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/^-NORMS OF SOME GENERALIZED HAUSDORFF MATRICES 

BY 

B. E. RHOADES 

ABSTRACT. In a recent paper D. Borwein [Math. Z. 183(1983), 483-
487] obtained an upper bound for the lp -norms of some generalized Haus-
dorff matrices, where the sequence {Xn) satisfies the condition \n+\ ^ 
Xn + c, for some positive c. In this paper we obtained the lp -norms of 
these generalized Hausdorff matrices for which the mass functions are 
totally monotone. 

In his dissertation, Cartlidge [4] established a number of sufficient conditions for 
weighted mean operators to be bounded operators on lp,p > 1, and obtained the 
spectra of such operators in some cases. Borewein [1] used the fact that weighted 
mean operators are special cases of generalized Hausdorff matrices to generalize two 
of the results of Cartlidge, dealing with weighted mean operators with increasing 
weights. Borwein's result also includes Theorem 1 of [6]. 

In this paper we obtain the F norms of certain generalized Hausdorff matrices: 
Let {Xn} be a sequence of real numbers satisfying Ao ^ 0, Xn > 0 for n > 0. For 

0 ^ k Û n, define 

(1) A„,(0 = -A, + 1 - . .A„-^- [ ^— - , 0<tu 1, 
2TH JC (A* - z) • • • (A* - z) 

A„*(0+) = A„*(0), 

where C is a positively oriented closed Jordan curve enclosing A ,̂ A*+i,..., Xn. We 
shall accept the convention that Â +i • • • An = 1 when/: = n. 

A generalized Hausdorff matrix //(A, a) is a lower triangular matrix with entries 
defined by 

(2) Xnk = / Xnk(t)da(t), 
Jo 

where a(t) G #V[0,1], continuous from the right at t = 0, and satisfying a(t) = 
[a(t+) + a(t—)]/2 for each 0 < t < 1. Borwein, Jakimowski, and Russell have investi­
gated these matrices as bounded operators on F for/? > 1 [2] and [3], and have used 
them to solve generalized interpolation problems [7]. 
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The choice a(t) — t yields a generalized weighted mean matrix D generated by a 
positive sequence {dn} defined by 

(3) do > 0,Do = (1 + X0)d0lDn = (l+Xn)dn 
n 

= IJ(1 + 1/A*), n > 0. 

With Xn = «, dn — 1 for all n,D becomes the Cesaro matrix of order 1. 
We shall also assume that the {Xn} are strictly increasing, which allows (1) to be 

represented in the form 

(4) Xnk(t) = \k+l ' ' ' \n[tX", . . . , tX"l 0 < t ^ 1, 

where |>A% . . . , tXn] is the divided difference defined by 

[tx\tx^] = (tXk-tx^)/(XM-Xk\ 

and 
[ t X k , . . . , tXn] = [ t X k , . . . , tx"->] - [ t X k + ] , . . . , tXn] 

Xn — Xk 

Theorem A [1, Theorem 1]. If p ^ l ,c > 0 and 

(5) A„+i ^ A„ + c, /z ^ 0, 

and if 

(6) [ rc'p\da(t)\ <oo , 
./o 

then//(A, a) G 5(F) and 

| | / / ( A , a ) | | ^ /" r ^ | J a ( 0 | . 
Jo 

If a(t) is nonnegative and nondecreasing over [0, 1], then it shall be called totally 
monotone. 

THEOREM 1. Suppose //(A, a) G B(lp), a(t) totally monotone. Then (6) exists, where 

(7) [in = [ tKda(t). 
Jo 

We shall first establish the following lemma. 
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LEMMA. Suppose {/iw} has the representation (7), with a(t) G BV[0,1] and nor­
malized. If 

n „i 

SWpn Y](\k+\ + c/p) ' ' ' (A„ + c/p) I 
Jo 

(8) 

[tXk+c/p,... 7 t
Xn+c'/p]da(t) < oo, c > 0, 

f/ẑA2 (6) exists. 

The uniform boundedness of (8) implies, by [8], the existence of a sequence {£„} 
satisfying 

in = [ tX"+C^dl(t) 
JO 

for some 7(0 € BV[0,1] and normalized. 
We may write 

An Cn = / tAnda{t\ 
Jo 

where 

a( r )= / uclpdl(u\ Oût^ 1. 
./o 

For any 0 < e < 1, and any subdivision e = xo < x\ < • • • < xn = 1, 

f r<> |da(0| = lim V X '̂>/P V a « 
/^ max(jc(+i—x)—•()<4—-' ¥ 

= , lim w X ^ " V ( f^Pdl(u)) 
max(xi+l-Xj)-M) *--J \J0 J 

K X/( 

^ ÏÏm^ ^ fM U-ClPUClP\dl(u)\ 
max (*,+]-*,)—+0 , 7JC^ 

= /" |rf7(ii)| ^ | |rf7(ii)|. 

To prove Theorem 1, assume (6) does not exist. Let 0 < rj < 1 and arbitrary. Then, 
from the Lemma, given any M > 0 there exists an integer TV such that n^N implies 

V ( A i + 1 + c/p) • • • (A„ + c/p) / [tXt+c/p,..., tx"+c'p]da(t) > M(l - r?). 

Choose to = e + c/p, 0 < e < 0, and define {an} by 

«o = l,an = X\ •• • X„/(\i + LJ) • • • (Xn + tu),n > 0. 
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Then {an} G F for each e > 0, and with vn = An*a*, for n ^ N, 

v„ = J2 At+i • • • A„ / [rA*,..., fA" ]da{t)ak 

n -1 

= a« y](A*+i + w) • • • (A„ + w) / [/*»,..., ?A"]<ia(0 
t=o -70 

« /-i 

^ a« y)(At+i + c//7) • • • (A„ + c/p) / [fA*,..., tK]da(t). 

Since a(?) is totally monotone, 

n „i 

vn > an V(A t + i + c/p) • • • (A„ + c/p) / [fA'+c/*,..., fW']<fa<0 

Now choose e so that £ " „ < > ( 1 -» j )T,Zo a n- Then 
OO OO OO OO 

and ||//(A, a) | |p > M, a contradiction. 

THEOREM 2. L^̂  //(A, a) be a generalized Hausdorff matrix with a(t) totally mono­
tone and {Xn} satisfying (5) for some c > 0. Then //(A, a) £ B(lp) if and only if (6) 
exists. Moreover, 

\\H(\,a)\\p = [ ridait). 
Jo 

The first part of the Theorem merely combines Theorems A and 1. Since the integral 
exists, using [5, p. 179]. 

n «1 

lim yVA*+1 + c/p) • • • (A, + c/p) / [tXk+c'p,... ; tx»+chda(t) 
n T^o Jo 

= [ rclpda{t). 
Jo 

With 0 < rj < 1 and arbitrary, and {an} as in Theorem 1, choose N so that, for 
n^N, 

r - l 

k=0 

y > * + 1 + c/p) • • • (A, + c/p) [ [tx*+c'r,..., tx"+c'p]da( 

(1—77) A rclpda(t). 
Jo 
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Choose e as in Theorem 1. Then 

( oo \ l/P r oo \ l/P ! / oo \ [/P 

n=0 J \n=N J J° \n=N J 
>(l-V)l+l/p [ rc^da(t)\\a\\p. 

Jo 

Since 77 is arbitrary 

\\H(\,a)\\p^ [ rc'pda(t). 
Jo 

The opposite inequality follows from Theorem A. 
Corollary 2 of [6] is the special case of Theorem 2 with \n — n + a. 
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