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Abstract

We study collision probabilities concerning the simple balls-and-bins problem developed
by Wendl (2003). In this article we give the factorial moment of the number of collisions.
Moreover, we obtain a Poisson approximation for the number of collisions using the
Chen–Stein method.
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1. Introduction

There is an enormous body of literature on occupancy problems which are focused on
combinatorial arguments and limit probabilities. In regard to these problems the reader should
see standard textbooks by Johnson and Kotz [8] and Kolchin et al. [10]. Wendl [14] proposed
the following natural occupancy problem, keeping effective implementations in mind:

Throw m black balls, denoted by A, and n white balls, denoted by B, into t bins. What is the
probability that the number of bins containing both colors, that is, the number of collisions
between A and B, is k?

Wendl referred to some attractive applications, for example, collisions of airborne planes, celes-
tial objects, and transportations. In particular, he concretely calculated numerical probabilities
concerning a DNA clone mapping problem (see [14] and [15]). On the other hand, Wendl’s
occupancy problem is regarded as a random coloring problem on a complete bipartite graph
constructed by vertex sets A and B. Namely, consider that all the vertices of A and B are
independently colored from a uniform distribution on {1, . . . , t}. Then we would like to know
the probability that the number of maximal subtrees constructed by the same color vertices
is k. Krivelevich and Nachmias [11] studied a variant of the problem, that is, the asymptotic
probability of the existence of a proper coloring for a complete bipartite graph with the same
number of vertices on each side.

Let us return to Wendl’s occupancy problem. We denote by X = X(m, n, t) the number
of collisions between A and B. Wendl [14] gave an exact expression for the no collisions
probability, P(X = 0), formulated via graph theory. Moreover, Nakata [12] gave not only
P(X = 0) but also P(X = k) for 0 ≤ k ≤ min{m, n, t} using the method of enumerating
surjections with Stirling numbers of the second kind (see [5, Section II.3.1]). On the other
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hand, Wendl [15] studied another extension of P(X = 0) using the match number between A

and B denoted by
∑t

l=1 min{αl, βl}, where αl and βl are the number of respective balls of A

and B that exist in the lth bin. In this article we develop some combinatorial arguments to give
the explicit form of a (descending) factorial moment of X, whose definition is given in, for
example, [8, p. 51].

Using the factorial moment, we study asymptotic probabilities of the number of collisions.
We are especially interested in the Poisson law of small numbers for X. Intuitively, if E(X)

is small, X should be approximately Poisson distributed with parameter E(X). Note that
X is not a sum of independent and identically distributed random variables. Therefore, it
is difficult to effectively use a standard technique of characteristic functions (Fourier trans-
formations). So in this article the Poisson convergence is shown by the moment method
(see [10, Section I.1]). Indeed, we estimate the limit of the factorial moment of X. The
traditional approach to the Poisson paradigm is called Brun’s sieve (see [1, Theorem 8.3.1] and
[13, Proposition 10.1.1]). Moreover, we obtain an error bound for the Poisson approximation
using the Chen–Stein method, which is applicable to a sum of weak dependent random variables
(see [2], [3], [6], and [13]). It gives a substantial bound between the actual distribution and
the target Poisson distribution. Determining the number of empty bins remaining when balls
are thrown randomly into some bins is a typical example of a Poisson approximation; see
[6, Example 4.12 (14)] and [13, Example 10.2 (B)]. The use of the Chen–Stein method in
this article is based on these examples. Moreover, we give a numerical example of the error
bounds.

The plan of the article is as follows. In Section 2 we state the factorial moment of X

(Theorem 2). Moreover, in Subsection 3.1 we show the Poisson law of small numbers
(Theorem 3). Finally, in Subsection 3.2 we use the Chen–Stein method to obtain an error
bound for the Poisson approximation (Theorem 4).

2. Combinatorial results

We begin by introducing the following combinatorial notation. First, let
{
n
k

}
denote

Stirling numbers of the second kind, which is inductively defined as follows: let
{0

0

} = 1,

{
n

0

}
=

{
0

k

}
= 0

for n, k �= 0, and {
n

k

}
=

{
n − 1

k − 1

}
+ k

{
n − 1

k

}
for n, k ∈ Z.

Various notation for Stirling numbers of the second kind exists. We use the notation
{
n
k

}
proposed in [9], since its usage is now widespread. Second, let (t)k denote

(
t

k

)
k! = t (t − 1) · · · (t − k + 1)

for nonnegative integers t, k ≥ 0. Note that (t)0 = 1 for t ≥ 0 and (t)k = 0 for t < k.
Recall that the integer-valued random variable X denotes the number of collisions between

A and B. Wendl [14] and Nakata [12] investigated the k collisions probability P(X = k) for
any 0 ≤ k ≤ min{m, n, t}.

https://doi.org/10.1239/jap/1214950358 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1214950358


432 T. NAKATA

Theorem 1. ([12], [14].) Throw m black balls and n white balls into t bins. Then the probability
of k collisions, P(X = k), is, for 0 ≤ k ≤ min{m, n, t},

P(X = k) = 1

tm+n

m∑
i=k

n∑
j=k

{
m

i

}{
n

j

}
(i)k(j)k(t)i+j−k

k! .

Note that P(X = k) = 0 if k > min{m, n, t} is trivial. Now we show the factorial moment
of X.

Theorem 2. The factorial moment of X is the following: for 1 ≤ l ≤ t ,

E((X)l) = (t)l

( l∑
i=0

(
l

i

)
(−1)i

(
1 − i

t

)m)( l∑
j=0

(
l

j

)
(−1)j

(
1 − j

t

)n)
. (1)

In particular, the expectation is

E(X) = t

(
1 −

(
1 − 1

t

)m)(
1 −

(
1 − 1

t

)n)
. (2)

We use two combinatorial lemmas in Subsection 2.1 to obtain the factorial moment, (1).
After proving (1), we point out that X is represented by a sum of dependent random variables
to recheck (2).

2.1. Proof of (1)

We prepare two combinatorial lemmas to calculate the factorial moment. It is known that

∑
j≥0

{
n

j

}
(t)j = tn for n ≥ 1 and t > 0 (3)

(see [9, Section 2.6]). The following lemma generalizes (3) and [12, Lemma 1].

Lemma 1. For any l = 1, . . . , min{n, t}, we have

∑
j≥0

{
n

j

}
(t)j (j)l = (t)l

∑
j≥0

(
l

j

)
(−1)j (t − j)n. (4)

Proof. It is well known that

(
t

k

)(
s

k

)−1

=
(

s − k

t − k

)(
s

t

)−1

(5)

(see [9, Equation (20)]). Using (5), we deduce that (4) is equivalent to

∑
j≥0

{
n

j

}(
t − l

j − l

)
j ! =

l∑
j=0

(
l

j

)
(−1)j (t − j)n. (6)
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Therefore, we check (6) by induction with respect to l. If l = 0, both sides of (6) are equal to
tn by (3). Now assume that (6) holds for l. Then the right-hand side of (6), for l + 1, is

l+1∑
j=0

(
l + 1

j

)
(−1)j (t − j)n

=
l+1∑
j=1

(
l

j − 1

)
(−1)j (t − j)n +

l∑
j=0

(
l

j

)
(−1)j (t − j)n

= −
l∑

i=0

(
l

i

)
(−1)i(t − 1 − i)n +

l∑
j=0

(
l

j

)
(−1)j (t − j)n

= −
∑
j≥0

{
n

j

}(
t − 1 − l

j − l

)
j ! +

∑
j≥0

{
n

j

}(
t − l

j − l

)
j !

=
∑
j≥0

{
n

j

}((
t − l

j − l

)
−

(
t − l − 1

j − l

))
j !,

which is equal to the left-hand side of (6).

Note that if l = t for (4) then we have

∑
j≥0

{
n

j

}
(t)j (j)t = t !

{
n

t

}
.

We now state the second lemma, which generalizes [12, Lemma 2].

Lemma 2. For any 0 ≤ l ≤ min{i, j} ≤ max{i, j} ≤ t ,

min{i,j}∑
k=0

(
i

k

)(
j

k

)(
t

i + j − k

)(
k

l

) / (
i + j

k

)
=

(
i

l

)(
j

l

)(
t

i

)(
t

j

) / (
i + j

i

)(
t

l

)
.

Proof. Using (5), we have

(
i

k

)(
i + j

k

)−1

=
(

i + j − k

i − k

)(
i + j

i

)−1

=
(

i + j − k

j

)(
i + j

i

)−1

and
(
i
l

)(
t
l

)−1 = (
t−l
i−l

)(
t
i

)−1
. Therefore, Lemma 2 is equivalent to

min{i,j}∑
k=0

(
i + j − k

j

)(
j

k

)(
t

i + j − k

)(
k

l

)
=

(
t − l

i − l

)(
j

l

)(
t

j

)
.

Multiplying both sides of the above equation by (
(
j
l

)(
t
j

)
)−1 and applying (5) again, we obtain

min{i,j}∑
k=0

(
t − j

i − k

)(
j − l

k − l

)
=

(
t − l

i − l

)
,

that is, the Vandermonde formula (see [9, Equation (21)]).
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Let us return to the proof of (1). By Lemma 2, it is easy to see that

∑
k

(k)l
(i)k(j)k(t)i+j−k

k! =
∑
k≥l

(i)k(j)k(t)i+j−k

(k − l)! = (i)l(j)l(t)i(t)j

(t)l
. (7)

Under these preliminaries, we show the factorial moment of X:

E((X)l) =
∑

k

(k)l P(X = k)

= 1

tm+n

∑
k≥l

m∑
i=k

n∑
j=k

{
m

i

}{
n

j

}
(i)k(j)k(t)i+j−k

(k − l)!

= 1

tm+n

m∑
i=0

n∑
j=0

{
m

i

}{
n

j

} ∑
k≥l

(i)k(j)k(t)i+j−k

(k − l)!

= 1

tm+n

m∑
i=0

n∑
j=0

{
m

i

}{
n

j

}
(i)l(j)l(t)i(t)j

(t)l

= (t)l

l∑
i=0

l∑
j=0

(
l

i

)(
l

j

)
(−1)i+j

(
1 − i

t

)m(
1 − j

t

)n

.

The fourth equality holds by (7). The last equality holds by Lemma 1. This completes the proof
of (1).

2.2. Proof of (2)

Now we give another approach to show (2). The number of collisions X may be written as
X = ∑t

i=1 ξi , where

ξi =
{

1 if the collision occurs in the ith bin,

0 if the collision does not occur in the ith bin.
(8)

Note that the {ξi} are not independent. However, since the actions of throwing a ball are
independent,

P(ξi = 1) = P(A(i) ∩ B(i)) = P(A(i)) P(B(i)) =
(

1 −
(

1 − 1

t

)m)(
1 −

(
1 − 1

t

)n)
,

where A(i) and B(i) denote the events that there exist some balls from A and B in the ith bin,
respectively. Hence, we have

E(X) =
t∑

i=1

E(ξi) =
t∑

i=1

P(ξi = 1) = t

(
1 −

(
1 − 1

t

)m)(
1 −

(
1 − 1

t

)n)
.

3. Asymptotic results

First we directly show the asymptotic properties of E(X(m, n, t)) for sufficiently large m,
n, and t . For convenience, we use the following notation.

• an = ω(bn) is defined by limn→∞ an/bn = ∞.
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• an = O(bn) is defined by supn an/bn < ∞.

• an = o(bn) is defined by limn→∞ an/bn = 0.

• an ∼ bn is defined by limn→∞ an/bn = 1.

By (2), the following claims hold.

1. If min{m, n} = ω(t) then E(X(m, n, t))/t ∼ 1.

2. If min{m, n} = o(t) then E(X(m, n, t))/t = o(1).

3. In particular, if m ∼ αt and n ∼ βt for α, β > 0 then

E(X(m, n, t))

t
∼ (1 − e−α)(1 − e−β). (9)

For a more detailed discussion of (9), we state the weak law of large numbers for X/t under
some strong conditions in the following proposition.

Proposition 1. If m ∼ αt and n ∼ βt for α, β > 0 then

lim
t→∞

X

t
= (1 − e−α)(1 − e−β) in probability.

Proof. The proof is based on a trivial estimate of var(X) derived from E((X)2). Since
var(X) = E(X2) − (E(X))2, we obtain

var(X) = t2((2a1 − 1)(b2
1 − b2) + (2b1 − 1)(a2

1 − a2) − (a2
1b2

1 − a2b2))

− t ((2a1 − 1)(b1 − b2) + (2b1 − 1)(a1 − a2) − (a1b1 − a2b2)),

where

a1 =
(

1 − 1

t

)m

, a2 =
(

1 − 2

t

)m

, b1 =
(

1 − 1

t

)n

, b2 =
(

1 − 2

t

)n

.

Assume that m ∼ αt and n ∼ βt . Then we have

lim
t→∞ a1 = e−α, lim

t→∞ a2 = e−2α, lim
t→∞ b1 = e−β, lim

t→∞ b2 = e−2β.

Therefore, limt→∞ var(X)/t2 = 0. Since var(X/t) = var(X)/t2 → 0 as t → ∞, we see that

lim
t→∞

X

t
= (1 − e−α)(1 − e−β) in probability,

by [4, Theorem 5.4].

Under some strong conditions, we give a Poisson convergence of X in Subsection 3.1 and
the error bounds concerning the convergence in Subsection 3.2.
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3.1. The Poisson law of small numbers

Before stating Poisson limit theorems, we introduce some notation. Let L(X) denote the
distribution of the random variable X. We define the total variation distance between two
distributions as

dTV(L(X), L(Y )) = 1

2

∑
k≥0

| P(X = k) − P(Y = k)|.

Moreover, we define limt→∞ L(Xt )
d= L(Y ) if limt→∞ E(f (Xt )) = E(f (Y )) for all bounded

continuous functions f , where ‘
d=’denotes equality in distribution. Let Poi(γ ) denote a Poisson

distribution with parameter γ > 0, that is, Y is distributed with Poi(γ ) if

P(Y = k) = e−γ γ k

k! for k = 0, 1, . . . .

Theorem 3. If max{m, n} = o(t) and mn ∼ γ t for γ > 0 then the following claims hold:

lim
t→∞ E(X(m, n, t)) = γ, (10)

lim
t→∞ L(X(m, n, t))

d= Poi(γ ). (11)

Proof. First we show that (10) holds. Since max{m, n} = o(t), we have, for i, j = 0, . . . , l,

(
1 − i

t

)m

= 1 − im

t
+ O

(
m2

t2

)
∼ e−mi/t ,

(
1 − j

t

)n

= 1 − jn

t
+ O

(
n2

t2

)
∼ e−nj/t .

Therefore, the following holds:

E(X) = t

(
1 −

(
1 − 1

t

)m)(
1 −

(
1 − 1

t

)n)

= t

(
m

t
− O

(
m2

t2

))(
n

t
− O

(
n2

t2

))

= mn

t
− O

(
m + n

t2

)
→ γ as t → ∞.

Next we show that (11) holds. The proof is essentially based on the convergence of the
moments (see [10, Theorem I.1.2]). Since each ordinary moment can be represented by a linear
combination of factorial moments, we may check the convergence of the factorial moments
instead of the ordinary moments. Indeed, we have

E(Xl) =
l∑

j=0

{
l

j

}
E((X)j ), (12)

because of applying (3) to the random variable X.
It is known that the lth factorial moment of the Poisson random variable is

E((Y )l) = γ l, (13)
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where Y is distributed with Poi(γ ) (see [8, Equation (2.13)]). Hence, we show that the lth
factorial moment of X converges to γ l . Since l is fixed, we have

E((X)l) = (t)l

( l∑
i=0

(
l

i

)
(−1)i

(
1 − i

t

)m)( l∑
j=0

(
l

j

)
(−1)j

(
1 − j

t

)n)

∼ t l
( l∑

i=0

(
l

i

)
(−1)ie−mi/t

)( l∑
j=0

(
l

j

)
(−1)j e−nj/t

)

= (t (1 − e−m/t )(1 − e−n/t ))l

=
(

t

(
m

t
− O

(
m2

t2

))(
n

t
− O

(
n2

t2

)))l

→ γ l as t → ∞.

Additionally, according to [4, Theorem 3.12] we have to check the following sufficient
condition to show the convergence in distribution:

lim sup
l→∞

E(Y 2l )1/2l

2l
< ∞. (14)

By (3), (12), and (13), the 2lth ordinary moment of Y is

E(Y 2l ) =
2l∑

j=0

{
2l

j

}
E((Y )j ) =

2l∑
j=0

{
2l

j

}
γ j ∼ γ 2l .

Therefore, the limit of (14) is 0. Hence, the theorem is proved.

3.2. An error bound given by the Chen–Stein method

In Subsection 3.1 we only examined the Poisson convergence of X without considering any
error bounds. In this subsection we obtain an error bound for the Poisson approximation using
the Chen–Stein method. Before stating the result, we introduce some notation. Let λ be the
expectation of X, that is,

λ = E(X) = E

( t∑
i=1

ξi

)
= t

(
1 −

(
1 − 1

t

)m)(
1 −

(
1 − 1

t

)n)
. (15)

Moreover, define

� = 1

2

∑
i �=j

E(ξiξj ), (16)

where the sum is over unordered pairs for 1 ≤ i �= j ≤ t . Note that the {ξi} are not independent
and that � is a tool for measuring the ‘dependence’ of the {ξi} (see [1, p. 116] and [7, p. 31]).
Then we have

E((X)2) = 2�. (17)

In fact,

E(X2) = E

(( t∑
i=1

ξi

)( t∑
j=1

ξj

))
=

t∑
i=1

E(ξ2
i ) +

∑
i �=j

E(ξiξj ) = λ + 2�,
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Table 1: Expectations and error bounds for m = n = 10 evaluated using (18).

t λ Error bound

10 4.242 19 0.675 58
50 1.673 11 0.294 16

100 0.914 27 0.152 47
200 0.478 04 0.042 523
500 0.196 43 0.007 269 7

1000 0.099 10 0.001 858 2

because of ξ2
i = ξi . Accordingly, by (1) we have

� =
(

t

2

)(
1 − 2

(
1 − 1

t

)m

+
(

1 − 2

t

)m)(
1 − 2

(
1 − 1

t

)n

+
(

1 − 2

t

)n)
.

Using λ and �, we state the following theorem.

Theorem 4. For λ and � defined by (15) and (16), respectively, we have

dTV(L(X(m, n, t)), Poi(λ)) ≤ min

{
1,

1

λ

}
(λ2 − 2�). (18)

If t is large enough, the Poisson approximation is better fit; see, for example, Table 1,
in which we present the expectations and the error bounds for 10 ≤ t ≤ 1000, that is, the
right-hand side of (18) for m = n = 10.

Recall that the dependent Bernoulli random variables {ξi}ti=1 with respective parameters
pi = (1 − (1 − 1/t)m)(1 − (1 − 1/t)n) are defined in (8). We now state Chen–Stein’s theorem
[6, Section 4.12], [13, Theorem 10.2.3], [3, Theorem 6.B] for the Poisson approximation of
X = ∑t

i=1 ξi .

Theorem 5. (Chen–Stein theorem.) If there exist random variables {Vi} coupling with X

satisfying
P(Vi = k − 1) = P(X = k | ξi = 1) for i = 1, . . . , t, (19)

then

dTV(L(X), Poi(λ)) ≤ min

{
1,

1

λ

} t∑
i=1

pi E |X − Vi |,

where λ = E(X) = ∑t
i=1 pi . Moreover, if X ≥ Vi for every i then

dTV(L(X), Poi(λ)) ≤ min

{
1,

1

λ

}
(λ − var(X)). (20)

Proof of Theorem 4. Following Theorem 5, we construct a sequence V1, . . . , Vt of random
variables satisfying (19). If the collision occurs in the ith bin, we set Vi = X −1. Suppose that
the collision does not occur in the ith bin. Then we determine Vi referring to [3, Theorem 6.B].
Let ηA

j and ηB
j denote the number of balls from A and B, respectively, in the j th bin for

j = 1, . . . , t . Since the collision does not occur in the ith bin, we have ηA
i ηB

i = 0. Let
η̃A

i denote a random variable having distribution L(ηA
i | ηA

i ≥ 1) and being independent of
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{ηA
j }tj=1. Note that η̃A

i ≥ 1 with probability 1. We define η̃B
i similarly, only η̃B

i is independent
of {ηA

j }tj=1, {ηB
j }tj=1, and {η̃A

j }tj=1. If ηA
i = 0 then draw η̃A

i balls from A by simple random
sampling without replacement from the bins different from the ith bin, and put these balls into
the ith bin. Similarly, if ηB

i = 0 then draw η̃B
i balls from B by simple random sampling without

replacement from the bins different from the ith bin, and put these balls into the ith bin. After
these procedures, let Vi define the number of these t − 1 bins in which collisions occur. Then
(19) holds and, furthermore, Vi ≤ X. Thus, we can use (20). By (17) we have

λ − var(X) = E(X) − (E(X2) − E(X)2) = λ2 − E((X)2) = λ2 − 2�.

Hence, inserting it into (20), we have (18).
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