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1. Introduction. While the contents of the author's doctoral thesis (4) 
have, owing to their lengthy nature, been published only in small part (5, §2; 
6; 7), the absence from the literature of graph theory of any characterization 
of infinite directed graphs with Euler lines seems to constitute a definite gap 
that prompts the publication in the present paper of some further material 
from (4). The main results characterizing such directed graphs will be obtained 
in §§2 and 3. In §4, we shall indicate an alternative (and perhaps better) 
formulation of one of these results, some extensions obtained in (4), and some 
comparisons between parallel results for undirected and directed graphs. A 
familiarity with the definitions and results of (7) will be assumed in §4, but 
not before. 

The cardinal number of a set A will be denoted by \A\. A is finite or infinite 
according as \A| is finite or infinite, and is enumerable iî\A\ — Ko. The notation 
{ai, . . . , an\ will denote the set with distinct elements ai, . . . , an. 

A graph G consists of two disjoint sets V(G)> E(G) and a relationship 
associating with each X G E(G) an unordered pair of distinct or coincident 
elements of V(G) which X is said to join. (We permit two elements of V(G) to 
be joined by more than one element of E(G).) The elements of V(G) are 
vertices of G and the elements of E(G) are its edges. The letter G will always 
denote a graph. G is finite {infinite, enumerable) if V(G) \J E(G) is finite 
(infinite, enumerable). An edge X and vertex £ are incident if X joins £ to itself 
or to another vertex. The degree d{£) of a vertex £ joined to itself by a edges 
and to other vertices by b edges is the cardinal number 2a + b. A subgraph of 
G is a graph H such that V(H) C V(G), E(H) CE(G), and each edge of H 
joins the same vertices in H as in G. If H is a subgraph of G, we shall also say 
that H is contained in G and write H C G. A collection of subgraphs of G are 
disjoint (edge-disjoint) if no two of them have a common vertex (edge). The 
union (intersection) of a number of subgraphs of G is the subgraph whose 
vertex-set is the union (intersection) of the vertex-sets of the given subgraphs 
and whose edge-set is the union (intersection) of their edge-sets. Unions and 
intersections of subgraphs are denoted by the same symbolism as unions and 
intersections of sets. The union of a collection of edge-disjoint subgraphs will 
also be spoken of as their edge-disjoint union. The empty graph • has 
F ( n ) = £ ( • ) = 0. G is connected if it is non-empty and is not the union of 
two disjoint non-empty subgraphs. Any graph G is the union of a unique 
collection of disjoint connected subgraphs, called the components of G. The 
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word sequence will in this paper denote either a finite sequence with at least 
one term or an infinite sequence of one of the types ai, a<i, . . . or . . . , a_2, a_i 
or . . . , a_2, a_i, a0, aj, #2, . • • . An infinite sequence will be called right-infinite, 
left-infinite, or endless according as it is of the first, second, or third of these 
types respectively: both left-infinite and right-infinite sequences will be termed 
one-ended. If s, t are sequences such that the last term of 5 is the same as the 
first term of t, st will denote the sequence obtained by writing out the sequence 
s with its last term omitted, followed by the sequence /. For instance, if 5 is 
1, 3, 7, 4 and t is 4, 5, 3 then st is 1, 3, 7, 4, 5, 3. Extending this definition by 
associativity defines the "product" s± s2. . . sn of n (>3 ) sequences si, . . . , sn 

such that the last term of s4_i is the same as the first term of st for i = 2, . . . , n. 
A track of G is a sequence s whose terms are alternately vertices and edges of 
G, starting and ending if at all with a vertex, such that each term of 5 that is an 
edge joins the terms immediately preceding and following it. (A sequence with 
just one term, that term being a vertex, counts as a track; but there is no such 
thing as a track with 0 terms.) A track in which no edge (vertex) of the graph 
appears more than once is a path {way). For instance, in Figure 1 the track 

f, X, f, 0, a-, v, 17, M, f, i/% r 

is a path but not a way, and the track 

is a way. The subgraph of G formed by the vertices and edges in a path p of G 
will be said to be derived from p and denoted by P. A subgraph of G is a 

1 V 

FIGURE 1. 

pathoid (one-ended pathoid, endless pathoid) if it is derivable from a path 
(one-ended path, endless path); similarly, when any other type of path has 
been defined, the definition of the corresponding type of pathoid is immediate. 
The same subgraph can be both a one-ended and an endless pathoid since it 
may be derivable from more than one path. If X, Y are subsets of V(G), X will 
denote V(G) — X, X o Y will denote the set of those edges of G that join an 
element of X to an element of F, and X8 will denote X o X. For example, 
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{£> */}5 = {X, /*, *>} in Figure 1. X is a divisor of G if X<5 is finite. For example, 

{£1,171, £2, ??2, £3, i?3, • • •} 

is a divisor of the graph in Figure 2 but {£2, £4, &> • • •} is not. Whenever two 
or more graphs are under consideration and one of them is denoted by G, all 
graph-theoretic terminology and notation—such as "degree," d(£), X<5, X— 
will relate to G unless the contrary is indicated. If it is necessary to relate such 
notations to some other graph H (such as a subgraph of G), this will be done by 
means of suffixes, e.g. dH(i;), XôH. If £ 6 V(G), c^ will denote the integer-
valued function with domain V(G) which takes the value 1 on £and 0 on every 
other vertex of G. A splitting of G is a finite set {Hi, . . . , Hi} of disjoint 
infinite subgraphs of G such that G is the union of these and a finite subgraph: 
any finite subgraph H such that G = HiU...UHi^JH will be called a 
completion of the splitting. A splitting with / elements is an l-splitting. For any 
positive integer /, we call G l-separable if it possesses an /-splitting, and 
l-coherent if it does not possess an (/ + 1)-splitting. (If G is /-coherent, it is 
clearly also /'-coherent for every V > I.) The graph of Figure 2 is /-separable 
for / = 1, 2, 3, 4 but is 4-coherent. This graph has a 4-splitting 

{Hfr, HWJ Hçv, HT7r}, 

where the notation HXP means the subgraph with vertices xi> X2, X3, • . • and 
edges p2, P3, P4, . • . . There are infinitely many possible completions of this 
splitting, one of them being the subgraph if with vertices co, £1, £2, 171, fi, T\ and 
edges Xi, X2, m, vi, in. A set such as {H& ^ HW} H$v, HTir) would be a 3-splitting 
of this graph with completion H. 

We define a directed graph or digraph to be a graph G such that each edge of 
G is an ordered triple whose second and third components are the vertices 
joined by the edge—i.e., an edge (e, £, 77) joins the vertices £ and 77 (Figure 3). 
If G is a digraph and X = (e, £, 77) £ -E(G), we call £ the tail of X and 77 its 
head and write £ = X/, rj = X/z. We also say that X is uoriented in the direction 
from Xt to \h." By defining a digraph to be a special type of graph, we ensure 
that all definitions relating to graphs apply immediately to digraphs. 
(Obviously, however, a concept defined for graphs in general will not, when 
applied to digraphs, take any particular account of the directions of orientation 
of their edges.) A track 5 in a digraph is a ditrack if each term of s that is an 
edge is immediately preceded in 5 by its tail and (therefore) immediately 
followed by its head. A dipath (diway) is a ditrack that is a path (way). In 
Figure 3, the sequence f, X, rj, /x, r, v, f is a diway, whereas £, X, rj, ir, f, v, r is 
a way but not a diway. An Ruler dipath of G is a dipath p in G such that 
P = G. For instance, the digraphs in Figures 4 and 5 have Euler dipaths in 
which the edges occur in the order indicated by the numbering. If X, Y are 
subsets of V(G)_, I > F will denote {X G E(G)\ \t G X, \h £ Y}. X is out-
biased if X n> X is infinite and X t> X is finite. G is biased if F(G) has an 
out-biased subset. The digraph of Figure 6, which is biased, may be contrasted 
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FIGURE 2. 

with the unbiased digraph of Figure 7. The flux F(X) of (or "out of") a 
divisor X of G is \X E> X\ — \Xt> X\. An exit {entry) of a vertex £ is an edge 
with tail (head) £; the cardinal number of the set of exits (entries) of £ will be 
denoted by x(£) (e (!•)). G is solenoidal if x{£) = e(£) for every J G ^(G) 
(Figures 8, 9, 11). If f G F(G) and x(f) = e(f) + c€(f) for every f 6 F(G), 
we shall call G %-solenoidal (Figure 5). If £, 77 are (not necessarily distinct) 
vertices of G and #(f) + c,,(f) = e(f) + c$(f) for every f Ç F(G), we shall 
call G %ri~l-solenoidal (Figure 4). 

The main theorems of this paper are as follows: 
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FIGURE 3. 

THEOREM 1. Let £ be a vertex of a digraph G. Then G has a right-infinite Enter 
dipath with first term £ if and only if G is enumerable, connected, %-solenoidal, 
l-coherent, and unbiased. 

THEOREM 2. Necessary and sufficient conditions for a digraph to have an 
endless Euler dipath are that it be enumerable, connected, solenoidal, unbiased, 
and 2-coherent and that, if 2-separable, it possess a divisor with flux 1. 

Necessary and sufficient conditions for a digraph G to have a left-infinite 
Euler dipath with a prescribed last term are, of course, deducible from Theorem 1 

FIGURE 4. 
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FIGURE 5. 

•S)~^~9^S)^^?^?^?^~9^~9~^?^i>" 
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FIGURE 6. 

-6-« 
FIGURE 7. 

by reversing the orientations of the edges of G (i.e., forming a new digraph 
with the same vertices in which each edge (e, rj, f) of G is replaced by an edge 
of the form (e', f, rj)). 

Figure 5 depicts a digraph satisfying the conditions of Theorem 1, and an 
Euler dipath in this digraph with first term £ is indicated by the numbering of 
the edges. The digraphs of Figures 8 and 9 satisfy the conditions of Theorem 2: 
the latter is 2-separable and the former is not. In Figure 9, the set of all vertices 
to the left of the broken line (drawn across the figure from top to bottom) is a 
divisor with flux 1. An endless Euler dipath in this digraph is given by adapting 
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FIGURE 8. 

U i w„ 

FIGURE 9. 
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the construction indicated by the edge-numbering in Figure 5. The digraph of 
Figure 8 has an endless Euler dipath that can be described pictorially as follows. 
Suppose the vertices of the digraph to be the points (m, n) of the plane such 
that m, n are odd integers and m = n (mod 4). Then two edges incident with 
a vertex (w, n) will be successive edges in the Euler dipath if and only if 
either (i) \m\ < \n\ and the two edges lie on the same side of the line y = n or 
(ii) \m\ > \n\ and the two edges lie on the same side of the line x = m. 

2. Proof of Theorem 1. Definitions. The notation cj>.A will stand for 
]£Z€A <£(#)• If £ C E(G), L\ will denote the subgraph of G formed by the 
elements of L and the vertices incident with them, and G — L will denote the 
subgraph with vertex-set V(G) and edge-set E(G) - L. If X C V(G), X* will 
denote the subgraph with vertex-set X and edge-set X o X. We shall call X 
essential if X o V(G) is infinite and inessential if X o V(G) is finite. If J is a 
vertex of finite degree in a digraph, /(£) will denote x(£) — e(£); we regard 
/(£) as undefined for a vertex £ of infinite degree. We note that, if X is an 
inessential set of vertices of G, the degrees of these vertices must be finite and 
only finitely many of them can differ from zero, so that, if G is a digraph, /(£) 
is defined for every £ G X and is non-zero for only finitely many such £. Con­
sequently, f.X is always well defined when X is an inessential set of vertices 
of a digraph. A £rj-ditrack (^-dipath, fy-diway) is a ditrack (dipath, diway) 
with first term £ and last term rj. A vertex rj of a digraph is accessible from a 
vertex £ if there exists a £rç-ditrack in the digraph. For instance, in Figure 3 
every vertex is accessible from £ and no vertex except f itself is accessible from 
f, and in Figure 6 every vertex is accessible from every vertex. 

LEMMA 1. If k is a positive integer and G is the union of k one-ended pathoids, 
then G is k-coherent. 

Proof. Let the above pathoids be Pi , . . . , Pk. Let {H\, . . . , Hi] be an 
/-splitting of G; then this splitting has a completion H and, since H is finite, 
each Pt is the union of a one-ended pathoid Qt having no edge in common 
with H and a finite pathoid Rt. Since the Qt include no edges of H, each of 
them is contained in Hi U . . . W Hi and therefore (being connected) in a 
single Hj. It follows that any Hj which contained no Qt would be disjoint 
from Qi KJ . . . VJ Qk and therefore contained in Ri U . . . \J Rk, which is 
impossible since a finite graph cannot contain an infinite one. Therefore each 
Hj contains at least one Qt and hence I < k. 

LEMMA 2. Any dipathoid is unbiased. 

Proof. If G is a dipathoid derivable from a dipath p and X C V(G), it is 
clear that the elements of Xb form a subsequence of p whose terms belong 
alternately t o I > ï and X O X\ hence J > 1 cannot be infinite if X D> X 
is finite. 
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If the digraph G of Theorem 1 has a right-infinite Euler dipath with first 
term £, it will obviously be enumerable, connected, and ^-solenoidal, and will 
by Lemmas 1 and 2 be 1-coherent and unbiased; thus the necessity of the 
conditions in the theorem is established. 

LEMMA 3. If G is 1-coherent and X is a divisor of G, then either X or X is 
inessential. 

Proof. If X is essential, X o V(G) is infinite and therefore, since Xd is finite, 
X o X is infinite and consequently X* is infinite. Similarly X* is infinite if X 
is essential. Hence, if X and X were both essential, {X*, X*} would be a 
2-splitting of G with completion (X5)t, and G would not be 1-coherent. 

LEMMA 4. If Gis a digraph, then F(X) = f .X for every inessential X C V (G). 

Proof. Since an edge contributes 0, 1, or —1 to f. X according as it belongs 
to ( X o X ) U ( X o X ) , X o X , or X l > X respectively, we infer that 
f.X = | X t > X | - | X t > X | . 

If G is as shown in Figure 10 and X is the set of vertices inside the broken 
contour, then 

f.X = 4 + 2 - 1 - 2 = 3 and F(X) = 4 - 1 = 3 . 

FIGURE 10. 

COROLLARY 4A. / . V(K) = 0 if K is a finite component of G. 

COROLLARY 4B. If G is solenoidal and 1-coherent and X is a divisor of G, 
then F(X) = 0. 

Proof. By Lemma 3, either X or X is inessential. Since G is solenoidal, 
Lemma 4 gives F(X) = f.X = 0 in the former case and —F(X) = f.X = 0 
in the latter. 

LEMMA 5. A finite digraph has a closed Euler dipath if and only if it is con­
nected and solenoidal. 

Proof. See (3, chap. 2; 1, chap. 17; or 8, chap. 3). 
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LEMMA 6. Let £, t\ be vertices of a finite digraph G. Then G is a ^-dipathoid 
if and only if it is connected and fr-1-solenoidal. 

(For instance, the connected ^_1-solenoidal digraph of Figure 4 is a 
^-dipathoid derivable from the ^ry-dipath in which the edges of the digraph 
occur in the order indicated by the numbering.) 

Proof. We may assume (although it does not really affect the argument) 
that £ 7e 7] since otherwise the assertion of Lemma 6 is equivalent to that of 
Lemma 5. I t is obvious that a £rç-dipathoid must be connected and ^ _ 1 -
solenoidal. Conversely, if G is connected and ^-1-solenoidal, the addition of 
an edge X with tail TJ and head £ converts G into a connected solenoidal digraph 
that has, by Lemma 5, a closed Euler dipath p. If q, r are the portions of p 
preceding and following the term X respectively, then rq is a ^-dipath from 
which G is derivable. 

LEMMA 7. Let G = FVJ H, where G is a digraph and F, H are subgraphs of G 
and F is finite. Then H is biased if and only if G is biased. 

The proof is left to the reader. 

LEMMA 8. If a vertex rj is accessible from a vertex £ in a digraph G, then there 
exists a Çrj-diway in G. 

Proof. A £?7-ditrack with the minimum number of terms will clearly be a 
Jry-diway. 

LEMMA 9. If £ 6 V(G), X Ç E(G), and G is a connected ^-solenoidal 1-coherent 
unbiased digraph, then X is a term of some finite dipath with first term £. 

Proof. Let A be the set of all vertices accessible from £. I t is clear that 
A £> Â = 0, and therefore, since G is unbiased, Â O A is finite. Therefore Ab 
is finite. Hence, by Lemma 3, either A or Â is inessential. But, if A were in­
essential, the facts that G is ^-solenoidal and £ Ç A would imply t h a t / . A = 1 
and hence by Lemma 4 that F (A) = 1, which is impossible since A £> Â = 0. 
Therefore Â is inessential. Since G is £-solenoidal and i- £ A, it follows that 
f.A = 0 . Therefore F(Â) = 0 by Lemma 4. Since F(Â) = 0 and A o Â = 0, 
it follows that Â £> A must also be void and hence that 4̂5 = 0, which, since 
G is connected and £ G A, implies that A = V(G). Therefore, in particular, 
\t £ A and so by Lemma 8 there exists a £(X/)-diway w in G. Since X is clearly 
not a term of w, adding the terms X, \h at the right-hand end of w gives the 
required dipath. 

LEMMA 10. Let £ 6 V(G), X 6 E(G), and G be an infinite connected ̂ -solenoidal 
1-coherent unbiased digraph. Then we can find a vertex rj of G and a fy-dipath 
q such that X G E (Q) and G is the edge-disjoint union of Q and an infinite con­
nected rj-solenoidal 1-coherent unbiased digraph. 
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(For example, let G be the digraph of Figure 5, £ be as shown in the figure, 
and X be the edge numbered 10. Suppose that we take rj to be as shown in the 
figure and q to be the dipath whose edges in the order of their appearance are 
1, 10, 8, 9, 2, 3, 4. Then G is the edge-disjoint union of Q and the infinite 
connected 77-solenoidal 1-coherent unbiased digraph (E(G) — E(Q))'\.) 

Proof. By Lemma 9, we can find a vertex 77 of G and a ^-dipath p such that 
X G E{P). Let G - E(P) = H, and let Q denote the union of P and the 
finite components of H. Since G is infinite and P finite, H is infinite. But H is 
not the union of two disjoint infinite subgraphs since two such subgraphs 
would constitute a 2-splitting of G with completion P. Hence H has a unique 
infinite component / and only finitely many finite components. It follows that 
Q is finite. Moreover, since G is connected, each component of H has a vertex 
in common with P and hence Q is connected. Since G is £-solenoidal and P is 
finite and (by Lemma 6) ^"^solenoidal, H is 77-solenoidal. I t follows, by 
Corollary 4A, that 77 cannot be in a finite component of H and hence that the 
finite components of H are solenoidal. From this and the fact that P is i^ -1-
solenoidal, it follows that Q (which we have already shown to be finite and 
connected) is £r/_1-solenoidal and is therefore by Lemma 6 derivable from a 
^-dipath q, say. Since X 6 E(P) C E(Q) and G = P KJ H = Q U I and Q is 
clearly edge-disjoint from / , it will suffice to check that / is infinite, connected, 
77-solenoidal, 1-coherent, and unbiased. But / is infinite and connected since 
it is the infinite component of H; and / is ?7-solenoidal since H is 77-solenoidal 
and we have shown that 77 is not in a finite component of H. I is 1-coherent 
since, if it had a 2-splitting with completion C, this would also be a 2-splitting 
of G with completion C VJ Q. Finally, since Q is finite and G = Q ^J I is 
unbiased, / is unbiased by Lemma 7. 

To complete the proof of Theorem 1, we shall assume that G is enumerable, 
connected, ^-solenoidal, 1-coherent, and unbiased and deduce the required 
conclusion. Since G is enumerable and connected, E{G) is enumerable; let 

(1) Xi, X2, . . . 

be an enumeration of E(G). By Lemma 10, there exist a £1 Ç V(G) and a 
££i-dipath qx in G such that Xi G E(Qi) and G is the edge-disjoint union of Q\ 
and an infinite connected £i-solenoidal 1-coherent unbiased digraph I\. If /z2 is 
the first term of (1) in E(Ii), then by Lemma 10 there exist a £2 G V{I\) and 
a £1 £2-dipath q2 in I± such that /x2 G E(Q2) and I\ is the edge-disjoint union of 
Q2 and an infinite connected £2-solenoidal 1-coherent unbiased digraph 72. If 
jx3 is the first term of (1) in E(I2), then by Lemma 10 there exist a £3 G V(I2) 
and a £2 £3-dipath qz in I2 such that /x3 G E(QZ) and I2 is the edge-disjoint 
union of Qz and an infinite connected £3-solenoidal unbiased digraph 73. By 
continuing this construction, we obtain (using an obvious extension of the 
* 'product" notation defined in §1) a dipath q\ q2 q%. . . that is clearly a right-
infinite Euler dipath of G starting at £. 
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3. Proof of Theorem 2. Suppose, first, that G is a digraph possessing an 
endless Euler dipath p. Then G is clearly enumerable, connected, and solenoidal. 
I t is 2-coherent by Lemma 1 and unbiased by Lemma 2. Finally, if G is 
2-separable, it has a 2-splitting © with completion C, say. Since C is finite, we 
can write p = p\pip%, where the pi are dipaths and pi, p% have no term in 
E{C). Therefore each of Pi , P% is contained in the union of the members of @, 
and so each of them, being connected, is contained in a single member of ©. 
If they were both contained in the same member of ©, the other member of 
© would be contained in P2, which is impossible since a finite graph cannot 
contain an infinite one. Hence we can write @ = { / , /} , where P i C I and 
P 3 C / . Write V(I) = X. Since X5 C E(C)9 X is a divisor of G. Moreover, 
since F (Pi) C V(I) = X and F(P3) C V{J) C X, the elements of Xb clearly 
form a subsequence of p in which elements o f I > î alternate with elements 
of X O X and whose first and last terms are in X £> X. Therefore 

\X D> X\ - \X o X| = 1 

and so X is a divisor of G with flux 1. We have thus proved the necessity of 
the conditions in Theorem 2. 

The proof of sufficiency falls into two parts, one dealing with 1-coherent 
digraphs such as that of Figure 8 and the other dealing with 2-separable ones 
such as that of Figure 9. Lemmas 13 and 19 will complete the proof of the 
theorem for these two types of digraphs respectively. 

LEMMA 11. If G is a connected solenoidal 1-coherent unbiased digraph and 
£ 6 V(G)j X Ç E(G), then X is a term of some ^-dipath in G. 

Proof. Let \h = 77. Let A be the set of vertices accessible from J in G. Then 
A o À = 0, and therefore, since G is unbiased, Aô is finite, and therefore, by 
Corollary 4B, F (A) = 0, which, since A C> Â = 0, implies that Aô = 0 and 
hence (since £ G A and G is connected) that A = V(G). Thus X£ 6 4̂ and so, 
by Lemma 8, we can form a ^-dipath p by adding the terms X, 77 at the end 
of a £(X£)-diway. Let B be the set of vertices accessible from 77 in G — E(P). 
Then clearly B D> 5 C E(P), which is finite, and hence, since G is unbiased, 
B8 is finite, and so F(B) = 0 by Corollary 4B. Clearly rj G B, and therefore, 
if £ é B, it would follow from the fact that P is £77_1-solenoidal and Lemma 4 
that 

- 1 =fP. (B H VÇP)) = FP(B r\ V(P)) > F{B) = 0, 

where the inequality follows from the fact that 5 > 5 C E(P). Hence £ G B. 
Therefore there is by Lemma 8 an 7?£-diway q in G — E(P); and pq is the 
required dipath. 

LEMMA 12. Let £ 6 F ( G ) , X £ E ( G ) , and G be an infinite connected solenoidal 
1-coherent unbiased digraph. Then there exists a Q-dipath q such that X £ E(Q) 
and G is the edge-disjoint union of Q and an infinite connected solenoidal 1-
coherent unbiased digraph. 
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(For example, let G be the digraph of Figure 8, £ be as shown, and X be the 
thick edge in the figure. Suppose that we take q to be the dipath indicated by 
the numbered edges. Then G is the edge-disjoint union of Q and the infinite 
connected solenoidal 1-coherent unbiased digraph (E(G) — £(Q))f.) 

Proof. By Lemma 11, we can find a ££-dipath p such that X G E(P). Let 
G — E(P) = Hf and let Q denote the union of P and the finite components of 
H. Then Q is finite and connected by the argument used in the proof of Lemma 
10. Since G is solenoidal and P is finite and solenoidal, H is solenoidal, and 
therefore Q is a union of edge-disjoint solenoidal subgraphs and so is solenoidal. 
Therefore, by Lemma 5, Q is derivable from a ££-dipath g, say. As in the proof 
of Lemma 10, we see that X G E(Q) and that G is the edge-disjoint union of Q 
and the unique infinite component / of H. Moreover, / is solenoidal since H is 
solenoidal, and is infinite, connected, 1-coherent, and unbiased for the same 
reasons as before. 

LEMMA 13. Every enumerable connected solenoidal Incoherent unbiased digraph 
has an endless Euler dipath. 

Proof, Let G be enumerable, connected, solenoidal, 1-coherent, and unbiased. 
LetXi, X2, . . . be an enumeration of E(G). Select any £0 G V(G). By Lemma 12, 
there exists a £0 £o-dipath q\ such that Xi G E(Qi) and G is the edge-disjoint 
union of Qi and an infinite connected solenoidal 1-coherent unbiased digraph 
Ii. Since G is connected, we can select a £i G V(Qi r\ Ii). Then, if /z2 is the 
first \t in -E(Ii), there exists by Lemma 12 a £i £i-dipath g2 in I\ such that 
jit2 G E(Qi) and I\ is the edge-disjoint union of Q2 and an infinite connected 
solenoidal 1-coherent unbiased digraph I2. Since I\ is connected, we can select a 
£2 G V(QÎ C\ I?). Then, if /z3 is the first X* in J E ( / 2 ) , there exists by Lemma 12 a 
h £2-dipath qz in 12 such that ju3 G E{QZ) and 72 is the edge-disjoint union of 
Qz and an infinite connected solenoidal 1-coherent unbiased digraph I3. Since 
It is connected, we can select a £3 G V(Q% P\ /3) ; and so on. Clearly we can 
write qt = r*s* where r* is a £*__i £ rdipath and st is a £< £*_i-dipath and rt 

includes at least one edge if i is even and st includes at least one edge if i is odd. 
Then . . . s3 s2 si r± r2 rz. . . is an endless Euler dipath of G. 

Definitions. A source (sink) of a finite digraph G is a vertex J such that 
/(£) > 0 (/(£) < 0), and the strength of this source or sink is | /(£)| . The sum 
of the strengths of the sources of G will be denoted by <r(G). Taking X = V(G) 
in Lemma 4 shows that <r(G) is also the sum of the strengths of the sinks of G. 
In Figure 10, <r(G) = 6. 

LEMMA 14. If So is a finite subgraph of an unbiased digraph G, then S0 is 
contained in a finite subgraph S such that no component of G — E (S) includes 
both a source and a sink of S. 

(For instance, if G is the digraph of Figure 7 and S0 = {X, /x, *>}|, where 
X, /x, v are the three consecutive thick edges marked with these letters and 
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lying along the top boundary of the figure, then one subgraph S satisfying the 
conditions of Lemma 14 is L\, where L is the set of all thick edges in the figure.) 

Proof. Select a finite subgraph T containing 50 such that <r(T) is as small as 
possible. If a source £ of T were accessible in G — E(T) from a sink 77 of T, 
there would by Lemma 8 be an rç£-diway win G — E(T), in which case T \J W 
would clearly be a subgraph containing S0 with <x{T \J W) < <r(T). Therefore 
no source of T is accessible in G — E{T) from a sink of T and so, if A is the 
set of vertices accessible in G — E(T) from at least one sink of T, all sinks of 
T belong to A and all its sources belong to Â. Clearly A E> Â C. E(T), which 
is finite, and therefore, since G is unbiased, Â O 4̂ is finite. Therefore 
S = (Â O A )f U T is a finite subgraph of G containing S0. Since clearly 
fs(£) < / r ( ? ) f° r every £ £ A (where/ s(£), /r(£) m&y be interpreted as 0 if £ 
is not in 5 or T respectively) and/s(£) > /r(£) for every £ £ Â, the fact that 
T has all its sinks in A and all its sources in Â implies that 5 has the same 
property. But, since A t=> Â C E(T), it follows that Aô C E(S) and therefore 
a component of G — E(S) cannot have one of its vertices in A and another in Â. 
Consequently, no component of G — E(S) includes both a source and a sink 
of 5. 

LEMMA 15. If So is a finite subgraph of an unbiased connected digraph G, 
then G is the edge-disjoint union of a finite subgraph R containing 50 and a sub­
graph I with no finite component such that no component of I includes both a 
source and a sink of R. 

(If, once again, G is the digraph of Figure 7 and 5 0 = {X, ju, v}\, we can 
satisfy the requirements of Lemma 15 by taking R = L\, I = (E(G) — L)f, 
where L is the set of all thick edges in the figure.) 

Proof. Let S have the properties mentioned in the statement of Lemma 14. 
Let R be the union of S and the finite components of G — E(S); and let I be 
the union of the infinite components of G — E(S). Since G is connected, 
either S = • and G is the sole component of G — E(S) or 5 ^ • and each 
component of G — E(S) has a vertex in common with S. Hence G — E{S) can 
have only finitely many components and consequently R is finite. A component 
Jo of I will be an infinite component of G — E(S) and so, if I0 includes a 
vertex £ of R, then £ will be a vertex of S incident with precisely the same 
edges in 5 as in R. Consequently, if 70 included both a source and a sink of R, 
it would include both a source and a sink of 5, which is precluded by the fact 
that it is a component of G — E(S). Thus no component of I includes both a 
source and a sink of R. The remaining required properties of I and R are 
obvious. 

LEMMA 16. The elements of a splitting of an unbiased digraph are unbiased. 

Proof. Let I be an element of a splitting of an unbiased digraph G and H be a 
completion of this splitting. Then all edges incident with vertices of I are in 
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I\JH. Suppose that X C V(I) and that X t>7 (7(7) - X) is infinite. Then 
X t> X is infinite since it contains X O j (7(7) — X), and therefore X t> X 
is infinite since G is unbiased, and therefore (7(7) — X ) £ > j X must be 
infinite since it includes all elements of X E> X that are in £ (7 ) , i.e. all elements 
o f l > I not in the finite set E{H). 

LEMMA 17. Any member of an l-splitting of an l-coherent graph is 1-coherent. 

Proof. If 7 belonged to an /-splitting © (with completion 77) of an /-coherent 
graph G and if X were a 2-splitting (with completion K) of 7, then 
Ï U ( @ - {7}) would be an (/ + l)-splitting of G with completion H\J K, 
which contradicts the /-coherence of G. 

LEMMA 18. If G = F U 77, where F, 77 are subgraphs of G and F is finite and 
77 is 1-coherenty then G is 1-coherent. 

Proof. If {7, /} were a 2-splitting of G with completion C, then {7P i i7 , 
J r\H) would be a 2-splitting of 77 with completion C C\ H. 

LEMMA 19. If G is an enumerable connected solenoidal 2-coherent unbiased 
digraph possessing a divisor with flux 1, then G has an endless Euler dipath. 

Proof. Let X be a divisor of G with flux 1. By Lemma 15, we can write 
G = 7 KJ R, where R is a finite subgraph containing (X<5)f, I has no finite 
component, no component of 7 includes both a source and a sink of R, and 
E(I r\R) = 0. Since G is solenoidal and F(X) = 1, 7 \X) = - 1 , it follows 
from Lemma 4 that X, X are essential, and hence, since X8 is finite, that 
X o X, î o î are both infinite. Therefore X*, X* are disjoint infinite sub­
graphs of G. Moreover, since Xô C F(R)f which is disjoint from £(7 ) , it 
follows that 7 C X* U X* and so each component of 7 is contained in one of 
X*, X*. Furthermore, since X* C G = 7 KJ R and X* is infinite and R is 
finite, I * n / ^ • ; and similarly X* P\ 7 ^ H], It follows from these remarks 
that 7 has at least one component contained in each of X*, X*. On the other 
hand, since the components of 7 constitute a splitting of G with completion R, 
I has at most two components. Therefore 7 has precisely two components M, 
N, say, where M C X*, N C X*. Moreover, 

fB.v(RnN) =fR.v(Rnmx*) = / B . ( in F(*)n F(/)) 
= / . . ( i n 7(i?)) 

since the solenoidal character of G = 7 U R implies t h a t / B ( f ) = 0 for every 
f € FCR) - V(J). But, by Lemma 4, 

/ f i . ( X n F(i?)) = 7 V X H V(R)) = F(X) 

since X<5 C E(R). Hence / * . F(i? n N) = F(X) = - 1 and so, since iV does 
not include both a source and a sink of R, it follows that N includes a unique 
sink rj oî R and no source of R and t h a t / B (77) = — 1. Similarly, M includes a 
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unique source £ of R and no sink of R and/#(£) = 1. Moreover, R can have no 
source other than £ or sink other than rj since we have seen that / B ( f ) = 0 
when f G F(i?) — 7(7). Therefore^ is £i7-1-solenoidal. Therefore, by Corollary 
4A, £, 77 belong to the same component C of R and so (since R is i^-solenoidal) 
C is ift-^-solenoidal and the other components of R are solenoidal. By Lemma 6, 
C = P for some i^-dipath £. Since G is connected, each component of R has a 
vertex in common with I; hence the set of components of R other than C can 
be divided into two disjoint subsets 9)J, Sft such that each member of StXJ has a 
vertex in common with M and each member of 9Î has a vertex in common 
with N. Let M' be the union of M and the members of 9K, and N' be similarly 
defined. Since G is solenoidal and R is finite and £77_1-solenoidal, I is T^ - 1-
solenoidal and therefore N is 77-solenoidal. Since the members of Sft are 
solenoidal, it follows that N' is 77-solenoidal. Since {M, N} is a splitting of G 
with completion i^, iV is unbiased and 1-coherent by Lemmas 16 and 17, and 
therefore N' is unbiased and 1-coherent by Lemmas 7 and 18. Finally, N' is 
enumerable since N C Nf C G, and is connected since N is connected and has 
a vertex in common with each member of 9Î. Therefore, by Theorem 1, N' has 
a right-infinite Euler dipath n' with first term 77. Similarly, M' has a left-
infinite Euler dipath m' with last term £; and mfpnr is an endless Euler dipath 
of G. 

Lemmas 13 and 19 complete the proof of Theorem 2. 

4. Further observations and results. The language and notation of (7) 
will be used in this section; but, where the words "path-sequence" and "path" 
were used in (7), we now replace them by "path" and "pathoid" respectively. 
An Euler path of G is a path p in G such that P = G. We shall call G Eulerian 
if it has no odd vertex (vertices of infinite degree being allowed). Figures 2, 8, 
9, and 11 depict Eulerian graphs. If £ G V(G) and d(£) is odd or infinite and 
all other vertices of G have even or infinite degree, we call G %-Eulerian. 
Obviously an infinite graph is 1-coherent if and only if it is 1-limited (and, 
more generally, /-coherent if and only if it is /'-limited for some /; < /). Hence 
we see from Lemma 1 and (7, Lemma 11) that a graph has a right-infinite 
Euler path with first term £ if and only if it is enumerable, connected, %-Eulerian, 
and 1-coherent. In effect, this exhibits the characterization due to Erdôs, 
Griinwald, and Vâzsonyi (2, p. 68; 8, Theorem 3.2.1) of infinite graphs with 
one-ended Euler paths in a form designed for comparison with Theorem 1. 
We shall make a similar comparison of their theorem regarding endless Euler 
paths with Theorem 2 after some further preliminary observations. 

We remark first that, since the proofs did not depend on G having no finite 
component or E(G) being enumerable, (7, Corollary 2A) applies to inessential 
sets of vertices of Eulerian graphs in general and (7, Lemmas 5 and 6) and the 
related definitions of odd and even wings and of p(G) apply to Eulerian 
limited graphs in general. We shall now establish an analogue, for solenoidal 
limited digraphs, of the parity of a wing of an Eulerian limited graph. 
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LEMMA 20. If W is a wing of a limited solenoidal digraph G, then F(X) has 
the same value for every W-set X. 

Proof. Let X, Y be W-sets. Then by the proof of (7, Lemma 5), X + F is 
inessential, and therefore so are its subsets I H ? , X C\Y. Therefore 
F(X r\Y) = F{X r\ Y) = 0 by Lemma 4 and the fact that G is solenoidal. 
With the notation 

x n Y = Zi, x n F = z2, xr\Y = z3, xr\f = zh 

\ZtOZjl - \ZjOZtl = £„( = - ^ i ) . 

we have 

F{X) — F(Y) = Fn + ^14 + ^23 + ^24 — ^12 — ^32 — ^14 — F34 

= ^21 + -^23 + ^24 — ^31 — ^32 ~ ^34 = F(Z2) — F{Z?) — 0 , 

and Lemma 20 is proved. 

Definition. In the circumstances of Lemma 20, f(W) will denote the value 
of F{X) for every W-set X. (One can think of f(W) as the "flux out of W." 
Figure 11 depicts a 3-limited solenoidal digraph with wings W\, 1F2, W3 such 
t h a t / ( W i ) = l , / ( ^ 2 ) = - 3 , / ( T F 8 ) = 2.) 

LEMMA 21. 7/ G is 2-limited and Wi, W2 are its wings, a subset X of V(G) is a 
Wi-set if and only if X is a W2-set. 

(One can illustrate Lemma 21 by taking G to be the digraph of Figure 9 
and X, X to be the sets of vertices to the left and right respectively of the broken 
line.) 

Proof. If the symmetric difference A + B of two sets A and B is finite, we 
shall write A ~ B ; and the corresponding notation for subgraphs will be used 
as defined in (7). Let {Hu H2) be a 2-splitting of G and let Hi £ Wu H2 G W2. 
If X is a WVset, X* ~ Hx and therefore X ~ 7 ( i ï i ) , l o i - £ ( # 0 and 
hence 

X — F(G) - F ( # i ) ~ F(£T2), 

i o î - ( i o î ) W I Ô = £(G) - (X o X) — E(G) - E(HX) ~ £(ff2) , 
and hence X* ~ ijT2 G W2. Since X<5 = X5, which is finite, it follows that X 
is a TF2-set. Similarly, if X is a IF2-set, then X is a TFi-set. 

From Lemma 21, we see that the set of IFi-cinctures of G is the same as the 
set of JF2-cinctures ; we shall call this set of cinctures the neck of G. It follows 
from this observation and definition that, if G is 2-limited and Eulerian, then 
both wings have the same parity (as one may also infer from (7, Lemma 6)) 
and all cinctures in the neck of G have this parity too ; it is thus natural to call 
the neck of a 2-limited Eulerian graph even or odd according as it consists of 
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w 
FIGURE 11. 

even or odd cinctures respectively. It also follows from Lemma 21 that, if G 
is a 2-limited solenoidal digraph with wings W\ and W^ then 

f(W{) = F(X) = -F(X) = -f(W2) 

where X is any PPVset; we shall call the quantity |/(TFi)| = | / ( ^ 2 ) | the flux 
through the neck of G. 

https://doi.org/10.4153/CJM-1966-070-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-070-2


710 C. ST. J. A. NASH-WILLIAMS 

LEMMA 22. A 2-limited Eulerian graph has an odd cincture if and only if its 
neck is odd. A 2-limited solenoidal digraph has a divisor with flux 1 if and only 
if the flux through its neck is 1. 

Proof. Let X be a divisor of a 2-limited graph G with wings W\, Wi. Then 
Xb is finite. Therefore X is inessential if X* is finite, X is inessential if X* is 
finite, and, if X*, X* are both infinite, they constitute a 2-splitting of G with 
completion (X5)|, whence X* must belong to Wi or W2 and so X must be a 
Wi-set or a Wz-set. Hence either X is inessential or X is inessential or X is a 
l^i-set or X is a WVset. If G is Eulerian, then by (7, Corollary 2A) (extended 
to apply to Eulerian graphs in general) X<5 = Xb cannot be odd if X or X is 
inessential, and hence G has an odd cincture if and only if Xb is odd for some 
T^i-set or T^2-set X, which is equivalent to the neck of G being odd. If G is a 
solenoidal digraph, then by Lemma 4 F(X) = F(X) = 0 if X or X is inessen­
tial and hence G will have a divisor with flux 1 if and only if there is a W\-set 
or WVset X such that F(X) = 1, which is equivalent to the flux through the 
neck of G being 1. 

If G has an endless Euler path, it is obviously enumerable, connected, and 
Eulerian, and by (7, Lemma 8) G is either 1-limited or 2-limited with odd neck. 
Conversely, if G is enumerable, connected, and Eulerian and is either 1-limited 
or 2-limited with odd neck, then by (7, Lemmas 10 and 13) G has an endless 
Euler path. From these remarks and Lemma 22, we see that each of the following 
is a set of necessary and sufficient conditions for G to have an endless Euler path: 

(i) G is enumerable, connected, Eulerian, and either 1-limited or 2-limited 
with odd neck, 

(ii) G is enumerable, connected, Eulerian, and 2-coherent and, if 2-separable, 
possesses an odd cincture. 

Conditions (ii) provide the closer parallel with Theorem 2. It is a fairly easy 
exercise to prove directly the equivalence of (i) or (ii) to the conditions of 
Erdôs, Grùnwald, and Vâzsonyi (2, p. 61; 8, Theorem 3.2.2). Moreover, from 
Theorem 2 and Lemma 22, we see that a digraph has an endless Euler dipath 
if and only if (a) it is enumerable, connected, solenoidal, and unbiased and (b) 
either it is 1-limited or it is 2-limited and the flux through its neck is 1. This bears 
a resemblance to (i), and is possibly a slightly more natural, if slightly less 
simple-minded, formulation of Theorem 2. 

The flux through the neck of the digraph in Figure 9 is 1. If, however, we 
reverse the orientations of all the thick edges, this digraph remains solenoidal 
and 2-limited but the flux through its neck becomes 3. The reader will soon 
find by experiment that the digraph then no longer has an endless Euler dipath, 
the difficulty being, roughly speaking, that an endless dipath can at most carry 
a flux of 1 through the neck of the digraph. 

We now summarize some further results of (4). A diendless dipathoid is a 
pathoid derivable from an endless dipath. We recall that, by (5, Theorem 2'), 
a digraph is decomposable into diendless dipathoids if and only if it is solenoidal 
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and has no finite component. A wing W of a solenoidal limited digraph G is a 
source-wing of strength r if f{W) = r > 0, a sink-wing of strength r if 
f(W) = —r<0, and neutral if f(W) = 0. An argument resembling the proof 
of (7, Lemma 6) shows that the sum (which we denote by s(G)) of the 
strengths of the source-wings of G is equal to the sum of the strengths of its 
sink-wings. The number of neutral wings of G will be denoted by n(G). Now 
let G' denote an enumerable solenoidal (not necessarily limited) digraph with 
no finite component, and let us define q(Gf) to mean s(Gf) + n(G') if G' is 
both limited and unbiased and to mean Ko if G' is either unlimited or biased 
or both. Then a result of (4) states that q(G') is the minimum number of 
diendless dipathoids into which Gf is decomposable. This is the analogue for 
digraphs of the main result of (7), and its proof is not very much more difficult. 
A somewhat more elaborate argument shows that G' is decomposable into a 
diendless dipathoids if and only if the cardinal number a lies between q(G') and 
^w(Gf) inclusive; this is the analogue of the result stated without proof in 
(7, §4). For instance, the limited unbiased digraph of Figure 11 is decomposable 
into a diendless dipathoids if and only if 3 < a < 5, as the reader may easily 
verify by experiment. 

If p is an endless path in a limited graph G, it is not hard to prove that 
there is a unique wing W of G such that every tail (in the sense of (7)) of p 
has an infinite number of edges in common with each element of W^and a unique 
wing W of G such that every head of p has an infinite number of edges in 
common with each element of W'\ we call p a WW-path. I t can further be 
shown that every endless path from which P is derivable is either a PPW-path 
or a WW-path. We may therefore unambiguously define P to be a 1-wing 
pathoid with end-wing W if W = W', and to be a 2-wing pathoid with end-
wings W, W if W y* W'.lt can also be shown that the end-wings of a 2-wing 
diendless dipathoid Q in a digraph distinguish themselves as the tail-wing W 
and head-wing W of Q by the property that every endless dipath from which 
Q is derivable is a WW-path. 

In Figure 2, let W\, W% Ws, W* be the wings to which the subgraphs H&, 
Hw, HçVi Hrir defined in §1 respectively belong; then 

. • • , £3, X3, £2, X2, £ l , Xi, W, / i l , 771, /X2, 772, M3, VZJ • • • 

is a W\ T^2-path. In Figure 9, let X be the set of vertices to the left of the broken 
line and Wi, W2 be the wings to which X*, X* respectively belong. In this 
figure, the thick edges, together with the vertices incident with them, constitute 
two diendless dipathoids; the upper dipathoid is a 1-wing dipathoid with 
end-wing W2 and the lower one is a 2-wing dipathoid with tail-wing W2 and 
head-wing W\. 

It is not hard to show that the number of 2-wing pathoids in a decomposition 
of a limited graph into endless pathoids is always finite. If <f> is a cardinal-
number-valued and co is a non-negative integer-valued function on the set of 
wings of a limited graph G, a (0, co)-decomposition of G is a decomposition J) 
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of G into endless pathoids such that each wing W is an end-wing of exactly 
4>(W) 1-wing and <a(W) 2-wing members of 3). If </> is a cardinal-number-valued 
and xl/j x are non-negative integer-valued functions on the set of wings of a 
limited digraph G, a (0, \p, %)-decomposition of G is a decomposition © of G 
into diendless dipathoids such that each wing W is the end-wing of exactly 
#( W) 1-wing members of 35 and is the tail-wing of exactly ^ ( W) and head-wing 
of exactly %(W) 2-wing members of 3). If Lt is the set of edges numbered i in 
Figure 11, then {L/f, . . . , L5f} is a (0, ^, x) -decomposition of the digraph, 
where <j>, i/% x are as given in the following table: 

Wx w% Wz 

<f> 1 0 1 
!> 1 0 2 
X 0 3 0 

A £ &-path (oD^-path) is a right-infinite (left-infinite) path with first (last) 
term f ; and a corresponding definition can be given for dipaths. If u is a finite 
sequence £i, . . . , £m of (not necessarily distinct) vertices of G and v is a cardinal 
number, a (w; v)-decomposition of G is a decomposition of G of the form 
{Pi, . . . , Pm) \J @, where P* is a £* oo-pathoid and © is a set of y endless 
pathoids distinct from Pi , . . . , Pm . If u, v are finite sequences £i, . . . , £m and 
Vh - - - i Vn respectively of vertices of a digraph G, a (w, «;; v)-decomposition of 
G is a decomposition of G of the form {Pi, . . . , Pm , <2i, . . . , Qn) U ©, where 
P< is a £* oo -dipathoid and Qj is an oo 77rdipathoid and © is a set of v diendless 
dipathoids distinct from Pi , . . . , Pm , Ci, . . . , Qn> In these definitions (and in 
the statements of Problems (iii) and (vi) below), we permit the special cases 
in which u or v have 0 terms, thus waiving a rule made in §1 concerning our 
use of the word "sequence." In Figure 5, let u be the sequence £, 77 and v be 
the sequence with sole term rj. Let L be the set of edges numbered 7n, M be 
the set of edges numbered In + 5, and N be the set of edges numbered 7^ + 4 
and In + 6, where n runs through the set of positive integers in each case, 
and let P be the set of all remaining edges. Then {Z/j*, -^t» ^t> P\\ i s a 

(u,v; 1)-decomposition of the digraph. 
The following further problems were investigated in (4). 
(i) Let G be a limited graph and 0, w be a pair of functions as described 

above. What are necessary and sufficient conditions for G to admit a (<£, co)-
decomposition? 

(ii) If v\ is a cardinal number and n% is a non-negative integer, what are 
necessary and sufficient conditions for a limited graph to be decomposable into 
z>i 1-wing and n^ 2-wing endless pathoids? 

(iii) Let u be a finite sequence of vertices of a graph G and ^ b e a cardinal 
number. What are necessary and sufficient conditions for G to admit a (u;v)-
decomposition? 
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(iv) Let G be a limited digraph and <f>, f x be a triple of functions as des­
cribed above. What are necessary and sufficient conditions for G to admit a 
(<t>> »̂ x)-decomposition? 

(v) If v\ is a cardinal number and n^ is a non-negative integer, what are 
necessary and sufficient conditions for a limited digraph to be decomposable 
into v\ 1-wing and n% 2-wing diendless dipathoids? 

(vi) Let u, v be finite sequences of vertices of a digraph G and v be a cardinal 
number. What are necessary and sufficient conditions for G to admit a 
(u, v; v)-decomposition? 

Problems (i), (ii), (iii), and (vi) were solved completely in (4). Problems 
(iv) and (v) were solved completely for unbiased digraphs, but not for biased 
ones. It appears that their complete solution for biased digraphs may possibly 
present a difficulty of a substantially higher order, and some possibility of a 
remote connection between this problem and the four-colour problem has even 
been detected. Since, however, it is easily deducible from Lemma 2 that only 
unbiased digraphs can be decomposed into a finite number of dipathoids, it 
follows that (iv) and (v) are completely solved for the cases in which <f> is 
finite-valued and vi is finite respectively. A slightly curious feature of the solu­
tions of (ii) and (for unbiased digraphs) (v) is that they are substantially 
more complicated for disconnected than for connected graphs. It is true that 
the solutions for disconnected graphs are simply a matter of "adding the 
contributions of their components"; but this addition involves appreciable 
difficulties. It will be observed that the solution to (vi) may be regarded as 
containing both Theorems 1 and 2 as special cases; and similarly (iii) in a 
sense subsumes both the one-ended and endless Euler path problems for 
undirected graphs. A variant of (iii), in which it was supposed that G was 
limited and that it was specified how many of the v endless pathoids were to 
be 1-wing and how many were to be 2-wing, was also solved in (4), and the 
corresponding variant of (vi) solved for unbiased digraphs. 
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