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Abstract

Objective: From January 1, 2018, until July 31, 2020, our hospital network experienced an outbreak of vancomycin-resistant enterococci
(VRE). The goal of our study was to improve existing processes by applying machine-learning and graph-theoretical methods to a nosocomial
outbreak investigation.

Methods:We assembledmedical records generated during the first 2 years of the outbreak period (January 2018 throughDecember 2019).We
identified risk factors for VRE colonization using standard statistical methods, and we extended these with a decision-tree machine-learning
approach. We then elicited possible transmission pathways by detecting commonalities between VRE cases using a graph theoretical network
analysis approach.

Results: We compared 560 VRE patients to 86,684 controls. Logistic models revealed predictors of VRE colonization as age (aOR, 1.4 (per
10 years), with 95% confidence interval [CI], 1.3–1.5; P< .001), ICU admission during stay (aOR, 1.5; 95% CI, 1.2–1.9; P< .001), Charlson
comorbidity score (aOR, 1.1; 95% CI, 1.1–1.2; P< .001), the number of different prescribed antibiotics (aOR, 1.6; 95% CI, 1.5–1.7; P< .001),
and the number of rooms the patient stayed in during their hospitalization(s) (aOR, 1.1; 95%CI, 1.1–1.2; P< .001). The decision-treemachine-
learning method confirmed these findings. Graph network analysis established 3 main pathways by which the VRE cases were connected:
healthcare personnel, medical devices, and patient rooms.

Conclusions:We identified risk factors for being a VRE carrier, along with 3 important links with VRE (healthcare personnel, medical devices,
patient rooms). Data science is likely to provide a better understanding of outbreaks, but interpretations require data maturity, and potential
confounding factors must be considered.

(Received 13 October 2021; accepted 18 February 2022; electronically published 16 September 2022)

Electronic medical records contain information relevant for out-
break investigations; consequently, by integrating the relevant data
sources, we can potentially inform and improve patient screening
and isolation strategies. However, this integration necessarily leads
to large quantities of data, which can be difficult to analyze using
standard statistical techniques. Machine-learning or “artificial
intelligence”methods comprise a toolbox of approaches that have
become popular for analyzing such “big data”.1,2 To date in the field

of hospital epidemiology, machine-learning techniques have pre-
dominantly been used to extend existing statistical methods to
provide deeper insights in the analysis of infections, infectionman-
agement and outbreak detection (eg, Roth et al,3 Luz et al,4 and
Leclère et al5). Furthermore, methods based on graph theory
(hereafter “network graph methods”) have recently been used to
identify, for example, superspreaders in community-based
outbreaks.6,7

Here, we applied a network graph approach to the largest doc-
umented outbreak of a multidrug-resistant organism (MDRO) in
Switzerland, which occurred in 2018–2019 in our hospital group
and affected>560 patients.8 This particularMDRO, vancomycin-
resistant Enterococcus faecium (VRE) of the sequence type 796
(ST796), predominantly colonizes the gastrointestinal tract,
and is known for rapid intrahospital and interhospital spread.
Infections due to VRE are associated with increased mortality,
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morbidity and higher hospital costs.9,10 Comprehensive literature
has described the risk factors for VRE colonization including
(among others) length of hospital stay, duration and type of anti-
biotic use, proximity to a colonized or infected patient, contact
with environmental contamination, and immunosuppression
or hematologic malignancy.11–15 The apparent complexity and
multifactorial nature of this outbreak provided motivation for
using machine-learning and graph-theoretical methods to
attempt to untangle and better understand these complex
interactions.

Active surveillance screening is a key measure in identifying
asymptomatic VRE carriage, with patient contact isolation being
the standard precaution to limit further transmission.16–19

Therefore, during this outbreak, VRE-positive patients (colonized
or infected) were isolated, and a proactive “contact tracing” process
was introduced. Although such contact tracing is relatively
straightforward to implement, there was room for improvement
and optimization of the process because transmission is not nec-
essarily dependent only on rather limited definitions of geographi-
cal and organizational proximity.

With this study, we sought to address the following key
questions:

• What are the risk factors for VRE colonization?
• Which patients should be screened?
• What are the “hot spots” in terms of devices, rooms and employ-
ees where transmission may have occurred?

• What is the potential benefit of a contact screening approach
based on the network graph approach, compared to the tradi-
tional proximity-based contact screening?

To ease readability, throughout the document we have noted
the use of standard statistical approaches versus new machine-
learning–type techniques.

Methods

The outbreak occurred in a 900-bed, tertiary-care, university hos-
pital in Bern, Switzerland. The hospital sees ∼60,000 admissions
and 380,000 patient days per year, with most medical disciplines
represented.

The outbreak was originally detected in January 2018 following
2 cases of VRE bloodstream infections on the oncology ward, and
this consequently led to an outbreak management protocol being
introduced based on international guidelines. Briefly, VRE–posi-
tive (ie, colonized or infected) patients were isolated, and a proac-
tive proximity-based contact-tracing process was introduced,
whereby people were screened if they were hospitalized in the same
room and ward (and therefore potentially exposed) as a newly
detected VRE-positive patient in the prior 7 days. In addition,
cleaning was intensified with measures such as daily disinfection
and UV light cleaning procedures (among others). An upcoming
publication describes the outbreak and procedures inmore detail.20

In addition, we assembled diverse data from electronic medical
records generated during the first 2 years of the outbreak (January
1, 2018–December 31, 2019), covering different aspects of medical
care (Table 1). For comparisons, we labeled all patients (including
children) with VRE acquisition during the outbreak period as
VRE-positive (cases), and all other patients, whether tested or
not, were assumed to be VRE negative (controls). Notably, a sam-
pling and subtyping performed in 2018 revealed that 91.7% of the

Table 1. Characteristics of Those With (Case) and Without (Control) VRE Infection (N= 87,244)

Patient Characteristics
VRE Positive
(N= 560)

VRE Negative
or Not Tested
(N= 86,684)

P
Value

Sex, male, no. (%) 346 (61.8) 44,019 (50.8) <.001

Age, median y [IQR] 73 [63–82] 58 [33–75] <.001

Length of stay (days), median [IQR] 8 [4–17] 4 [2–13] <.001

ICU stay at any time, no. (%) 193 (34.5) 6,894 (8.0) <.001

Mean Charlson score, median [IQR] 3 [2–5] 0 [0–2] <.001

Patient had surgery at any time, no. (%) 377 (67.3) 49,581 (57.2) <.001

No. of surgeries (all stays), median [IQR] 2 [1–4] 1 [0–1] <.001

No. of different antibiotics taken during stay(s), median [IQR] 4 [2–6] 0 [0–1] <.001

No. of rooms patient stayed in, median [IQR] 7 [4–11] 2 [1–4] <.001

No. of hospitalizations, median [IQR] 3 [2–6] 1 [1–2] <.001

No. of contacts with different employees, no. (%)a <.001

None recorded 36 (6.4) 16,768 (19.3)

1–5 131 (23.4) 36,465 (42.1)

>5 393 (70.2) 33,451 (38.6)

No. of different medical devices encountered during stay, no. (%) <.001

None recorded 119 (21.2) 36,487 (42.1)

1–5 270 (48.2) 42,209 (48.7)

>5 171 (30.5) 7,988 (9.2)

a“Employee contacts” means recorded interactions with nursing employees only.
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isolates were identified as sequence type 796; the analysis presented
here pertains to all subtypes.

Summary statistics of cases and controls were presented as
number and percentage for categorical, and median and inter-
quartile ranges for continuous, variables. Group differences were
investigated using the χ2 test (or variants thereof) for categorical
variables and the Mann-Whitney-Wilcoxon test for continuous
variables.

Standard approach

We identified risk factors for VRE colonization by fitting uni- and
multivariable logistic regression models with dependent variable
colonization (0= no, 1= yes), and independent variables those
available and integrated in the project specific data warehouse
(ie, those in Table 1). The most parsimonious model was found
by forward selection then backward deletion using a P value of
>.10 as the inclusion criterion. These analyses were performed
in R version 3.5 or newer software21 using base functions and
the following packages: data.table, ggplot2, tableone, and survey.

Decision tree approach

In a second step, a machine-learning “decision tree” approach was
used to identify a VRE positive individual. In decision-tree learn-
ing, a tree-like model of decisions and subsequent outcomes is
chosen, which models the path from observations to conclusions.
The branches of the tree represent criteria on the observations (eg,
age <30 years), and the leaves represent the class labels (eg, those
colonized or infected). The learning algorithm builds such a tree by
choosing variables, and it learns criteria on these to split the data
set most appropriately to the dependent variable, thus revealing the
variables that are most predictive, as well as the tree that generates
the predicted result. For our purposes, the classification tree was
built with the same independent and dependent variables as the
logistic regression (ie, those in Table 1).

This approach served to validate initial hypotheses of risk fac-
tors derived from the logistic regression models and provided an
interpretable decision tree with decision thresholds. To mitigate
the strong imbalance between cases and controls in the data set,
we applied a minority class oversampling approach resulting in
equal numbers of positive and negative samples. The analysis

was performed using Python version 3.7 software22 with the fol-
lowing packages: data processing (pyodbc, numpy, pandas, scipy),
machine learning (scikit-learn), and visualization (matplotlib).

Network graph approach

In a third step, a network graph model involving the identified risk
factors was developed. We identified potential transmission hot-
spots: healthcare employees with frequent VRE patient contact,
rooms in which VRE patients were present, and medical devices
used in conjunction with diagnosing and treating these patients.
Interactions documented by healthcare workers were limited to
those between patients and nursing employees because physician
interactions are not documented at this granularity for in-patient
care (which is a limitation of the data available to us). In terms of
medical devices, only interactions tracked in the information tech-
nology systems were included in the analysis, and this limited the
scope of this study to larger, often nonportable devices. Rooms in
which patients stayed at any point during their hospitalization
were included in the analysis, even if the stay was <24 hours.

The network graph analysis used eigenvector centrality to gen-
erate a daily “hotspot list”, which was sent to the relevant organi-
zational unit involved in disinfecting rooms and medical devices.
Employees remained as important links in the analysis, but hardly
any employees underwent VRE screening by occupational health
as it was deemed voluntary at the time.

An example of a small section of the network graph is shown in
Figure 1. For background information on this approach, please
refer to the Supplementary Material (online).

This analysis was performed using Python version 3.7 soft-
ware22 with the following packages: data processing (pyodbc,
numpy, pandas, scipy), graph theory (networkx), machine learning
(scikit-learn, pytorch), and interactive visualization (matplotlib,
seaborn, bokeh, Holoviz, Holoviews).

Model validation

The outbreak occurred in many parts of the hospital, and the
analysis was performed on data from the whole hospital.
However, for the model validation process, we focused on the
oncology ward because this ward performed screenings of all
patients every week, whereas other wards did not or performed

Fig. 1. Example visualization shows collections
of rooms in the geospatial locations in orange,
patients in turquoise (colonized patients with
red halo), devices in yellow, and employees
in purple. In the left panel, it is possible to select
a subset of all patients. In the bottom row, the
user can select a subset of the timeline of VRE
screenings.
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them only sporadically. This meant that for the oncology ward, we
had a “ground truth” with which to compare our model predic-
tions; that is, for each week we were able to compare the predicted
VRE positive cases from the model to the observed cases.

We compared the current gold standard “proximity-based
screening” and therefore nonprioritized approach, with the new
prioritized list for screening patients derived from the network
graph method. First, the “screening efficiency” was calculated; this
represents the percentage fewer screenings compared to the gold
standard. Second, the “screening benefit” was determined as the
additional patients we could potentially have detected compared
to the gold standard (refer to the Supplementary Material online
for details).

Ethical approval

The Cantonal Ethics Committee (Bern, Project ID no. 2020-00173)
approved this study.

Results

We compared 560 VRE patients to 86,684 controls from January 1,
2018, to December 31, 2019 (Table 1). Compared to the general
hospital population during this period, VRE-positive patients were
predominantly male (61.8% vs 50.8%), had an older median age
(73 vs 58 years), had surgery during their hospitalization (67.3%
vs 57.2%), and were more likely to have been in the ICU during
their hospitalization (34.5% vs 8.0%).

Standard approach

Independent predictors of VRE colonization from the fitted multi-
variable logistic regression model were age (adjusted odds ratio
[aOR], 1.4 (per 10 years); 95% confidence interval [CI], 1.3–1.5;
P< .001), ICU admission during any hospitalization (aOR, 1.5;
95% CI, 1.2–1.9; P< .001), Charlson comorbidity score (aOR,
1.1; 95%CI, 1.1–1.2; P< .001), number of different prescribed anti-
biotics (aOR, 1.6; 95% CI, 1.5–1.7; P< .001) and the number of
rooms the patient stayed in during the study period (aOR, 1.1;
95% CI, 1.1–1.2; P< .001), which is a marker for potential multiple
exposures to environments and also severity of illness (Table 2 and
Fig. 2). Number of hospitalizations, number of employee contacts,
and number of devices employed for care were also significant pre-
dictors in univariable models, but these were collinear with the
“ICU” indicator and “number of rooms” variables in multivariable
adjusted models.

Decision tree approach

Many of the risk factors identified in the logistic regression analysis
are already well established in the literature. However, the presence
of complex interactions between variables exhibited by the multi-
ple collinearities in the fitted statistical models motivated a more
in-depth investigation using machine learning methods. Decision-
tree–based machine-learning methods (with a maximum depth of
6 levels) confirmed the findings from the logistic regression mod-
elling, with the number of antibiotics (importance, 0.21), Charlson
score (importance, 0.19), and number of rooms stayed in

Table 2. Estimated Risk Factors for VRE Infection From the Fitted Logistic Regression Model

Characteristic Univariable Multivariable

No. of patients Estimate (95% CI)
P

Value Estimate (95% CI)
P

Value

Sex

Female 1 (Ref)

Male 1.6 (1.3–1.9) <.001 : : : NS

Age (10 y) 1.4 (1.4–1.5) <.001 1.4 (1.3–1.5) <.001

Length of stay (per 5 d) 1.0 (1.0–1.0) .9 : : : : : :

ICU stay (at any time) 6.1 (5.1–7.2) <.001 1.5 (1.2–1.9) <.001

Charlson score (mean) 1.4 (1.3–1.4) <.001 1.1 (1.1–1.2) <.001

Patient had surgery at any time 1.5 (1.3–1.8) <.001 NE : : :

No. of surgeries, all stays (per surgery) 1.2 (1.2–1.2) <.001 : : : : : :

No. of different antibiotics 2.1 (2.1–2.2) <.001 1.6 (1.5–1.7) <.001

No. of rooms (per room) 1.3 (1.3–1.4) <.001 1.1 (1.1–1.2) <.001

No. of hospitalizations 1.3 (1.3–1.3) <.001 : : : NE

No. of contacts with different employees
None
1–5
>5

1 (Ref)
1.7 (1.2–2.5)
5.5 (4.0–7.8)

.006
<.001

: : : NE

No. of different medical devices encountered during stay
None
1–5
>5

1 (Ref)
2.0 (1.6–2.4)
6.6 (5.2–8.3)

<.001
<.001

: : : NE

Note. Ref, reference; NS, not significant at the 5% level; NE, not estimated since the variable is collinear (no. of surgeries with the ICU indicator, no. of rooms with hospitalizations, no. of
employees and devices with no. of rooms).
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(importance, 0.15) being the 3 most important patient-associated
characteristics (Table 3). The “importance” is a metric defining the
rank of this covariate in splitting the data set: the higher the impor-
tance, the earlier this covariate is used in the branching process. As
an additional result, the criteria of the decision tree provide proper
thresholds that split the data appropriately. Furthermore, the
analysis allowed insights that were not apparent from the logistic
regression; for example, those patients receiving antibiotics and
those aged >55 years were at higher risk for colonization
(Supplementary Fig. S3 online).

Network graph approach

The subsequent complex network analysis established 3 possible
pathways by which the 560 VRE cases are connected (although
not necessarily in a causal relationship): healthcare personnel,
medical devices, and patient rooms. A sample “hot spot list” for
a particular day is shown in Table 4; this ordered list of medical
devices, healthcare personnel, and patient rooms has been sorted
in the order of the likeliness of being colonized with VRE.
Depending on the situational environment, appropriate actions
can be defined regarding how to isolate patients and clean the devi-
ces and rooms more frequently and/or thoroughly, or potentially
also to screen the respective personnel (although the latter was not
implemented in this study).

Screening efficiency and benefit

In terms of model validation, the screening efficiency was esti-
mated to result in 40.0% fewer screenings compared to the current
gold standard (95% CI, 17.3–54.6). With the new screening
approach, we identified 102 (95% CI, 66–138) positive patients
who were missed from the proximity based screening process
and who had an equal or higher centrality as the lowest-ranked
positive patient.

Discussion

We originally set out to address a number of key questions with
respect to the outbreak and its investigation. We now address each
of these in turn.

What are the risk factors for VRE colonization?

Using both standard statistical methods and machine learning, we
identified risk factors for VRE colonization in line with those
already published in the literature. Patient age, underlying diseases
and severity of illness, prolonged hospitalization, surgery, and
exposure to antimicrobial drugs were important factors.23–25

Using 2 approaches confirming essentially the same results might
be considered an inefficient use of statistical resources, but we pre-
fer to view the 2 approaches as complementary, providing a slightly
different perspective to the analysis. Although this was ultimately
not particularly beneficial here, this will not always be the case.

Which patients should be screened?

Using a complex network graph analysis, we were able to further
investigate 3 main pathways by which the VRE cases are con-
nected: healthcare personnel, medical devices, and patient rooms.
Interestingly, the importance of the number of rooms a patient
stayed in and patient device interactions reflects recent work by
Weterings et al26 and Gouliouris et al,27 which identified environ-
mental contamination (and cleaning) as important factors in VRE
outbreaks.

Using a network-graph approach to identify super-spreaders is
not a new concept28,29; to date, however, there have been few appli-
cations using medical data, and, to our knowledge, these
approaches have not been applied to nosocomial outbreaks. Our
centrality-based screening is theoretically related to that of
Klemm et al,30 which suggests that the dynamic influence of a node
in the classical susceptible–infected–recovered (SIR) transmission
model can be estimated using eigenvector centrality.

What are the “hot spots” in terms of devices, rooms and
employees where transmission may have occurred?

The analysis identified probable “hot spots” based on the hospital
system’s human and nonhuman connections. This yielded priori-
tized lists of rooms and devices that might require special measures
for outbreak control.

Fig. 2. Forest plot of risk factors for VRE acquis-
ition from the adjusted multivariable logistic
regression model.
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What is the potential benefit of a contact screening approach
based on the network-graph approach, compared to the
traditional proximity-based contact screening?

We proposed potential approaches for estimating the screening
efficiency and the benefits of a more focused screening approach.
These could certainly be improved, and we would recommend
investing adequate time in defining appropriate metrics at the
project initiation stage.

Inmore general terms, the network-graph analysis builds on the
results from the logistic regression and decision-tree methods by
identifying specific patients to be screened and rooms and devices
to be cleaned.

Although the network-graph method was generally successful,
the lack of a fully integrated data warehouse was a considerable
barrier to the speed of implementation. For example, the time
and resource management system did not include information
on physicians and other key personnel within the hospital, so
“employee” interactions were limited to those performed by nurs-
ing healthcare professionals. This represents an example of the

main (financial and otherwise) cost of implementing such an
approach: an important prerequisite for fast implementation
(and therefore actionable results) is the availability of a hospital-
wide, fully integrated, data warehouse (refer to the “blueprint”
in the Appendix online). The most time-consuming and
resource-intensive part of the project was the data source integra-
tion (Appendix, step 2) and operationalization (step 7), the neces-
sary effort for which surprised the research team (Supplementary
Fig. S2 online). The idea to pursue “machine-learning”methods is
currently popular, but this can often lead to an analysis-driven
approach. With this in mind, and given that, at least anecdotally,
“85% of data science projects fail,”31 one of the most important
success factors was to have a clear project mandate with metrics
for success prior to starting the project.

This study had several limitations. Our study was monocentric,
and it could have been improved by validating against data from
another hospital. Despite the limitations, even our incomplete pic-
ture provides additional valuable insights regarding specific known
interactions with VRE-positive patients in the greater network
displayed in our research.

In summary, we implemented a new approach to reduce
unnecessary screening. The method provides the basis for a smart
contact-tracing system for the next outbreak, independent of
pathogen, and potentially also for data-driven outbreak monitor-
ing. We calculated the benefits of the new method compared to
the existing contact tracing. The differential can be understood
as an “added value” in terms of the yield of screening, or analo-
gously, the cost–benefit of “avoided” screening.

Finally, data science provides a better understanding of out-
breaks, but interpretations should include consideration of data
source maturity, the scope of included sources, and potential con-
founding factors.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2022.66
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