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Summary

The Price (1970, 1972) equation is applied to the problem of describing the changes in the
moments of allelic effects caused by selection, mutation and recombination at loci governing a
quantitative genetic character. For comparable assumptions the resulting equations are the same as
those obtained by different means by Barton & Turelli (1987; Turelli & Barton, 1989). The Price
equation provides a natural framework within which to examine certain kinds of non-additive
allelic effects, recombination and assortative mating. The use of the Price equation is illustrated by
finding the equilibrium genetic variance under multiplicative dominance and epistasis and under
assortative mating at an additive locus. The limitations of the use of recursion equations for the
moments of allelic effects are also discussed.

1. Introduction

Population genetic models of quantitative characters
have proved to be very difficult to analyze because of
the potentially large number of independent variables
that influence quantitative traits. In principle, the
frequency of each allele at a locus will influence the
distribution of all characters affected by that locus.
The only hope of making progress in this area is to
find mathematical simplifications that will lead to
predictions of observable features of character distri-
butions. One class of approximation assumes that
only a few moments of the distribution of allelic
effects at each locus are of importance. For example,
the mean and variance alone may determine evol-
utionary dynamics. A second class of approximation
assumes that at each locus the frequencies of only a
few alleles are of importance.

In this paper we will use the Price (1970, 1972)
equation to derive recursion equations for moments
of allelic effects and use these equations to predict
phenotypic variances. Our approach to deriving
moment equations provides a simpler alternative to
the adaptive landscape approach used by Barton &
Turelli (1987; Turelli & Barton, 1989). In the process,
we will examine several models of genetic effects on
quantitative characters, including simple models of
dominance and epistasis. Our method can also be
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applied to cases of assortative mating and inbreeding,
which we illustrate in a diploid model in which
phenotypes are determined by the additive effects of
alleles.

2. Background

The description of quantitative genetic models in
terms of moments of allelic effects at individual loci is
derived mainly from Lande's (1975) analysis of
mutation-selection balance of a single character and
his extension to multiple characters (Lande, 1980).
Lande assumed that the distribution of allelic effects
at all loci affecting a quantitative character is
multivariate normal. He based this assumption on
Kimura's (1965) derivation of a normal distribution
of allelic effects at a single locus. Once the assumption
of multivariate normality is made, it is possible to
derive recursion equations for the genetic means,
variances and covariances under the combined effects
of weak selection, mutation, and recombination,
thereby allowing the prediction of equilibrium pheno-
typic means, variances and covariances and the
response to stabilizing and directional selection.
Turelli (1984) considered a different approximation to
the single locus theory than did Kimura (1965) and
derived a different distribution of allelic effects, the
'house-of-cards' distribution. Turelli showed that the
house-of-cards distribution was more appropriate
when selection affecting each locus was much stronger
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than mutation, a situation that Turelli argued was
more realistic biologically.

Barton & Turelli (1987) introduced a general
method for deriving recursion equations for moments
of genetic effects at a single locus. They found that the
recursion equations for moments of each level depend
on higher order moments, so that any subset of the
infinite set of equations cannot be solved in general.
They then showed that both Lande's (1975) results
and Turelli's (1984) results could be obtained from
these moment equations by making suitable assump-
tions about the relationships between the moments.
At equilibrium, they obtained Lande's results by
assuming that mutation is a relatively stronger force
than selection at each locus so that allelic distributions
are approximately normal, and then using the well-
known moment relations for normal distributions. By
contrast, they obtained Turelli's results for the house
of cards by assuming that each locus has a common
allele and a few rare alleles, and then using a rare-
alleles relationship between moments.

3. Moment dynamics with the Price equation

In this section we use the Price (1970, 1972) equation
to provide a method for obtaining recursion equations
for moments of allelic effects. The simplicity of this
method allows us to study important problems such
as dominance and epistasis that have been relatively
intractable in the past. We will show that we obtain
the same recursion equations as Barton & Turelli
(1987) for comparable assumptions about selection
and the genetic determination of character values.

(i) The Price equation

The Price equation itself applies to any type of
evolutionary modification. We begin with a derivation
of the general form and then show which particular
assumptions we use to describe selection and mutation.
Many applications of the Price equation that we will
not consider have been summarized by Grafen (1985),
Wade (1985), Uyenoyama (1988) and Taylor (1988).

One particularly powerful aspect of the Price
equation is a flexible approach to denning and
grouping together the units that will be analysed. For
example, a population may be divided into groups
according to allelic types, genotypes, individuals,
character values, and so on. We will group together
individuals according to common genotype and
measure some quantitative character associated with
genotype.

Our main goal is to study how some character of a
population changes. By definition

Az = z'-z = Tip'iz'i-'Zpizi,
i i

where z is the population average of a character, i
indexes genotypes, pt is the frequency of the population

made up by genotype /, and primes denote values at a
later time (see below). We are not limited to character
means, since z can be the square or any function of a
character value.

Next, define wt by p\ = p^wjw), which describes
the frequency of the ith type (here genotype) after
selection as current frequency multiplied by relative
fitness, and let z\ = z, + Azt, which describes the change
in character values during transmission of the /th
genotype. Substituting into the above equation yields
an exact formula for character change

w Az = Cov (wt, zt) + E(w,. Az,.). (0
This equation partitions total evolutionary change
into the part attributable to selection, the covariance
term, and the part attributable to transmission, the
expectation term. Here and throughout the paper we
subscript random variables within expectation and
covariance terms to emphasize the groupings over
which the covariances and expectations are taken.

Several authors have used the covariance part of the
equation as an elegant description for the evolutionary
effect of natural selection (Robertson, 1966, 1968; Li,
1967). A standard quantitative genetic interpretation
of the entire equation assumes that the covariance
refers only to the additive component of the character,
and that the expectation term includes non-additive
effects such as dominance and epistasis that are
intractable in dynamic equations (cf. Lande & Arnold
1983). Here we will use both the selection and
transmission parts to develop exact dynamic equa-
tions.

(ii) Comparison with the Barton-Turelli approach

Before turning to particular models of mutation and
stabilizing selection, we illustrate how the Price
equation yields a simple derivation for the dynamic
recursions of moments of allelic effects. The cases we
have chosen are the recursions for the mean and
variance of allelic effects under weak selection, random
mating, and no mutation, where phenotypes are
determined additively according to allelic effects.
These assumptions allow us to compare our equations
with those obtained by application of the adaptive
landscape method of Barton & Turelli (1987).

We can extend eqn (1) to describe the dynamics of
the «th non-central moment of the character z

w Az" = Cov (w(, z,n) + E(wt Az?). (2)

In a haploid model with no mutation the second term
on the right side will be zero because an allele's
contribution to a character does not change between
parent and offspring. We will illustrate the calculation
of this transmission term when it is nonzero in several
cases below.

We now have this simple equation for moment
dynamics: H>AZ" = Cov(iv,,z"). The next step is
describe how fitness is related to character value. We
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follow a standard assumption that selection is weak,
stabilizing, and nor-optimal (Lande, 1975; Turelli,
1984)

v( = exp(-z2/2Ks)«l-z2/2Ks, (3)

where Vs is the strength of selection, and the optimum
is centered on zero. Average fitness is w x 1 — z2/2Vs.
Substituting into eqn (2) yields the recursions for
character moments

A?'«E[(H'1.-H>)Z("]/W

z"-z<»+2>). (4)

In order to relate this equation to the distribution of
allele frequencies we must specify how alleles affect
character value. For this haploid model let z, = ci,
where c is constant that defines the scale of allelic
effects, and alleles range over / = 0, + 1, ± 2,
Substituting into the above equation yields the
recursion for the moments of allelic effects

Aocn xs(a2an-ocn+2), (5)

where s = c2/2 Vs and an = E(i"). Defining mn to be
the Hth central moment of/, we can use eqn (5) directly
to obtain recursions for the mean and variance

Amx x —s(2mlm2

Aw2 « - s[2m1 m3 + (w4 - m2)],

which agrees with the recursions obtained from Barton
& Turelli (1987). In Appendix 1 we illustrate how our
general approach can be used to obtain moment
equations for more complicated situations by present-
ing an equation for the dynamics of linkage dis-
equilibrium in a two-locus problem.

Our approach differs from that of Barton & Turelli
(1987; Turelli & Barton, 1989) even though the
dynamic equations we derive for the moments are the
same in this particular example. Barton and Turelli
begin by obtaining a general relationship for the
gradient of population mean fitness with respect to the
moments of the distribution of the character. They
then make specific genetic assumptions that relate
genotypes and phenotypes, which lead to recursion
equations for the moments of allelic effects, the m, in
both our and Barton and Turelli's notation. These
allelic moments depend on the function that relates
phenotypic value to fitness. Specifying the fitness
function completes the specification of the recursions.

Our approach begins with a basic recursion equation
for each phenotypic moment that is the Price equation
itself. Specification of the genetic details and the
fitness function lead directly to the recursion equations
for moments of allelic effects. One advantage of our
approach is that we begin with general phenotypic
recursions without making any assumptions, whereas
Barton and Turelli begin by assuming that selection
maximizes population mean fitness in order to derive

their basic relation between fitness and phenotypic
moments. In order to apply their approach to
frequency dependent selection or other cases in which
w is not maximized, they must first replace the
gradient of w with the gradient of a frequency
dependent fitness surface.

4. One locus and one character

In this section we show how to apply the Price
equation to the study of mutation-selection balance.
In the first example we rederive known results for a
haploid model in order to illustrate our method. In the
second example we derive general results for a diploid
model with additive allelic effects under inbreeding or
assortative mating, including a new result for character
variance in a single locus model. In the third we derive
a new result for a non-additive diploid model.

We use the Price equation in each case to derive an
equation that relates the moments of the distribution
of allelic effects at equilibrium. This moment equation
is then used to derive the expected phenotypic and
genetic variance at equilibrium by using approxim-
ations for the relation among moments. These
approximations depend on either assuming that
selection is relatively strong or weak compared with
mutation. We also discuss past work on gene frequency
analyses when the relative strengths of mutation and
selection fall between these two extremes.

In all models selection will be as described in eqn (3)
and phenotypes z will depend on some function of
allelic states, where alleles are indexed as i,j, k, I = 0,
+ 1, +2,.... Mutation is assumed to be stepwise, with
the state of an allele equally likely to increase or
decrease by one after a mutation. The mutation rate
per allele is fi. This model of mutation is the same as
that used by Slatkin (1987).

(i) Haploid model

Let (' be the allelic state of a haploid genotype, and let
the character value for this genotype be z, = ci. When
the population is at equilibrium the mean and higher
moments of the character do not change over time.
Using eqn (2) at equilibrium we can write

(6)

(7)

The term Az2 in a haploid model is the change in the
square of the character between offspring and parent.
Thus the left side of eqn (7) is the rate at which
selection removes phenotypic variance from the
population, whereas the right side is the rate at which
mutation adds variance by introducing a lack of
fidelity in transmission of the character from parent to

for any moment z". For n = 2 this is
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offspring. The value of Az2 can be calculated from the
above assumptions about the mutation process

(\W-1)2+0 +

(8)

From eqns (3), (5), (7), (8) and z, = ci an equilibrium
equation relating the moments of allelic effects is

s{a\ — a4) + fi x 0, (9)

where an is the nth noncentral moment of allelic
effects.

Suppose that selection is much stronger than
mutation, s P /*• Then the zero allele will be common,
the ± 1 alleles will be rare, and we can ignore all other
alleles, yielding the three-allele house-of-cards ap-
proximation (Turelli, 1984). With these assumptions
VP x 1 and a4 x a2, and since the character mean is
zero, the character and allelic-effect variances are
simply the second moment. From eqn (9) the second
moment of allelic effects is a2 «fi/s and character
variance is z2 = C2OL2 = 2fiVs, as found by Turelli
(1984).

When mutation is much stronger than selection,
/it> s, the distribution of alleles is approximately
normal (Kimura, 1965). The moments are then related
by a4 x 3a2. Mean fitness w is approximately 1 — sa2.
Substituting into eqn (9) and solving as above yields
an equilibrium character variance of approximately
C2\/{/JL/2S), in agreement with Kimura (1965) and
Lande (1975).

When selection and mutation are of approximately
the same order of magnitude, neither of the previous
two approximations for the fourth moment in eqn (9)
works well. The reason is that the relationship between
the lower order and higher order moments cannot be
easily predicted. To illustrate this point, consider
Slatkin's (1987) five-allele model. Slatkin showed that,
at equilibrium, an adequate approximation to the
variance maintained in an additive model under
intermediate levels of selection can be obtained by
keeping track of two classes of alleles, those one step
removed from the optimal class and those two steps
removed. If selection and mutation are symmetric,
only two allele frequencies, pl and p2, are needed.
Those frequencies can be found as solutions to a pair
of simple algebraic equations. In the symmetric five-
allele model, m2 = c2(p1 + 4p2) and w4 = ci(p1+ 16/?2).
It is easy to see that the relationship between m2 and
mi depends on p2, and hence that relationship cannot
be predicted without knowledge of p2.

In general, recursion equations for the moments of
allelic effects do not form a closed system unless it is
possible to express higher order moments as simple
function of lower order moments. The normal and
house-of-cards approximations provide two ways to
close the system of equations. It is not at all clear that
recusion equations for the moments will be useful in
other cases because, as we have illustrated, it may not

be possible to close the system of equations in general.
If that is so, then it will be necessary either to model
changes in allele frequencies directly or to devise some
other set of variables that will lead to tractable
equations. This conclusion is a bit discouraging
because it is the difficulty in analysing allele frequencies
in general that motivated the use of recusion equations
for the moments.

(ii) Diploid model with additive phenotype and
assortative mating

Fordiploidy we can write the Price equation, eqn (1),
for the nth moment as

w Az" = Cov (w(j, zty + E(wtj Aztf), (10)

where groups are now defined by genotype ij.
Following the argument for the haploid case, we can
use diploid analogues of eqns (6), (7), indexing terms
by (/'instead of just /. Here we assume that alleles have
additive effects on phenotype:

and wtj - z%l 2 Vs=\- s(i

For changes in the second moment of allelic effects,
n = 2, at equilibrium the effects of selection among
parents described by the covariance term can be
obtained directly from eqn (4), yielding

Cov K,, z2.) = 2sc*[2al + 4au a2 + 2a2, - a4

-4a 3 1 -3a M ] ,

where a.nm = E(/"/"). Note that a n is the covariance
of allelic effects within an individual and describes
departures from random mating. Under random
mating ctnm = acnam.

Next we must establish the effects of transmission
on the relationship between offspring and parent
phenotype described by the expectation term. Fol-
lowing the haploid case, eqn (8), we need an expression
for Azy = Zy— Zy, where Zy is the phenotype of
offspring produced by a parent with genotype ij. We
can derive the change in offspring phenotype relative
to a parent as

Z2-Z% = C2{(1 -

+ 0 - 1 + y)2 + U+1 + r)2]} - c\i+jy

= c V + y 2 - (I) 0* +/)+Or+yJ) -m, (11)
where y is the gamete obtained from the parent's
mate. The expectation term describing the effects of
transmission can now be written as

+ 2a 2 a n -4a 3 1 + 6a211]},

where a211 = E(/2/y). Combining the covariance and
expectation terms the moment equation at equilibrium
is
0 «1tt + s [2a 2 -a 4 -a 2 2 -4a 3 1 + 4a2

1-|-6a2a11-6a211].
(12)

Under random mating this reduces to 5 (a2 — a4)+/t
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x 0, which is identical with the haploid case. The
distribution of allelic effects is therefore the same for
haploid and diploid models with additive gene action
and random mating, with character variance being
twice as great in the diploid model.

When there is inbreeding or assortative mating, the
moments of cross-product terms cannot be simplified
to the cross product of the moments as above. For
either fi P s and s > fi certain moment simplifications
can be applied to eqn (12), but no expression is
available for a211. We can obtain an independent
equation that relates this three-dimensional cross
product to the other moments by treating y = ij as a
character with fitness wt} and applying the Price
equation at equilibrium. The covariance and ex-
pectation terms describing the effects of selection and
transmission in the Price equation are

Cov(ww>^) = 2s[au(a2 + a11)-(a31-|-a22)]

E(w(jAy) = 5(a31 + 2a2 2-3a2 u).

Combining these terms yields a2Ux(2a2a11

+ 2aJ1-a,1)/3.
When selection is a relatively stronger force than

mutation, we can use the house-of-cards moment
relations a31 x a u and a22 x |an | in eqn (12) to obtain
the variance in allelic effects, a2, and the character
variance, z2,

1 t

z2 x 2c\\ +/)a2 = 1 + /

1+2/+I/I
where Vo is the character variance expected with no
inbreeding, a n d / = a u /a 2 is the correlation of allelic
effects in uniting gametes and measures inbreeding.
Assortative mating can be described by 2//(l +/) ,
which is the phenotypic correlation between mates.
F o r / > 0, this house-of-cards model agrees with the
result obtained by a different method (Turelli, 1986).
As pointed out by Turelli, strong inbreeding can
decrease the character variance by one-half. With
negative assortative mating, / < 0 , the variance in
allelic effects increases, whereas the phenotypic vari-
ance is unchanged. The house-of-cards assumptions
are invalid when there is strong negative assortative
mating.

When mutation is a relatively stronger force than
selection, the distribution of allelic effects is approxi-
mately gaussian and the moment relations in Kendall
& Stuart (1977, p. 85) can be used in eqn (12), yielding

where Va is the character variance when there is no
inbreeding. This analysis shows that the variance in
allelic effects may be reduced by half under inbreeding
or increased towards infinity by negative assortative

mating. Remarkably, character variance is indepen-
dent of positive or negative assortative mating of any
intensity. This occurs because the character value
associated with a particular allelic value increases
linearly with 1 +/. By contrast, selection intensity
increases with the square of the character value and
thus with (1 +f)2. Since character variance is inversely
related to the square root of selection intensity, the
effects of assortative mating and selection on character
variance cancel.

The only previous work under similar assumptions
is Lande's (1977, 1984). He studied a polygenic model
of mutation-selection-recombination balance under
inbreeding. He showed that when a trait is controlled
by many freely recombining loci, the correlation in
breeding values between parents typically remains
close to the single-locus inbreeding coefficient / . This
occurs because linkage disequilibrium rarely becomes
strong among loci under his assumptions about the
magnitudes of mutation and selection. Therefore, for
sufficiently large numbers of loci, the variance in
allelic effects at each locus depends on 1/(1 +/ ) as in
the single-locus theory above, and the character
variance is unaffected by inbreeding (Lande 1977).
For assortative mating and a large number of freely
recombining loci controlling a character, / will be
approximately equal to the correlation in parental
breeding values because, once again, linkage dis-
equilibrium will tend to be weak under his assumptions
about mutation and selection (Lande, 1977).

(iii) Diploid model with multiplicative phenotype

Dynamic equations under nonadditive allelic effects
are difficult to handle with standard quantitative
genetic approaches. To illustrate how the Price
equation applies to nonadditive cases let the pheno-
typic deviation from zero be the product of the
deviations of the allelic effects from the optimum,
z(j = c\ij\. Recall that alleles range over 0, ± 1, ±2,. . . .
With this specification of ztp the zero allele is dominant
and favoured by selection, and the other alleles are
deleterious recessives, those with higher values having
lower penetrance and increasingly deleterious effects.

To analyse this model, we note that the distribution
of allelic effects depends only on the fitnesses
associated with phenotypes and not on the phenotypic
values. Then using the symmetry of the nor-optimal
selection scheme, we can derive phenotypic fitnesses
and the distribution of allelic effects by assuming an
alternative phenotype y(j = cij, and then translating
from the distribution of allelic effects back into correct
moments for the distribution of z. Note that selection
is stabilizing on the y scale but directional on the z
scale. Mutation-selection balance is therefore expected
to cause a deviation from the optimum on the z scale
but not the y scale.

The value for Ay% can be obtained by the process
outlined in eqn (11), with allelic effects multiply-
ing rather than adding to determine phenotype.
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Applying this recipe to obtain E(wljAy2
j) yields

c2(/ta2 — s{ai22 — a44)). The covariance term is obtained
as in the additive case yielding c2s{a\2 — <x44). Sub-
stituting into a diploid analogue of eqn (7) yields

//a2 + s(a22 — a422) * 0. (13)

Under random mating this reduces to //, + s{<x3
2 — a4a2)

« 0 .
When s P /i then only alleles 0 and + 1 are at

appreciable frequency, so a4 « a2. Solving eqn (13)
under random mating yields a2 « \/(/i/s). The av-
erage of the phenotypic distribution is

f = E(c1//|) % ca\ = c/i/s.

The second moment is

? = E(c2|//f) = c2a2 * c
2/,,/s.

Thus character variance is

Var(z) % c2/i/s(l —/i/s) x c2/i/s.

Compared with the additive case, the allelic variance
under this scheme of dominance is much larger but the
character variance is approximately the same. Corre-
spondingly, most of the genetic variance is dominance
variance in the form of recessive alleles of low
penetrance. This is an interesting example of how
non-additive variance can be maintained.

When s 4 fi then a4 x 3a2., and solving under
random mating yields a2 x (//,/2s)i The average
character value is E(c|//'|) = 2ca2/n, since the mean
absolute value of a N(0,<r2) variable is \/{2a2/n). The
deviation from the optimum phenotype is considerable
in this case. The second moment is z2 = E(c2|//|2) =
c2a\. The character variance is thus Var(z) =
c2a2

2(\-4/n2).

5. Two loci with epistatic effects on one character

In this section we present an example of epistatic
interactions between two diploid loci. Let allelic
effects be multiplicative within and between loci, zfjkl

= cijkl. In effect, the four alleles jointly determine
phenotype, with the zero allele favored by selection
and dominant to all other allelic states. The other
alleles can be viewed as deleterious recessives, those
with higher values having lower penetrance and
increasingly deleterious effects. Following our usual
procedure under random mating and the assumption
of approximate linkage equilibrium we obtain

(a\ — a.2a
2)+fi x 0. (14)

When ju, <£ s, the gametic variance E(/2) = a2 % a4, as
above. Substitution yields <x2 x (/i/s)^. Character
variance is z2 x c2a\ = c\ii/s){>\ When /i g> s, the
fourth and second gametic moments are related by
a^ x 3a2. Substitution yields the character variance

6. Discussion and conclusions

We have shown how to derive recursion equations for
the moments of allelic effects in a quantitative
character subject to mutation, stabilizing selection
and recombination using the Price (1970, 1972)
equation. The Price equation partitions the change in
a character into the change caused by selection among
parents and the change in transmission from parent to
offspring. The selection term has been used previously
in quantitative genetics (Robertson, 1966; Lande &
Arnold, 1983) but the transmission term has not. We
show that the transmission term can be used to
describe mutation, recombination, and non-additive
interactions such as dominance and epistasis. The
Price equation also provides a simple way to in-
corporate the effects of assortative mating.

For comparable assumptions the recursion equa-
tions we derive for the moments of allelic effects at
individual loci are the same as those derived by
Barton & Turelli (1987; Turelli & Barton, 1989) using
a different method. Our method has the advantage of
being relatively simple and of being easily related to
other models of selection, especially models of kin and
group selection to which the Price equation has been
extensively applied. In addition, the Price equation
applies naturally to traits under frequency dependent
selection (Frank, 1987) or other situations in which
population mean fitness is not maximized. Barton and
Turelli's approach requires that, in their calculations,
the surface of population mean fitness must be
replaced by a fitness surface that depends on genotypic
frequencies.

Although one can derive recursion equations for
the moments of allelic effects, using either our or
Barton and Turelli's method, the resulting equations
are limited in their utility to those cases in which there
is a simple relationship between lower and higher
order moments. At present, only the house-of-cards
and normal approximations lead to a closed system of
equations that can be further analyzed. It appears that
different methods will have to be applied to cases in
which one of these two approximations cannot be
used. We agree with Turelli (1988) that recursion
equations for the moments of allelic effects therefore
should not be regarded as having provided a complete
understanding of the dynamics of quantitative charac-
ters. New approaches and methods will be needed.

We thank M. Turelli, M. Kirkpatrick and R. Lande for help-
ful comments. We were supported financially by the Miller
Institute for Basic Research in Science at Berkeley and by
NIH grant GM40282 to M.S.

Appendix

Here we briefly introduce some of the necessary
recursions for addressing linkage disequilibrium.
Consider a two-locus haploid model with allele / at the
first locus and j at the second. To add the process of

https://doi.org/10.1017/S0016672300025350 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300025350


Mutation-selection dynamics 117

recombination at rate r in this haploid model, let an
individual of genotype ij have offspring ij with
probability 1 - r, and offspring of genotype ift and £j
each with probability r/2, where £ and /? are alleles
obtained from a randomly chosen mate. Let the
expected product of the m and n powers of allelic
effects within an individual be dnm = E (<"/"). Linkage
disequilibrium can be described by the covariance
between alleles at the two loci, which is dn—dwd01.
We have derived a general recursion expression for
the change in these two dimensional moments without
any assumptions about initial distributions or sym-
metry between the loci, denning these moment changes
as Adnm = d'nm — dnm, where primes denote values in
the next time step, and characters are determined by
z = c(i+j). We outline the derivation for n = m = 1.

The derivation of the covariance term for any
values of n and m under the nor-optimal selection
scheme in eqn (3) is

Cov {wtpi
nD = E[(w,,-vv)/"/"]

= sdnm E[

n+l, m+1 + " n , m+2>-

The derivation of the expectation term for any
values of n and m begins with

+ (r/2) [i

-inf,

where M(x) is the change in x between parent and
offspring caused by mutation. The expectation term
for n = m = 1 is relatively easy since mutation does
not affect transmission for these moments:

+ d13)-{r/2)

The overall change wAdn is obtained by adding the
covariance term and the expectation term.

Equations can be similarly derived for dQ1 and d'w,
which together allow for explicit recursions for the
components of linkage disequilibrium and the change
of allelic distributions at each locus. To solve these
equations some further assumptions are needed about
the relationship of lower and higher order moments,
such as selection being much stronger than mutation
so that d13 x du. For example, under the house-of-
cards assumption, the equilibrium linkage dis-
equilibrium can be obtained from the three equations
for Adn, Ad22, and Ad20.
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