THE NUMBER OF GENERATORS OF A LINEAR p-GROUP

1. M. ISAACS

Let G be a finite p-group, having a faithful character χ of degree f. The object of this paper is to bound the number, $d(G)$, of generators in a minimal generating set for G in terms of χ and in particular in terms of f. This problem was raised by D. M. Goldschmidt, and solved by him in the case that G has nilpotence class 2. (See [1, Lemma 2.8].) We obtain the following results:

Theorem A. Let χ be a faithful character of the p-group, G. Let $f = \chi(1)$ and let s be the number of linear constituents of χ. Then
(a) $d(G) \leq (3/p)(f - s) + s$. Also,
(b) if $p \geq 3$ and G is non-abelian, then $d(G) \leq f - p + 3$.

Theorem B. Let G be a p-group and let $\chi \in \text{Irr}(G)$ be faithful. Then
$$d(G) \leq \frac{f + (f/p) + 2p - 4}{p - 1}.$$

It is shown by examples that the inequalities in Theorem A are best possible, and the one in Theorem B is nearly so.

1. Suppose χ is a faithful character of the p-group, G, and that $\chi = \psi + \lambda$, where λ is linear. Let $N = \text{Ker} \psi$ so that λ_N is faithful and hence N is cyclic. It follows that $d(G) \leq d(G/N) + 1$. By repeated application of this argument, we see that in order to prove Theorem A(a), it suffices to assume that χ has no linear constituents and show that $d(G) \leq 3f/p$. Observe that part (b) of this theorem follows immediately from (a).

We would like to use reasoning similar to this in order to reduce the problem of bounding $d(G)$ to the situation of Theorem B, namely where χ is irreducible. In general, G is a subdirect product of the irreducible linear groups determined by the irreducible constituents of a faithful character. Unfortunately, if $N_1, N_2 \triangleleft G$ with $N_1 \cap N_2 = 1$, it does not follow that $d(G) \leq d(G/N_1) + d(G/N_2)$. In order to overcome this difficulty we need to strengthen the theorem we are trying to prove.

Definition 1. Let G be a p-group and let $U \subseteq G$. Then
$$d_G(U) = d(U/(U \cap \Phi(G))).$$
Instead of assuming that χ is faithful on G and bounding $d(G)$, we shall assume $U \triangleleft G$ and χ is a character of G with χ_U faithful and we shall bound $d_\sigma(U)$. Since $d_\sigma(G) = d(G)$, the new problem includes the old one.

Lemma 2. Let G be a p-group with $U \subseteq G$.
(a) If $U \subseteq H \subseteq G$, then $d_\sigma(U) \leq d_\sigma(H)$ and $d_\sigma(U) \leq d_\sigma(H)$.
(b) If $V \subseteq U$ and $V \triangleleft G$, then $d_\sigma(U) = d_\sigma(V) + d_\sigma(U/V)$.

Proof. (a). Since $H/H \cap \Phi(G)$ is elementary, $\Phi(H) \subseteq \Phi(G)$ and $U \cap \Phi(H) \subseteq U \cap \Phi(G)$. It follows that $d_\sigma(U) \geq d_\sigma(U)$. Also, $d_\sigma(U) = d(U\Phi(G)/\Phi(G)) \leq d(H\Phi(G)/\Phi(G)) = d_\sigma(H)$.

(b). Let $A = U \cap V\Phi(G)$. Then $U \supseteq A \supseteq U \cap \Phi(G)$ and $d_\sigma(U) = d(U/A) + d(A/(U \cap \Phi(G)))$. Now $A = V(U \cap \Phi(G))$ and hence $A/(U \cap \Phi(G)) \cong V/(V \cap \Phi(G))$. Thus $d(A/(U \cap \Phi(G)) = d\sigma(V)$. Finally, we have $(U/V) \cap \Phi(G/V) = (U \cap V\Phi(G))/V = A/V$. Therefore, $d_\sigma(U/V) = d((U/V)/(A/V)) = d(U/A)$. The proof is complete.

Corollary 3. Let G be a p-group and let $U = N_0 \supseteq N_1 \supseteq \ldots \supseteq N_n = 1$ where $N_i \triangleleft G$ for $1 \leq i \leq n$. Then

$$d_\sigma(U) = \sum_{i=1}^{n} d_{\sigma|N_i}(N_{i-1}/N_i).$$

Proof. Repeated application of part (b) of the lemma yields the result.

Next, we wish to establish appropriate bounds when $\chi(1) = p$. The following lemma is well known and is stated here without proof.

Lemma 4. Let $A \triangleleft G$ be abelian with G/A cyclic. Let Ag be a generator of G/A. Then
(a) $G' = \{a^{-1}a^p|a \in A\}$ and
(b) $|G'| |A \cap Z(G)| = |A|$.

If χ is a character of a group, G, then χ is the linear character of G obtained by taking the determinant of any representation of G which affords χ.

Lemma 5. Let G be a p-group with abelian $A \triangleleft G$ such that G/A is cyclic. Let $\chi \in \text{Irr}(G)$ with $\chi(1) = p^e$ and suppose χ_A is faithful. Then
(a) $d_\sigma(A) \leq e + 1$.

Also,
(b) if $\det \chi_A = 1_A$, then $d_\sigma(A) \leq e$; and
(c) if A has exponent $\leq p^e$ then $d_\sigma(A) \leq e$.

Proof. Let $Z = Z(G) \cap A$. By Lemma 4, we have $|A : G'| = |Z|$. Since χ is irreducible, we have $Z(\text{Ker } \chi)/\text{Ker } \chi$ is cyclic and thus Z is cyclic since χ_A is faithful. If $|Z| \leq p^e$, then $|A/(A \cap \Phi(G))| \leq |A : G'| \leq p^e$ and $d(A) \leq e$. Therefore, (c) follows.

Now $\chi_Z = p^e\lambda$ where λ is a faithful character of Z. We have $\det \chi_Z = \lambda^{p^e}$ and hence if $\det \chi_Z = 1_Z$, it follows that $|Z| \leq p^e$, and (b) now follows.
To prove (a), let \(C \) be the cyclic group of automorphisms of \(A \) induced by \(G/A \). Since \(\chi_A \) is faithful, \(C \) permutes the set of linear constituents of \(\chi_A \) faithfully. This action is transitive, and hence regular and \(|C| \leq \chi(1) \). Let \(\theta(a) = \Pi_{g \in G}^a \) for \(a \in A \). Then \(\theta \) is an endomorphism of \(A \) and \(\theta(a) = \theta(a^g) \) for \(g \in G \). It follows that \(G' \subseteq \ker \theta = K \). It is clear that \(\theta(A) \subseteq Z \) and since \(|A : K| = |\theta(A)| \) and \(|A : G'| = |Z| \), we have \(|K : G'| = |Z : \theta(A)| \) and \(A/K \cong \theta(A) \) is cyclic. If \(Z = \langle z \rangle \), then \(\theta(z) = z |C| \) and hence \(|Z : \theta(A)| \leq |C| \leq p^e \). It follows that \(|K : K \cap \Phi(G)| \leq p^e \) and \(d_\phi(K) \leq e \). Since \(d_\phi(K)(A/K) \leq 1 \), we have \(d_\phi(A) \leq e + 1 \) and the proof is complete.

Lemma 6. Let \(G \) be a p-group with \(\chi \in \text{Irr}(G) \) and \(\chi(1) = p \). Let \(U \triangleleft G \) and suppose \(\chi_U \) is faithful. Then
(a) \(d_\phi(U) \leq 3 \). Also,
(b) \(d_\phi(U) \leq 2 \) if \(U \) is abelian, \(\det \chi_U = 1_U \) or \(U \) has exponent \(p \), and
(c) \(d_\phi(U) \leq 1 \) if \(U \) is abelian and either \(\det \chi_U = 1_U \) or \(U \) has exponent \(p \).

Proof. Use induction on \(|G| \). If there exists \(H \leq G \) with \(U \subseteq H \) and \(\chi_U \) irreducible, then the result follows since \(d_\phi(U) \leq d_\phi(H) \). Supposing, then, that \(U \subseteq G \), we may assume that the restriction of \(\chi \) to every maximal subgroup containing \(U \) is reducible. It follows that \(\chi \) vanishes on \(G - U \Phi(G) \) and hence \([\chi_U \Phi(G), \chi_U \Phi(G)] = [G : U \Phi(G)] \). If \(|G : U \Phi(G)| > p \), then \([\chi_U, \chi_U] = p^2 \) and \(\chi_U = p \lambda \), where \(\lambda \) is a faithful linear character of \(U \). In this case \(U \) is cyclic and \(d_\phi(U) \leq 1 \).

Under the assumption that \(U \subseteq G \), the remaining case is where \(|G : U \Phi(G)| = p \), \(G/U \) is cyclic, and \(U \) is abelian. In this case, Lemma 5 yields \(d_\phi(U) \leq 2 \) and \(d_\phi(U) \leq 1 \) if \(\det \chi_U = 1_U \) or \(U \) has period \(p \).

The only remaining case is where \(U = G \). Here \(\chi \) is faithful, and there exists an abelian subgroup \(A \) of index \(p \) (since \(\chi \) is a monomial character). By the earlier cases, \(d_\phi(A) \leq 2 \) and \(d_\phi(A) \leq 1 \) if \(\det \chi_A = 1_A \) or \(A \) has exponent \(p \). The result now follows since \(d_\phi(G) = d_\phi(A) + 1 \).

Theorem 7. Let \(G \) be a p-group, \(\chi \in \text{Irr}(G) \) and \(U \triangleleft G \) with \(\chi_U \) faithful. Let \(\chi(1) = f \) and let \(r \) be the number of (not necessarily distinct) irreducible constituents of \(\chi_U \). Set \(b = (f + (f/p) + 2p - 4)/(p - 1) \). Then:
(a) \(d_\phi(U) \leq b \).
(b) If \(r > 1 \), then
\[
d_\phi(U) \leq b - \frac{(r/p) - 1}{p - 1} - 1.
\]
(c) If \(\det \chi_U = 1_U \), the inequalities in (a) and (b) may be replaced by strict inequalities.
Proof. Use induction on $|U| |G|$. First note that if $f = 1$, then $b > 1$ and U is cyclic and the theorem holds. If $f = p$, then $b = 3$. In this case the theorem follows from Lemma 6. We therefore assume that $f \geq p^2$.

If $r = 1$, then χ_U is irreducible and since $d_\phi(U) \leq d_\psi(U)$, we are done by induction if $U < G$. Assume then, that $U = G$ and let H be a maximal subgroup of G, chosen so that χ_H is irreducible. Since $|H| |G| < |G| |G|$, the inductive hypothesis applies and we conclude that $d_\phi(H) \leq b - 1$ with strict inequality if $\det \chi = 1_G$. It follows that $d_\phi(G) = 1 + d_\phi(H) \leq b$, again with strict inequality if $\det \chi = 1_G$. The theorem is now proved in this case.

Now suppose $r = p$. Choose a maximal subgroup, $H \supset U$. If χ_H is irreducible, we are done by applying the inductive hypothesis to H. We may assume, then, that $\chi_H = \theta_1 + \ldots + \theta_p$, where the θ_i are conjugate irreducible characters of H. Since we are assuming $r = p$, we have $(\theta_i)_U$ irreducible for all i. On the other hand, since $f \geq p^2$, $\theta_1(1) \geq p$ and there exists a maximal subgroup, W, of H with $(\theta_1)_W$ reducible. It follows that $U \not\leq W$. Let λ be a linear character of H with kernel W and let $\psi = \lambda^g$ and $V = U \cap \text{Ker } \psi$. Then $V \subseteq U \cap W \subseteq U$. Also, $\phi(H) \subseteq W$ and $\phi(H) < G$, so that $\phi(H) \subseteq \text{Ker } \psi$ and consequently, U/V is elementary abelian. If ψ is reducible, then $W < G$, $W = \text{Ker } \psi$ and U/V is cyclic. If ψ is irreducible, there is a corresponding irreducible character $\hat{\psi}$ of G/V and $\hat{\psi}(U/V)$ is faithful. It follows from Lemma 6(c) that $d_{\phi/V}(U/V) = 1$, and thus this is true in either case.

Since $V \subseteq U$, the theorem applies to bound $d_\phi(V)$. Since χ_V has at least p^2 irreducible constituents, we have $d_\phi(V) \leq b - 2$, with strict inequality if $\det \chi_U = 1_G$. Now $d_\phi(U) = d_\phi(V) + d_{\phi/V}(U/V) = 1 + d_\phi(V)$ and thus the theorem holds.

Finally, we assume that $r \geq p^2$ and again choose a maximal $H \supset U$. As before, we may assume that $\chi_H = \theta_1 + \ldots + \theta_p$. Let $\lambda_i = \det \theta_i$, let $\psi = \lambda_1^2$ and let $V = U \cap \text{Ker } \psi$. If ψ is reducible then $\text{Ker } \psi = \text{Ker } \lambda_1$, U/V is cyclic and $d_{\phi/V}(U/V) = 1$. If ψ is irreducible, then as before we let $\hat{\psi}$ be the corresponding irreducible character of G/V. Since $\hat{\psi}(U/V)$ is faithful and U/V is abelian, Lemma 6(b) yields $d_{\phi/V}(U/V) \leq 2$. Now let $\psi_H = \Pi_{\lambda_i} = \det \chi_H$ and hence if $\det \chi_U = 1_U$, it follows that $d_{\phi/V}(U/V) = 1_{(U/V)}$ and $d_{\phi/V}(U/V) \leq 1$ by Lemma 6(c).

Now let $K_j = \text{Ker } \theta_j$ and let $N_i = V \cap \cap_{j=1}^{i-1} K_j$. Set $N_0 = V$ and note that $N_p = 1$ since χ_V is faithful. By Corollary 3,

$$d_\phi(V) \leq d_\phi(V) = \sum_{i=1}^{p} d_{H/N_i}(N_{i-1}/N_i).$$

Let r_i be the number of irreducible constituents of $(\theta_i)_{N_{i-1}}$ and observe that $r_i \geq r/p \geq p$. Let $\hat{\theta}_i$ be the irreducible character of H/N_i corresponding to θ_i for $1 \leq i \leq p$. We have $\hat{\theta}_i(N_{i-1}/N_{i-1})$ is faithful and has trivial determinant since $N_{i-1} \subseteq V \subseteq \text{Ker } \psi \subseteq \text{Ker } \lambda_i$. It follows by the inductive hypothesis that

$$d_{H/N_i}(N_{i-1}/N_i) < \frac{(f/p) + (f/p)^2 + 2p - 4}{p - 1} - \frac{(r_i/p) - 1}{p - 1} - 1.$$
Since $f \geq p^2$ and $r/p \geq r/p^2 \geq 1$, the quantity on the right is an integer and we conclude
\[d_{H/N_1}(N_{i-1}/N_i) \leq \frac{(f/p) + (f/p^2) + 2p - 4}{p - 1} - \frac{(r/p^2) - 1}{p - 1} - 2. \]
Therefore we have
\[d_\sigma(V) \leq \frac{f + (f/p) + 2p^2 - 4p - (r/p) - p - 2p}{p - 1} = \frac{f + (f/p) - p - (r/p)}{p - 1} = b - \frac{(r/p) - 1}{p - 1} - 3. \]
Combining this inequality with $d_{\sigma|V}(U/V) \leq 2$ and $d_{\sigma|V}(U/V) \leq 1$ if $\det \chi_V = 1_V$, yields (b) and (c) in this case. The proof of the theorem is now complete.

Observe that Theorem B is a special case of Theorem 7(a) and has therefore now been proved. Also note that if $f \geq p$, we have
\[\frac{f + (f/p) + 2p - 4}{p - 1} \leq \frac{3f}{p}. \]

Proof of Theorem A. It has already been noted that it suffices to prove (a), and that, only when χ has no linear constituents. Let $\chi_1, \chi_2, \ldots, \chi_n$ be the distinct irreducible constituents of χ and let $K_i = \ker \chi_i$ and $N_i = \bigcap_{j=1}^i K_j$.

Then by Corollary 3, $d(G) = \sum d_{\sigma|N_i}(N_{i-1}/N_i)$ where $N_0 = G$. By Theorem 7 applied to G/N_i, we have $d_{\sigma|N_i}(N_{i-1}/N_i) \leq 3\chi_i(1)/p$. It follows that $d(G) \leq 3\chi(1)/p$ as desired.

We end this section with a corollary of Theorem 7. The bound given here will be shown to be sharp.

Corollary 8. Let G be a p-group and let $U < G$ be abelian. Suppose $\chi \in \text{Irr}(G)$ with $\chi(1) = f$ and χ_U faithful. Then $d_\sigma(U) \leq (f - 1)/(p - 1) + 1$.

Proof. If $f = 1$, U is cyclic. Otherwise, apply Theorem 7(b) with $r = f$.

3. In this section we discuss some examples.

Theorem 9. The bounds given in Theorem A are sharp.

Proof. Let H be the central product of a non-abelian group of order p^3 with a cyclic group of order p^2. Then $d(H) = 3$ and H has a faithful irreducible character of degree p. Now let G be the direct product of $(f - s)/p$ copies of H and s copies of a cyclic group of order p. Then $d(G) = 3(f - s)/p + s$ and G has a faithful character of degree f.

The direct product of one copy of H with $f - p$ cyclic groups of order p shows that the bound in (b) is the best possible.

Theorem 10. The bound given in Lemma 5(a) is sharp.

Proof. We need an example of a p-group G with $A < G$, A abelian, G/A cyclic, $\chi \in \text{Irr}(G)$, χ_A faithful, $\chi(1) = p^e$ and $d_\sigma(A) = e + 1$. The example is as follows.
Let \(A = \langle x_1 \rangle \times \langle x_2 \rangle \times \ldots \times \langle x_{e+1} \rangle \), where the order, \(o(x_i) = p^e \). Define an automorphism, \(\sigma \), of \(A \) by
\[
x_i^\sigma = x_{i+1}^p \text{ for } 1 \leq i \leq e
\]
and \(x_{e+1}^\sigma = x_{e+1} \). We claim that \(o(\sigma) \leq p^e \). Let \(Z = \langle x_{e+1} \rangle \). Then \(\sigma \) acts on \(A/Z \) and this is the situation corresponding to the case \(e = 1 \). By induction, then, \(\sigma^{p^{e-1}} \) acts trivially on \(A/Z \). Let \(\theta = \sigma^{p^{e-1}} \) so that \(a^{-1}\theta \in Z \) for all \(a \in A \).

Now let \(\tilde{A} = A/\Omega_1(A) \). Then \(\sigma \) acts on \(\tilde{A} \) and this too is the situation corresponding to \(e = 1 \). Thus \(\theta \) is trivial on \(\tilde{A} \) and \(a^{-1}\theta \in \Omega_1(A) \cap Z \) for all \(a \in A \). If \(a^\theta = ay \), then \(y^\theta = y \) so that \(a^{\theta y} = ay = a \), and \(o(\sigma) \leq p^e \) as claimed.

Let \(G \) be the semi-direct product, \(A \times \langle \sigma \rangle \). It is clear that \(G' = \Phi(A) \) and hence \(|A : G'| = p^{e+1} \). By Lemma 4, \(|A \cap Z(G)| = p^{e+1} \). However, since \(\langle \sigma \rangle \) acts faithfully on \(A \), we have \(Z(G) \subseteq A \). Since \(Z \subseteq Z(G) \) and \(|Z| = p^{e+1} \), it follows that \(Z(G) = Z \) is cyclic. Therefore, \(G \) has a faithful irreducible character \(\chi \) with \(\chi(1) \leq |G : A| \leq p^e \). Finally, since \(G' = \Phi(A) \), it follows that \(d_G(A) = d(A) = e + 1 \). By Lemma 5(a), \(\chi(1) = p^e \) and the proof is complete.

Theorem 11. Let \(E \) be an elementary abelian \(p \)-group of order \(p^k \), \(k \geq 1 \). There exists an abelian \(p \)-group, \(U \), on which \(E \) acts so that
(a) \(C_U(E) \) is cyclic
and
(b) \(d(U/[U, E]) = (p^k - 1)/(p^e - 1) + 1 \).

Before proving Theorem 11, we discuss some consequences. Let \(G \) be the semi-direct product \(U \times \langle \sigma \rangle \). Then we have \(G' = [U, E] \) and \(G/G' \cong U/[U, E] \times E \). It follows that \(d_G(A) = d(U/[U, E]) = (p^k - 1)/(p^e - 1) + 1 \) and that \(d(G) = d_0(U) + k \). Now \(Z(G) \cap U = C_U(E) \) is cyclic, and thus there exists \(\chi \in \text{Irr}(G) \) with \(C_U(E) \cap \text{Ker} \chi = 1 \). It follows that \(\chi_U \) is faithful. Let \(f = \chi(1) \) so that \(f \leq |G : U| = p^k \). On the other hand, Corollary 8 asserts that \(d_G(U) \leq (f - 1)/(p^e - 1) + 1 \). It follows that \(f = p^k \). At this point we have proved

Corollary 12. The bound of Corollary 8 is sharp.

In the above situation, \(f = |G : U| \) and it follows that \(U \) is a maximal abelian subgroup of \(G \). Therefore, \(C_U(E) = Z(G) \) and hence \(\chi \) is faithful. Let \(b = b(f) \) be the bound given in Theorem B. If \(f = p \) or \(p^2 \), we see that \(d(G) = b \). Although the above group, \(G \), does not prove that the bound, \(b \), is sharp; it does show that it is not far wrong, since for \(f > 1 \) we have \(d(G) > pb/(p + 1) \).

Before proving Theorem 11, we need the following counting lemma.

Lemma 13. Let \(n \) and \(k \) be positive integers and let \(N \) be the number of \(k \)-tuples, \((x_1, \ldots, x_k)\) of integers, \(0 \leq x_i \leq n\), such that \(\sum x_i \equiv 0 \mod n \). Then
\[
N = \frac{(n + 1)^k - 1}{n} + 1.
\]

https://doi.org/10.4153/CJM-1972-084-0 Published online by Cambridge University Press
Proof. We count the k-tuples with $\sum x_i \equiv 0 \bmod n$ according to the number, r, of entries equal to n. If $r = k$, there is one such k-tuple. If $r < k$, the number of k-tuples with the required property is \(\binom{k}{r} F(r) \) where $F(r)$ is the number of $(k - r)$-tuples, (y_1, \ldots, y_{k-r}), where $0 \leq y_i \leq n - 1$ and $\sum y_i \equiv 0 \bmod n$.

We may identify the n^{k-r} $(k - r)$-tuples of integers y_i, $0 \leq y_i \leq n - 1$ with the elements of the direct product of $k - r$ cyclic groups of order n. Under this identification, the tuples, (y_1, \ldots, y_{k-r}), with $\sum y_i \equiv 0 \bmod n$, correspond to the elements of the kernel of a homomorphism onto the cyclic group of order n. It follows that $F(r) = \binom{k-r}{r}$ and

$$N = 1 + \frac{1}{n} \left((n + 1)^k - 1 \right),$$

as desired.

Proof of Theorem 11. We shall construct U as an (additive) subgroup of the group ring $R[E] = A$, where $R = \mathbb{Z}/p^{k+1}\mathbb{Z}$. Now E acts on A by right multiplication and $C_A(E) = R(\sum x \in kA)$, a cyclic group. Therefore, it suffices to find a subgroup $U \subseteq A$ which is invariant under E (i.e., U must be an ideal) such that $d(U/\langle U, E \rangle) = (p^k - 1)/(p - 1) + 1$.

First we observe that for $x \in E$, we have $(x - 1)^p = p \sum r_i (x - 1)^i$ for suitable $r_i \in R$. This is so because of the polynomial identity $X^p - (X + 1)^p + 1 = p \sum m_i X^i$ where $m_i = - \binom{i}{p}/p \in \mathbb{Z}$. Substituting $x - 1$ for X yields the required result.

Next we establish some notation. Let $\{x_1, \ldots, x_k\}$ be a fixed set of generators for E. Let $\mathcal{S} = \{ (m_1, \ldots, m_k) | m_i \in \mathbb{Z}, 0 \leq m_i \leq p - 1 \}$. If $s = (m_1, \ldots, m_k) \in \mathcal{S}$, we write s for $\sum m_i$ and $(x - 1)^s$ for $(x_1 - 1)^{s_1} (x_2 - 1)^{s_2} \ldots (x_k - 1)^{s_k} \in A$.

We claim that $\{ (x - 1)^s | s \in \mathcal{S} \}$ is an R-basis for A. Since $|\mathcal{S}| = p^k = |E|$, it suffices to show that if $\sum s \in \mathcal{S}$ $r_s (x - 1)^t = 0$ with $r_s \in R$, then all $r_s = 0$. Suppose, then, that some $r_s \neq 0$. By multiplying the dependence by the highest power of p which fails to annihilate all of the coefficients, we may assume that $pr_s = 0$ for all $s \in \mathcal{S}$. Now, among all $s \in \mathcal{S}$ with $r_s \neq 0$, choose one, say $s_0 = (m_1, \ldots, m_k)$, with $\sum s_0$ minimal. Let $t = (p - 1 - m_1, \ldots, p - 1 - m_k) \in \mathcal{S}$ and multiply the dependence by $(x - 1)^t$. Observe that $r_s (x - 1)^s (x - 1)^t = 0$ if $s \neq s_0$. This is so because if $s \neq s_0$ and $r_s \neq 0$, then $\sum t \geq \sum s_0$ and hence some entry (say the ith) in the k-tuple, s, is strictly larger than the corresponding entry in s_0. It follows that $(x - 1)^t (x - 1)^t \in (x - 1)^p A \subseteq pA$. Since $pr_s = 0$, it follows that $r_s (x - 1)^s (x - 1)^t = 0$. We now have

$$0 = r_{s_0} (x - 1)^{s_0} (x - 1)^t = r_{s_0} (x - 1)^{p-1} \ldots (x_k - 1)^{p-1}.$$

This is a contradiction, since 1 is clearly in the support of $(x_1 - 1)^{p-1} \ldots (x_k - 1)^{p-1}$ and $r_{s_0} \neq 0$.
We now use this basis for A to construct two subgroups. For $s \in \mathcal{S}$, let $l(s) = l$ be the unique integer such that $l(p - 1) \leq \sum s < (l + 1)(p - 1)$ and let $m(s) = m$ be the unique integer such that $m(p - 1) < \sum s \leq (m + 1)(p - 1)$. Note that $0 \leq l(s) \leq k$ and $-1 \leq m(s) \leq k - 1$. Also $l(s) = m(s)$ unless $\sum s$ is a multiple of $(p - 1)$, in which case $m(s) = l(s) - 1$. Now set

$$U = \{ p^{k-l(s)}(x-1)^{s_i} s \in \mathcal{S} \}$$

and

$$V = \{ p^{k-m(s)}(x-1)^{s_i} s \in \mathcal{S} \}.$$

It is clear that U is the direct sum of the cyclic groups generated by the given set of generators of U and V is the sum of the subgroups of these cyclic groups generated by the generators of V. It follows that $d(U/V)$ is equal to the number of the generators of U which do not lie in V. This is exactly the number of $s \in \mathcal{S}$ with $\sum s \equiv 0 \mod p - 1$. By Lemma 13, we have $d(U/V) = (p^k - 1)/(p - 1) + 1$.

The proof will be complete when we show $[U, E] = V$ because it then follows automatically that U is E-invariant. Now if $s, s' \in \mathcal{S}$ with $\sum s = 1 + \sum s'$, then $m(s) = l(s')$. If $s \neq (0, 0, \ldots, 0)$, we can choose i, and $s' \in \mathcal{S}$ with $(x - 1)^s = (x - 1)^s(x_i - 1)$ and $\sum s = 1 + \sum s'$. Thus $p^{k-m(s)}(x - 1)^s = p^{k-l(s')}(x - 1)^{s'}(x_i - 1)$. It follows that every generator of V is of the form $u(x_i - 1)$ for some generator u of U. (If $s = (0, 0, \ldots, 0)$, then $p^{k-m(s)}(x - 1)^s = 0$.) Therefore, $V \subseteq [U, E]$. The generators u which arise this way are exactly those which correspond to $s' \in \mathcal{S}$ where the ith entry of s' is $< p - 1$. For each such u, we therefore have $u(x_i - 1) \in V$.

All that remains now in order to prove that $[U, E] \subseteq V$ is to show that $p^{k-l(s)}(x - 1)^s(x_i - 1) \in V$ whenever the ith entry of s is equal to $p - 1$. Recall that

$$(x_i - 1)^p = p \sum_{j=1}^{p-1} r_j(x_i - 1)^j,$$

and thus it follows that

$$(x - 1)^s(x_i - 1) = p \sum_{j=1}^{p-1} r_j(x - 1)^{sj}$$

where $s_j \in \mathcal{S}$ and $\sum s_j = j + \sum s - (p - 1) > \sum s - (p - 1)$. Therefore $m(s_j) \geq l(s) - 1$ and

$$p^{k-l(s)}(x - 1)^s(x_i - 1) = \sum_{j=1}^{p-1} r_j p^{k-l(s)+1}(x - 1)^{sj} \in V.$$

The proof of the theorem is now complete.

Reference

University of Wisconsin,

Madison, Wisconsin