r = a~t-r,O ~ L dk k =- L dk- r kk-O (;) k~r r

;& ~rdk-re)(;) since (;) ~ 1,

the inequalities holding for r ~ t ~ r + n, so defining

{

o if k = 0, 1, ... , r - 1

fk = (k)dk - r -;. if k = r, ... , r + n

we get

for all t =0, 1, · · · , n + r, which forces, again from the equivalence of (7) and (8),

n+r n+r (k)
aP(Br,n+r) ~ L is.»: = L c.. Sk,n+r.

k=O k=r r

Formulated this way this method directly applies to triangular arrays. Let {dk(n); 0~ k ~ n,
n ~o} be such an array. Then (7)~(8) is replaced with (7a)~(8a) where:

(7a) aD"r;& ~o dk(n )G) for all t =0, 1, . · · , n and all n ~ r;

n

(8a) aP(Br,n) ~ L dk(n )Sk,n for arbitrary A., ... , An and all n ~ r.
k=O
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Similarly (9a) => (lOa) where:
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(9a)
n

aP(Bo,n)~ L dk(n )Sk,n
k=O

for arbitrary A b ••• , An and all n ~ 0;

(lOa) aP(Br,,,)~ ~r dk-r(n - r)e)Sk,,, for arbitrary AI> · . · , A" and all n ~ r.

Both assertions follow from their previous counterparts after identifying dk(n) with di, fixing
n, and then replacing n with n - r in (lOa).

Proposition. Suppose the triangular array {dk(n); 0 ~ k ~ n, n ~ O} satisfies the monotoni­
city condition:

(11) for each k ~ 0 dk(n) ~ dk(n + 1) for all n ~ O.

(12)

Then (lOa) is true if and only if (7a) holds whenever t = nand r = 0, that is

al)"o~ ~o dk(t)G) for all t =0, 1, · · · .

Proof In the presence of (11) if (12) is true then

al)"o~ ~o dk(n)(~) for all n ~ t

which is just a restatement of (7a) for r = 0, which is equivalent to (8a) with r = 0, namely
(9a), which then implies (lOa). The converse follows similarly.

We offer, as illustrations of the methodology, three distinct situations. The first involves
non-constant coefficients and is a case in point where this proposition applies, the second
again involves non-constant coefficients, but monotonicity is lacking, and the third is a bound
with constant coefficients.

Thus consider the family (3) of Sobel-Uppuluri bounds [7] where a = 1 and the coefficients
dk(n), which satisfy (11), are: (-l)k if k ~2u; -(2u + l)/n if k = 2u + 1; and 0 if 2u + 2~k.

Checking (12), taking a = 1: when t = 0, do(t) = 1~ 6t ,0 = 1; when 1~ t ~ 2u,

~o dk(t)G) =~o (-l)k(;) =0= 1),,0;

and when 2u + 1~ t,

±dk(t)(t) = ~ (_l)k(t) _ 2u + 1 ( t )
k=O k k=O k t 2u + 1

= ( -1)2u(t~1) _ (t~1
) = 0 = 1),,0,

using the identity, for 0 ~ s < t,

±(_l)k(t) = (_l)S(t -1).
k=O k s

Thus providing 2u + 1~ n -r,

(13) P(B ) ~ ~ (_l)k(r + k)S _ 2u +1(r + 2u + 1)
r.n LJ r+k,n Sr+2u+l,nk=O r n - r r

obtained in [3].

https://doi.org/10.2307/1427607 Published online by Cambridge University Press

https://doi.org/10.2307/1427607


Letters to the editor 245

(14)

For the second bound, by first verifying (7a) for, = 0, we establish that

P(Bo.n)~ 1 - s., + (2n - 3)/ c--(n - 2)/ (;)S3,n

where for n=O, 1,2,3, and O~k~n, dk(n)=(-l)k; and for n~4, dk(n) = (-l)k, for

k =0, 1; = (2n - 3)/(;), k =2; = -(n - 2)/(;), k =3; =0, k ~4. Although our results

have been phrased in terms of upper bounds on P(Br,n) parallel lower bounds are valid with a
corresponding reversal in the monotonocity (11). The only difference lies in the proof of

(9)=>(10) whe~e use of e) ~ 1 was made to eliminate this combinatorial factor. This is no

longer available since the relevant inequality is reversed. Instead we argue when t =1= r the

term a(j"r is 0 so e) can be eliminated, while when t = r, e) = 1 and so can also be

removed. The coefficients d2(n) = (2n - 3)/(;) decrease to 0 while d3(n) = -(n - 2)/(;)

increase to 0 as n increases. Our proposition is thus not applicable and instead (7a) must be
checked for each r. We can then deduce for n ~ r

2n - 2, - 3 (' + 2) n - r - 2 (' + 3)
P(Br,n)~ s., - (r + 1)Sr+t,n + r: r) 2 s..«. - (n ~ r) 3 Sr+3,n'

Finally, although the coefficients do not depend on n, we derive, using the method of
indicators, the result of [1], in contrast to, and considerably more directly than, the
calculus-based derivation by the method of polynomials, in [4]. The bound of interest is

2 2
P(Bo n)~ 1 - -.-1 S, n+~(. 1) Szns for any integer j ~ 1., ]+']]+'

Renyi's method of indicators now applies directly and we need only verify (7) with r =0,
which becomes:

1~ 1 for t = 0;
2o~ 1 - -- for t = 1·,

j+1

o~ 1 - j : 1 G) +j(j ~ 1) G) for t ~ 2.

The second inequality reduces to 1~j and the last inequality simplifies to 0~ (j - t)Z+ (j - t)
both of which are obviously true. Hence (14) holds for all n.

3. The method of polynomials. Concluding remarks

It is possible to phrase the preceding section in terms of Bernoulli events rather than
indicators. In (8) the choices Ai, i = 1, ... ,t, where Ai denotes a success on the ith of t
independent Bernoulli trials with P(A;) =p, 0 ~p ~ 1, while A t + 1 = A t + z ••• = An =0, result
in

(7p) ae)pr(1- p)'-r ~ ~o dkG)pk for all t = 0, 1, . · · , n and all O~p ~ 1

which is (7) for p = 1, implying (8), thereby establishing that (7p)~ (8), which differs slightly
from (1)~ (2) in that n is fixed. Similar reformulations can be established with regard to (10),
(8a) , (lOa), where now fixing n is essential, and, in particular, (12) in the proposition is
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replaced with

a(l - p)' ~ ~o dk(t) (;)pk for all t =0, 1, · · · and all p, 0~ p ~ 1

from which (lOa) and consequently (13) are deduced. This is precisely the set-up for the
implication (4)~ (5) thereby justifying its assertion in [5].

The method of polynomials requires an inequality valid for all 0 ~ p ~ 1, which may be
obtainable by use of calculus [4] or power series with remainder. Thereafter, however,
implications may be made using the case p = 1 only, that is, by the method of indicators.
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