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Abstract

The problem of transient two-dimensional transport by diffusion and advection of
a decaying contaminant in two adjacent porous media is solved using a boundary-
integral method. The method requires the construction of appropriate Green's
functions. Application of Green's theorem in the plane then yields representations
for the contaminant concentration in both regions in terms of an integral of the
initial concentration over the region's interior and integrals along the boundaries
of known quantities and the unknown interfacial flux between the two adjacent
media. This flux is given by a first-kind integral equation, which can be solved
numerically by a discretisation technique. Examples of contaminant transport in
fractured porous media systems are presented.

1. Introduction

Contaminant transport by diffusion and advection in porous media has been a
subject of intensive investigation recently. Much of this has been directed toward
fractured porous media, since fractures constitute very effective pathways, the
permeability and porosity of fractures being greater than the surrounding rock.
It is a problem of great environmental relevance with obvious application to
prediction of the consequences of leakage of radioactive or toxic waste from an
underground repository.

Due to the complexities involved in attempting to solve the full transient
two-dimensional problem in two adjacent media, analytical results can only be
obtained by making simplifying assumptions. Specifically the transport in each
medium is assumed to be mutually perpendicular. Then two one-dimensional
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transport equations are obtained and they are coupled via a mass flux term across
their interface [6, 8, 10, 12]. These solutions are only good approximations within
certain ranges of the parameters in the problems. A two-dimensional approach
for steady state contaminant transport in fractured media using Fourier sine
transforms has been developed which gives good analytical approximations [4].

Various numerical approaches to solution of the full problem have been pro-
posed. Finite difference schemes have only proved useful when advection is a
secondary transport mechanism, and are restricted by the use of rectangular
elements. Finite element methods, based on the concept of weighted residuals,
have shown more promise [5, 7, 9]. Many improvements and weighting schemes
have been suggested to alleviate the difficulties of numerical oscillation, but these
have the disadvantage of increasing both the complexity and the computational
expense. In general there is still no convincing justification for the use of spe-
cific weights, apart from the fact that they give close agreement to analytical
solutions for simple examples.

Another numerical approach is based on Green's theorem in the plane and
the construction of an appropriate Green's function in each region where the un-
known contaminant concentration is sought. Taigbenu and Liggett [11] consider
a diffusion-advection transport equation in a single medium using this method.
However, since they only employ the two-dimensional free-space Green's function
solution of Laplace's equation, their expression for the contaminant concentra-
tion contains an integral over the region's interior (even when the initial concen-
tration is zero), which must be evaluated using a finite element type technique.

In this paper we shall describe a new numerical method for solving the full
two-dimensional transport problem in adjacent porous media. The governing
equations are solved using a more complete Green's function treatment than
that in Taigbenu and Liggett. Representations for the contaminant concentra-
tion in the interior of each medium are obtained in terms of an integral of the
initial concentration over the region's interior, and boundary integrals of known
quantities and the unknown interfacial flux between the two media. Applying the
condition of continuity of the concentration across the interface gives a first-kind
integral equation to be solved for this unknown flux. This method will be applied
to examples commonly studied in fracture-matrix systems. The steady-state be-
haviour of such systems was discussed in a previous paper by Fogden, Landman
and White [3], where a boundary-integral method was successfully implemented.

2. Transport equation

The general governing equation of two-dimensional contaminant transport in
a saturated porous medium is, from Bear [2]:
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Rdc/dt + V • (Vc - D • Vc) + XRc = 0, (1)

where c is the contaminant concentration, V is the groundwater velocity vector
(VijVb), D >s t n e hydrodynamic dispersion tensor, A is the decay constant and
R is the retardation coefficient due to adsorption of contaminant on the surfaces
of the material making up the porous medium. The hydrodynamic dispersion
tensor represents the process of dispersion due to fluid velocity variations and
molecular diffusion. There is considerable discussion as to these coefficients'
dependence on the flow field and media properties. With Bear's definition [2],

t \ / = l ,2 (2)

where ai, and aj- are the longitudinal and transverse dispersivities, r is the
tortuousity and D* is the molecular diffusion coefficient.

Typical boundary conditions for this equation are

(i) concentration c specified on part of the boundary,

(ii) normal mass flux (per unit area of porous medium), 0(Vc — D • Vc) • n,
(where 9 is the medium's porosity), specified on the remaining parts of the
boundary, where n is the outward unit normal to the boundary. The initial
concentration will also be known.

3. Boundary integral formulation

Introduce an operator E, defined in terms of an arbitrary function
= u(x,y,t), by

(3)

The operator E* defined by

fdv1 dv2 OR \
- -5 1- -5 — + \R)u

\ dx dy dt J
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is the adjoint of E since

(5)
It is convenient now to define a mass flux vector (per unit area of voids)

Q(w) = Vu - D • Vu. (6)

Then (5) can be written in a simpler form as

uE*w - wEu = — (Ruw) + V • (Vuw - uQ(w) + wQ(u)). (7)

If we replace x,y,t in (7) by the integration variables x',y',t', integrate the
equation over an arbitrary region Q in the plane, bounded by the closed curve
F, and integrate over 0 < t' < T for a T > t, then by Green's theorem in the
plane, we obtain

/ / / (uE*w - wEu) dx' dy' dt'= I I (Vuw - uQ{w) + wQ(u))-n ds dt'
Jo J Jn Jo Jr

+ f f ((fl««0t'=r - (Ruw)v=o) dx' dy',

(8)
where n is the outward unit normal to the boundary and ds is an element of
boundary arc length.

Now choose the function u to be the contaminant concentration c, so that
from (1) and the symmetry of D (from (2)), Ec = 0, and choose the function w
to be the Green's function G satisfying the following partial differential equation
(with respect to the primed variables).

E*G{x, y, t\x', y', t') = 6(x' - x)6(y' - y)6(t' - t), (9)

where the right-hand side is a product of delta functions. Then (8) simplifies to

c(z,y,t)= f <f{\cG-cQ{G) + GQ{c))-ndsdt'

r f f r (10)

- / / (RcG)t'=odx'dy'+l I {RcG)v=Tdx'dy'.
To solve the initial-value problem it is necessary for there to be no contribution
to c(x, y, i) for values of t' > t; hence we set

G = 0, t'>t. (11)
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Therefore the last integral in (10) vanishes, and the upper limit of integration in
the first integral can be replaced by t:

c{x,y,t)= I I {VcG-cQ{G)+GQ{c))ndsdt'- f f (RcG)t>=odx' dy'. (12)
Jo Jr J Jn

So we have a representation for the contaminant concentration in the interior
region of a porous medium in terms of (i) integrals along the region's boundaries
and their value at all previous times and (ii) an integral of the initial concentra-
tion over the region's interior. For this representation to be useful, appropriate
boundary conditions must be imposed on the Green's function. Progress has
then been made provided that the solution of (9), subject to (11) and these
boundary conditions, is a simpler task than solution of the original problem.

For those parts of the boundary F where the concentration c is prescribed, it
is appropriate to choose G — 0, while over the remaining parts of F where the
normal mass flux 0Q(c) • n is specified, the boundary condition on G should be
(VG - Q(G)) n = (D VG) • n = 0. Then the representation in (12) involves
integrals along the boundaries of known quantities (concentration or mass flux)
at previous times and an integral of the given initial concentration.

4. Two medium problem

In many physical situations, contaminant can be transported into two adjacent
porous media, each with its own characteristic parameters (D, V, R, 6). One way
to treat such a problem is to consider all the parameters as functions of position
(x,y). In general the Green's function solution cannot be obtained analytically
so that the boundary integral representation in (12) is not useful. However if
each medium has constant (but different) parameter values another approach is
available. This involves applying the above boundary integral solution technique
to each of the media separately. Then in each medium the concentration has a
representation which involves quantities on the boundaries of the region. One
of these boundaries is the interface between the two media, across which the
contaminant concentration and normal mass flux must be continuous. Hence
if the Green's function in each region is chosen to satisfy (VG — Q(G)) • n =
(D • VG) • n = 0 along the interface, the concentrations in both regions have
representations in terms of integrals along their boundaries of known quantities
and unknown interfacial normal mass flux. This latter term in each medium has
the form

( L
Jo Jbo
, /interface GQ(c).ndsdt'
10 J boundary

where 0Q(c) • n is the unknown interfacial flux (the Green's function will be
different for each region). The continuity of concentration at the interface gives
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an equation for this interfacial flux in the following way. Evaluate the integral
representations for c in each medium along the interface boundary (it can be
shown that each integral representation is valid not only in the interior of the
medium but also along the interfacial boundary since the Green's function ef-
fectively satisfies a zero flux Neumann condition there). By equating these two
expressions, an integral equation of the first kind for the interfacial mass flux is
obtained. When this integral equation is solved (numerically) then the concen-
tration everywhere in the two medium system at all times can be obtained.

In the next section this technique is applied to contaminant transport in a two
medium system of wide interest, namely fractured porous media, which consists
of fractures surrounded by a porous rock matrix. In Section 7 we discuss the
integral equation for the interfacial flux which is applicable to any two medium
problem.

5. Fracture-matrix systems

The occurrence of fractures in porous media is an important factor in the
movement of a contaminant by diffusion and advection. They constitute very
effective pathways, since the permeability and porosity of fractures are greater
than those of the surrounding rock or soil.

A typical scenario in contaminant transport concerns a contaminant source
in the vicinity of a fracture network leading to a freshwater aquifier. Since such
networks may feasibly be of extremely intricate connected or disconnected form,
attention is restricted to mathematically tractable "worst case" situations of uni-
form vertical fractures of constant width in uniform saturated porous media. In
this section, the groundwater velocity is assumed to be vertical and constant in
the fracture and the porous rock matrix. Also, it is assumed that in both regions
contaminant diffusion occurs in both the vertical and horizontal directions. Fur-
ther, absorption onto the matrix face and within the matrix and decay of the
contaminant are all incorporated into this model.

Then the transport equation (1) in a single medium reduces to

+ xRc o (is)
ay

when V = (Vi, Vb) = (0, V) and all the transport coefficients and physical prop-
erties of the medium are constant. The boundary integral representation (12)
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becomes

« «•».'>-jfjf ft. ( « £ - < £ ) * ' * '

- f fR{cG)t.=odx'dy'

where the Green's function satisfies (9) and (11) with the adjoint operator E*
defined by

% pi ^ ^ (15)

Equations (13), (14) and (15) are valid for both the fracture and matrix regions,
but the values of R,D\\,Dii and V are particular to each region. We shall use
superscripts / and m on these parameters, to signify their value in the fracture
and matrix respectively. We will analyse the transient contaminant transport
for two "worst case" fracture-matrix systems. The steady state problems are
considered in [3, 4]. In both cases we let b denote the half fracture width.

The first case is that of a porous medium, modelled by a half-plane, containing
a single vertical fracture of infinite length, as shown in Figure l(a). As in the
previous paper [3], "worst case" considerations lead to the assumption that the
boundary condition at y = 0 is symmetric in x. Hence this symmetry is passed
on to the entire problem and we need only solve the fracture transport equation
in the region 0 < x < 6, y > 0 and the matrix transport equation in the region
x > b, y > 0, imposing the boundary conditions

c(x, 0, t) = S{x, t), x > 0, t> 0, (16a)

dc
— (O,y,t) = O, y>0,t>0, (16b)

dc
— (x,y,t) -+ 0, x -» oo, y > 0, t > 0, (16c)

c(x, y,t)-+O, y -> oo, x > 0, t > 0 (16d)

and initial condition

c(x, y, 0) = co(x,y) x > 0, y > 0. (16e)

Here the arbitrary functions S(x,t) and co(x,y) represent the source distribu-
tion of the contaminant at the top of the fracture-matrix system and the initial
contaminant distribution in the system respectively.

The second case is that of a porous medium, again modelled by a half-plane,
containing an infinite set of identical vertical fractures, of infinite length, with
axes at equal spacing. This geometry is illustrated in Figure l(b), where B is
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FIGURE 1. Configuration of the fracture-matrix system, (a) Single fracture problem
(b) Periodic array of fractures problem.

the half fracture spacing. We assume that the boundary condition at y = 0
is symmetric about the axis of symmetry of each fracture and each intervening
porous block. Then the entire problem possesses these symmetries and we need
only solve the fracture and matrix transport equations in the regions 0 < x < b,
y > 0 and b<x<B,y>0 respectively. The appropriate boundary conditions
for this geometry are then

c(x,0,t) =S(x,t). x>0,t>0, (17a)
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(17b)

(17c)

c(x,y,t)->0, y->oo, 0<x<B, t>0 (17d)

and the initial condition is

c(z,2/,0)=co(x,y), 0<x<B, y>0. (17e)

Note that the single fracture problem can be viewed as a special case of this
periodic array of fractures problem in which the half fracture spacing B is infinite.

Finally, for both geometries the problems in the fracture and matrix regions
are coupled via the continuity of concentration and mass flux at the fracture-
matrix interface. This yields the two conditions

c(b+,y,t)=c(b-,y,t) (18a)

where 6m represents the matrix porosity, while the fracture porosity 9* is usually
assumed to be unity.

We now apply the boundary integral solutions (14) to the fracture and ma-
trix regions separately for each of the two geometries considered. For both the
single fracture and periodic array of fractures problems, the fracture region is
0 < x < b, y > 0. We choose the Green's function G — G? in this region to be
the same for both cases. It is the solution of (9) with E* given in (15) (with an
/ superscript added to R,Du,D22, and V in the partial differential equation)
subject to

Gf{x, y, t\x', 0, t') = 0, 0 < x' < 6, t' > 0, (19a)

dxT(x,y,t\O,y',tl) = O, y'>0,t'>0, (19b)

(x,y,t\b-,y',t')=O, y'>0,t'>0, (19c)
dx'

Gf{x,y,t\x',y',t')^0, y' -f oo, 0 < x' < b, t' > 0, (19d)

Gf(x,y,t\x',y',t') = 0, t' > t, 0 < x' < b, y' > 0. (19e)

The solution is given in the next section. Then, from (14), we have the following
representation for the concentration in the fracture region:

c(x,y,t) = -D[x f [°°G'(x,y,t\b~,y'',t')|^(6",2/',t')dy'dt' + l'(x,y,t),
Jo Jo ox

(20)
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where the known function V is the contribution from the integration along the
top of the fracture and the integration of the initial distribution of the contami-
nant in the region:

ft rb &f~if
I1 (x,y,t) = — -̂'22 / / S(X ,t J—— (z, j / , t\x , 0, t J oz at

Jo Jo oy'

-Rf f°° f co(x',y')Gf(x,y,t\x',y',0)dx'dy'.
Jo Jo

(21)

The matrix region for the single fracture and periodic array of fractures problems
are x > b, y > 0 and b < x < B, y > 0 respectively. So the Green's function
G = Gm, which is the solution of (9), using (15), (now with the addition of a
m superscript to R,Du,D22, and V in the partial differential equation) in this
region will clearly be different for each case. For the single fracture problem we
impose the conditions:

Gm{x,y,t\x',0,t') = 0, x'>b,t'>0, (22a)

',t') = O) y'>0,t'>0, (22b)

Oc,y,<|z,2/,0^0, z ' ^oo , y'>0, t'> 0, (22c)

Gm(x, y, t\x', y', t1) - 0, y' -> oo, x' > b, t'> 0, (22d)

Gm(x, y, t\x',y', f) = 0, t' > t, x' > b, y1 > 0, (22e)

while for the periodic array of fractures problem we choose

Gm(x,y,t\x',0,t') = 0, b<x' < B, t' > 0, (23a)

',t') = O, y'>0,t'>0, (23b)

(x,y,t\B,y',t')=0, y' > 0, t' > 0, (23c)

Gm(x, y, t\x', y', t') - ^ 0 , y' -> oo, b < x' < B, t' > 0, (23d)

Gm(x,y, t\x',y', f) = 0, t'> t, b < x'< B, y'> 0. (23e)

The solution to these problems is given in the next section. In both cases the
representation for the concentration in the matrix region can be expressed as:

/"* f°° flr
c(z,y1t) = D?1 / Gm(x,y>t\b+,y',t')^(b+,y',t')dy'dt' + Im(x,y,t),

Jo Jo ox
(24)

where again Im is a known function. It is given by

f* f°° , , dGm , „ , ,
jm(x y i) = D I I Six ti (x v t\x 0 t)dxdt

22JoJb dy'
_Rm f°° I"*cotf,v')Gm(z,y,t\x'ty',0)dx'dy'

Jo Jb

(25a)
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for the single fracture problem and

Im(x,y,t)= -D%J J S{x\t')^{x,y,t\x' Mdx' dt

-Rm ^ fBco{x\y')Gm{x,y,t\x',y',0)dx'dy'
JO Jb

(25b)

for the periodic array of fractures problem.
In this analysis, we assumed that there is a source distribution at y — 0,

namely S(x,t), along the whole fracture-matrix system. Another typical bound-
ary condition is:

c(x, 0, t) = S(x, t) in the fracture

6m \-D?2p-{x,0,t) + Vmc{x,0,t)] =F{x,t) in the matrix

where F(x, t) is the mass flux per unit area of matrix across the top of the porous
matrix. Clearly the fracture Green's function, G*, and the representation for
the fracture concentration, (20), remain the same if condition (26) applies, with
I* denned in (21). When the concentration is subject to a known mass flux
F(x, t) instead of a source distribution, the boundary condition on Gm at y' = 0
must be modified in order to obtain a representation of the matrix concentration
in terms of known functions on the boundary. Instead of conditions (22a) and
(23a) we require for both geometries

f)Cm

^r(x,y,t\x',0,t') = 0 (27)

on all the x' matrix domain and t' > 0. Using a generalized notation, the
representation for the matrix concentration, (24), remains valid, but the Gm

and Im will be different for both geometries. It can be easily verified that

Im(x,y,t) = --}- [ rF(x',t')Gm(x,y,t\x',O,t')dx'dt'

Joo',00 (28a)
-Rm / co(x',y')Gm(x,y,t\x',y',0)dx'dy'

JO Jb

for the single fracture problem and

Im(x,y,t)= - ± f fBF(x',t')Gm(x,y,t\x',O,t')dx'dt'

°fd\B (28b)
-Rm / co(x',y')Gm{x,y,t\x',y',0)dx'dy'

Jo Jb
for the parallel array of fractures problem. The Green's functions Gm will be
given in the next section.

We return now to a unified discussion of the concentration representations in
the fracture and matrix regions, given in (20) and (24). It must be emphasised

https://doi.org/10.1017/S0334270000006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006214


262 K. A. Landman [12]

that we are employing a generalised notation here. The explicit forms of G?,
Gm, if and Im are dependent upon which of the two geometries and which of
the two types of concentration boundary conditions at the top of the matrix
region is being considered.

Let the mass flux in the matrix, at the fracture-matrix interface, be denoted
by

J(y,t) = 8mD?1!g(b+,y,t). (29)

Then applying the interfacial conditions (18a) and (18b) to (20) and (24) gives
expressions for the concentration everywhere in the system in terms of J:

c(x,y,t) = -jj j l°° Gf(x,y,t\b-,y',t')J(y',t')dy'dt' + If(x,y,t) (30)

in the fracture and

c(x,y, o = i - ! r °m^y> *i6+'*/'>''W. *') dy'dt>+/m(x'2/'')
" JO JO

in the matrix, and an integral equation of the first kind to be solved for J:

= lf(b-,y,t)-Im(b+,y,t).
(32)

6. Fracture and matrix Green's functions

The fracture Green's function is found by making the transformation

G'(x, y, t\x', y', t') = ^ exp (^-{y' - y)\ H*(x, y, t\x', y\ t') (33)

and then solving the self-adjoint equation for H* using standard Fourier series
and transform techniques. It can be written as

H'{x,y,t\x',y',t') = (h{(\Xl -x2\,yut- t') + h{(Xl +x2,yut- t'))

- {h{{\xi - X2\, J/2, *-* ' ) + h{iXl + X2, 2/2, t - 0 )

where the function h{ is defined as

https://doi.org/10.1017/S0334270000006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006214


[13] Transport in adjacent porous media 263

Here the prime on the summation symbol signifies that the n = 0 term is
weighted by one half. The symbols introduced in the above two equations are
defined as

xi = \x' - b\, x2 = \x- b\ (36a)

2/i = Is/' — 2/1, V2=y'+y (36b)

lf=b- (36c)

(36d)

The matrix Green's function for both geometries and boundary condition at
y' = 0 is initiated by making the transformation

Gm(x,y,t\x',y',t') = ^ Hm(x,y,t\x',y',t'), (37)

and then solving the self-adjoint equation for Hm using standard techniques.
The solutions for both geometries and boundary conditions are given in Table 1
in terms of the following functions

h?{Xl Y, T) = — = exp —- >
y/D

m
2R

mir lm VT \ 4£>22 T ) ^Q
(38a)

(38b)

(38c)

The symbols introduced here are

lm = (B - b)/ir

(38d)

(39a)

(39b)

Note that the expressions for hm and hm can be viewed as discretisations of the
Fourier cosine transform integrals defining the functions hm and hm in which the
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integral is replaced by an infinite sum of rectangle areas. Further, these discreti-
sations converge to the exact integrals as B — b —• oo. So the Green's function
for the periodic array of fractures problem reproduces the Green's function of
the single fracture problem in the limit of the intervening porous block width
becoming infinite, as expected. It should also be noted that if the functions in
the boundary conditions, namely S and F are independent of time, the inte-
gral representations of c(x, y, t) in the limit as t —> oo, that is the steady state
concentration, reduce to those in [3].

7. Integral equation

In the fracture-matrix systems above we have shown that the concentration in
each region can be written in terms of an integral of the interfacial mass flux J
and that this flux is the solution to an integral equation of the first kind. In fact
it follows from the discussion in Section 4 that this is true for any two adjacent
media problem. Hence the concentration of contaminant in a two media system
is determined at any position at any time once an integral equation of the form

f'f
JO Jb

interface * f o , V''> * " *')^(2/'5 *') <V ^ ' = ?(», 0 (40)
boundary

is solved for the interfacial flux J. Here «/' is the variable which parametrises the
interface boundary and the functions K and g are known. The kernel if is a linear
combination of the Green's functions in the two media and clearly its dependence
on t and t' is only through t — t'. The function g is composed of integrals
dependent on the Green's functions and the concentration boundary and initial
conditions. Analytical solution of this integral equation is not possible in general.
We briefly outline an efficient and reliable numerical procedure for solving this
equation. The discretisation procedure is analogous to the one described and
implemented in our previous paper on the steady state problem [3].

If the interface boundary has infinite length then the infinite integration range
in y' must be replaced by a finite range, say [0, A] for some sufficiently large
value of A. Hence for both a finite and infinite length boundary, we consider the
equation

rt rA
/ / K{y,y',T)J{y',t-T)dy'dT = g{y,t) (41)
Jo Jo

where for convenience we have changed the if integration variable to r = t — t'.
Now partition the finite y' integration range using the set of points {j/yJyLx,
where

j / i = A / 2 ; yj+1 = Vj + A, j = 1,2,... ,N - 1; yN + (A/2) = A. (42)
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(This can be easily extended to nonequal A / s , j = 1,2, ...,N). Further let

t = n6, n — 1,2, Then provided that the function J(y, t) is sufficiently
slowly varying in each subinterval of width A in y and 5 in t,

f I K(y,y',r)J(y',t-T)dy'dT
Jo Jo

/

ro ryj-i-ii/i

/ K{y,y',T)dy'dT
j-l)sJy,-A/2

(43)
so that equation (41) has the approximate form

- " rrS ry,+ A/2
/ / K(y, y', T) dy' dr = g{y, n6),
J(r-l)S Jy, 0<y<A, n = l ,2 , . . . . (44)

Choosing y = yx, i = 1,2,...,N, in this equation produces for each value of
n a system of N simultaneous linear equations for the unknown J{y,t) values
at each of the ./V points of the interface boundary partition evaluated at times

Using matrix notation we have

KWj{S/2) = g(6) (45a)
n

K^J((n - 1/2)5) = g{nS) - ^ RWj((n - r + 1/2)5) n = 2,3,... (45b)
r=2

where

/

rS ry}+A/2

/ K{yuy',r)dy'dT (46a)
J(a) = ( . / » ) , 7,(0) = ^ , ^ (46b)
g(a) = (ffi(a)), ffi(a) = ff(w> a). (46c)

Therefore, once J(<5/2) is calculated from (45a) the J(3«5/2), J(5«5/2),...,
J((n - l/2)<5) can be obtained in succession using (45b). The simplicity of
this time-stepping procedure lies in the fact that the matrix which multiplies
the unknown J((n — 1/2)5) is always K ^ . The entries of this matrix must
be computed with sufficient accuracy to ensure reliable values of J. For the
fracture-matrix systems discussed in Sections 5 and 6, the kernel function in
(46a) defining K^1) is singular at r = 0. The y' and then the r integration can
be performed analytically with the help of tables [1]. In general, if analytical
expressions for the integrals cannot be obtained, then the singular part of the
kernel should be integrated analytically, while the remainder can be integrated
using quadrature (as discussed and implemented in [3]).
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The integral representation for the concentration in each region can be discre-
tised in a similar fashion using the partition {yj} along the interface boundary
and t = n6 (n = 1,2...).

8. Conclusion

A general method using boundary integral techniques has been proposed for
the solution of contaminant transport by two-dimensional diffusion and advection
into two adjacent porous media. The method reduces to solving an integral
equation for the mass flux on the interfacial boundary between the two media.
The method has been outlined in detail for certain fracture-matrix systems, but
can easily be applied to other types of problems.
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