ON CYCLIC SUBGROUPS OF FINITE GROUPS

by U. DEMPWOLFF and S. K. WONG

(Received 13th December 1979)

In [3] Laffey has shown that if Z is a cyclic subgroup of a finite subgroup G, then either a nontrivial subgroup of Z is normal in the Fitting subgroup F(G) or there exists a g in G such that $Z^{g} \cap Z = 1$. In this note we offer a simple proof of the following generalisation of that result:

Theorem. Let G be a finite group and X and Y cyclic subgroups of G. Then there exists a g in G such that $X^{g} \cap Y \trianglelefteq F(G)$.

Remark. Note that X and Y need not to be conjugate subgroups of G. Our notation is standard (see [2]). A subgroup H is said to be a component of G if [H, H] = H, H is subnormal in G and H/Z(H) is a simple group. The product of all components of G is called E(G). Let $F^*(G) = F(G) \cdot E(G)$. Then $C_G(F^*(G)) \subseteq F^*(G)$ (see page 165 of [1]),

Proof of Theorem. We choose G to be a minimal counterexample and X, Y chosen so that $\max(|X|, |Y|)$ is of minimal order. Consequently,

(I) We may assume |X| = |Y| and if X_p is a S_p -subgroup of X then there exists a g in G such that $X_p^g \in Syl_p(Y)$.

(II) The group X is of square-free order.

Suppose p^2 divides |X|. Then by induction, we may assume (by replacing Y by a suitable conjugate) that $L = X \cap N = Y \cap N \neq 1$, where $N = \Omega_1(Z(O_p(G)))$. First assume $L \leq G$. Since $C_G(L) \leq G$ and X, Y are contained in $C_G(L)$, we have by induction that $G = C_G(L)$.

But by induction on G/L, we have a contradiction. So $L \not \trianglelefteq G$. Let $g \in G$ such that $X^{\mathfrak{g}} \cap Y$ is a p'-group. Set $X^{\mathfrak{g}}_{\mathcal{O}} = O_{p'}(X^{\mathfrak{g}})$ and $T = C_G(N)X^{\mathfrak{g}}_{\mathcal{O}}$. Since $N \subseteq F(T)$ and $(|N|, |X^{\mathfrak{g}}_{\mathcal{O}}|) = 1$, we have $F(T) \subseteq C_G(N)$. Hence $F(T) = F(C_G(N)) = F(G)$. By induction, there exists a $h \in C_G(N)$ such that $X^{\mathfrak{gh}}_{\mathcal{O}} \cap (Y \cap T) \trianglelefteq F(T) = F(G)$. Since $L^h = L$, we have $X^{\mathfrak{gh}} \cap Y = X^{\mathfrak{gh}}_{\mathcal{O}} \cap Y = X^{\mathfrak{gh}}_{\mathcal{O}} \cap (Y \cap T) \trianglelefteq F(G)$, and we have a contradiction. This proves that X is of square-free order.

(III) $G = F^*(G)X = F^*(G)Y$.

Let $G_O = F^*(G)X$. Since $C_G(F^*(G)) \subseteq F^*(G)$ and $F(G_O) \supseteq F(G)$, we have $Z(F(G_O)) \subseteq Z(F(G))$. If $G_O \subset G$, then by induction there exists a $g \in G_O$ with $X^{\mathfrak{g}} \cap (Y \cap G_O) \trianglelefteq F(G_O)$. i.e. $X^{\mathfrak{g}} \cap Y \cap G_O \subseteq Z(F(G_O)) \subseteq Z(F(G))$. Since $X^{\mathfrak{g}} \cap Y = X^{\mathfrak{g}} \cap Y \cap G_O$ we are done.

(IV) If $1 \neq N \subseteq \Omega_1(Z(O_p(G)))$ with $N \trianglelefteq G$, then $F(G/N) \supset F(G)/N$. Suppose

F(G/N) = F(G)/N. Then by induction we may assume $L = O_p(X \cap Y)N \trianglelefteq F(G)$ but $O_p(X \cap Y) \oiint F(G)$. Since $G = F^*(G)X$, we have $L \trianglelefteq G$. Let $g \in G - N_G(O_p(X \cap Y))$ and $T = C_G(L)X^g$. Since $O_{p'}(F(G)) \subseteq C_G(L)$ we have $O_{p'}(F(G)) \subseteq O_{p'}(F(T))$. But since $O_{p'}(F(T)) \subseteq C_G(L)$ and $F(C_G(L) \subseteq F(G))$, we have $O_{p'}(F(T)) = O_{p'}(F(G))$. Now by induction, there is a $t \in T$ such that $X^{g_1} \cap (T \cap Y) \trianglelefteq F(T)$. Since t centralises $O_p(X \cap Y)$, we have $X^{g_1} \cap (T \cap Y)$ is a p'-group. Hence $X^{g_1} \cap Y \trianglelefteq O_{p'}(F(G))$, a contradiction.

(V) $O_p(F(G))$ is elementary abelian, $F(G) \cap E(G) = 1$ and $X \cap F(G) = Y \cap F(G) = 1$.

Suppose $O_p(F(G))$ is not elementary abelian. Setting $N = \phi(O_p(G)) \cap \Omega_1(Z(O_p(G)))$, we have F(G/N) = F(G)/N contradicting (IV). Similarly, if $F(G) \cap E(G) \neq 1$, let $N = \Omega_1(O_p(F(G) \cap E(G)))$ and again we have a contradiction by (IV). The last assertion follows by induction.

(VI) Either $F^*(G) = O_p(G)$ or $F^*(G) = E(G)$ is a minimal normal subgroup of G. Suppose the contrary. We have the following cases:

(i) F(G) = 1 and $1 \neq M_1, M_2 \trianglelefteq G$ such that $E(G) = M_1 \times M_2$.

(ii) E(G) = 1 and set $M_1 = O_p(G)$ and $M_2 = O_{p'}(F(G))$.

(iii) Set $M_1 = F(G) \neq 1$ and $M_2 = E(G) \neq 1$.

Now let $X_O = C_X(M_2)$ and $Y_O = C_Y(M_2)$. Note that by (I), $|X_O| = |Y_O|$. As $M_1X_O \leq G$, we have $F^*(M_1X_O) = M_1$, and hence there exists a $f \in M_1$ with $X_O^f \cap Y_O = 1$. Set $X = X_O \times X_{OO}$, $Y = Y_O \times Y_{OO}$ and $T = M_2X_{OO}^f$. Pick $m \in M_2$ such that $X_{OO}^f \cap Y_{OO}^m \leq F(T)$. In cases (i) and (iii), $F(T) \leq C_G(M_2)$ and so $X_{OO}^f \cap Y_{OO}^m = 1$. In case (ii) $F(T) \geq M_2$ and by (V), $(X_{OO}^f \cap Y_{OO}^m) \cap M_2 = 1$ and hence $X_{OO}^f \cap Y_{OO}^m = 1$. Since $Y_O^m = Y_O$ and $|X_O|$, $|X_{OO}|$ are coprime numbers, we have $X^f \cap Y^m = (X_O^f \cap Y_O^m) \times (X_{OO}^f \cap Y_{OO}^m) = 1$, a contradiction.

(VII) Final contradiction.

If $F^*(G) = O_p(G)$, we have by the Schur-Zassenhaus theorem [2, Thm. 2.1, p. 221] that $X^g = Y$ for some $g \in G$. By Maschke's theorem, [2, Thm. 3.1, p. 66], let $O_p(G) = V_1 V_2 \dots V_r$ where V_i are minimal X-invariant subgroups. Let $1 \neq v_i \in V_i$, then $X \cap X^{v_1 v_2 \dots v_r} = 1$, a contradiction. Hence by (VI), we have $F^*(G) = E(G)$ is a minimal normal subgroup of G. Let $X_p \in Syl_p(X)$. Then by (I), there exists a g_p in G such that $X^{g_p} \in Syl_p(Y)$. Since G is a counterexample, for any g in G there exists a prime p such that $p \mid |X^g \cap Y|$. Hence $X_p^g = X_p^{g_p}$ and $g \in N_G(X_p)g_p$. So we have $G = \bigcup_{p \in \pi(X)} N_G(X_p)g_p$. Let $N_G(X_q) = \max(|N_G(X_p)| \mid p \in \pi(X))$. Then $|G: N_G(X_q)| < \pi(X) < r = \max(\pi(X))$. Hence $1 \neq X_r \subseteq \bigcap_{p \in M_G} N_G(X_q)^g$ and so $E(G) \subseteq N_G(X_q)$, which is impossible. This final

contradiction proves the theorem.

REFERENCES

1. H. BENDER, On groups with Abelian Sylow 2-subgroups, Math. Z. 117 (1970), 164-176.

2. D. GORENSTEIN, Finite groups (Harper and Row Publishers, New York, 1968).

3. T. J. LAFFEY, Disjoint conjugates of cyclic subgroups of finite groups, Proc. Edinburgh Math. Soc. 20 (1976-1977), 229-232.

Universität Kaiserslautern FB Mathematik Postfad 3049 D-675 Kaiserslautern The Ohio State University Department of Mathematics 231 W. 18th Ave. Columbus, Ohio 43210 U.S.A.