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Abstract

In this paper we study the approximation of vector valued continuous functions denned on a topological
space and we apply this study to different problems. Thus we give a new proof of Machado's Theorem.
Also we get a short proof of a Theorem of Katelov and we prove a generalization of Tietze's Extension
Theorem for vector-valued continuous functions, thereby solving a question left open by Blair.

1991 Mathematics subject classification (Amer. Math. Soc): primary 54C20, 54C30, 54D60, 46E25;
secondary 54C45, 54C99, 46E15.

In 1977 Machado stated a theorem on approximation of vector-valued continuous
functions defined on a compact space which generalized a celebrated theorem on
approximation of continuous functions given by Bishop (see [2] and [8]). The original
proof of Machado's theorem was elementary but long (a self-contained and detailed
version of this result has been given by Burckel in [4]). Recently, Ransford [10] and
Edwards [5] have published short proofs of Machado's theorem. Here we follow
the ideas outlined in [8] by Machado, in order to obtain results on approximation
of continuous functions in more general situations. Thus we can give a proof of
Machado's theorem which eliminates some technical calculations appearing in [8]
and [4] (see [4, Lemma 1 and Lemma 2]). Also we get a very short proof of a
Theorem of Kat&tov [7] stating that paracompactness implies realcompactness when
the cardinality is non-measurable. Finally, a generalization of Tietze's Extension
Theorem for vector-valued continuous functions is proved by using this approach,
thereby solving a question by Blair.

We use N (respectively IR, C) to denote the set of all natural numbers (respectively
real, complex numbers). Throughout, X is a nonvoid completely regular Hausdorff
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space, and £ is a real or complex Banach space. We use C(X, E) (respectively
C*(X, E)) to denote the set of all continuous maps (respectively with precompact
range) of X into E. If e € E and A c E we denote by d(e, A) the number
inf{||e — a\\ : a e A], and we denote by B€{A) the set {e : e e E, d{e, A) < e] (here
|| || denotes the norm in E). When B is a subset of a topological space we denote by
cl B closure of B in that topological space.

We endow C{X, E) with the topology of uniform convergence, that is, for every
F e C(X, E) a neighbourhood base for F is defined by sets of the form N((F) =
{G : G e # (X, E), \\F(x) - G(x)\\ < e for all x € X}, with e being an arbitrary
positive real number. If F € C(X, E), & c C(X, E) and 5 c X we define
ds(F, <&) = inf{sup{||F(;c) - G(x)\\ :xeS}:Ge&} (notice that d(F, V) may be
+oo). We write C(X) for C(X, 01).

For S e x and F a function on X we write F\s for the restriction of F to 5. If
& C C(X, £) then &\s = {G|s : G e &}. Let ^ c C(X) and 0 c C(X, £).
If a is a cardinal number, we denote by (Sf, ^ / ) a the set of all functions defined by
sums of the form £,-e//i,-G,- with | / | < a, {/i, : i e /} c si, {G, : i e / ) c « f
and {supp h{ : i e 1} is a locally finite family of sets on X, here supp ht denotes the
support of hi on X. It is clear that if & is a module over si with respect to pointwise
multiplication of functions, then {&, s/)^ c <g and if .e/ is a subalgebra of C(X)
which contains the unit then the inclusion becomes an equality. We write (Sf, si)
when no restrictions on cardinality are imposed on the index set of the above sums.

When si is contained in C(X) or C(X, C), a nonvoid subset 5 of X is called an
si-antisymmetric set if whenever / is an element of si and the restriction of / to
5 is real-valued, then the restriction of / to S is constant. Thus, for real algebras
si, an antisymmetric set is the same as a set of constancy for the algebra. If we
denote by si(X) the family of all maximal ^-antisymmetric sets of X, then si(X)
defines a unique decomposition of X into pairwise disjoint, nonvoid, maximal si-
antisymmetric sets, which are closed when si consists of continuous functions only
(see [4]).

If si c C(X), & c C(X, E) and a is a cardinal number, we say si a-refines <£
when for every open cover t of X of the form ^ = {Gf\Be{Gi(Si)}) : G, € &, 5, €
si(X), i 6 /} there is a locally finite partition of unity [hj : j e J] c si which is
subordinate to the cover <%, with hj > 0 for all j & J and | / | < a. We say that si
refines & when there is no restriction on the cardinality of J.

We shall begin this paper by stating some technical lemmas.

LEMMA 1. Let si c C(X), <$ c C(X, E) and F e C(X, E).

(i) If si a-refines the family {F - G : G e <#}, then dx(F,\&,si)a) <
sup{ds(F, &):Se si{X)}.

(ii) Suppose that si(X) consists only of singletons and & contains all constant
functions. If si a-refines {F} then dx(F, {&, si)a) = 0.
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PROOF.

(i) Set r = sup{ds(F, ^ ) : S G si(X)}. If r = +00, the proof of (i) is trivial, so
we can assume for the rest of the proof that r < 00. Let e be a positive real number.
For every 5 e &/(X) there is Gs in & such that ds(F, Gs) < r + e. Set Ue(S) =
(F - Gs)~

l(B({(F - GS)(S)}) and consider the cover ^ = [Ue(5) : S e si(X)}.
By hypothesis, there is a locally finite partition of unity {ht : i & 1} c. si with
|/ | < a, which is subordinate to <2f. For every / e / , we take one S, e si(X) such
that supp /i, c t/f (5,) and define / / = E,-6/ A,-.GS,. We have that \\F(x) - H(x)\\ <
E/e/ A ; to• IIF to ~ Gs, (x)\\ <r + 2e for all x 6 X (note that if x e Ue(S) then there
i s y e S such that | | | FU) -G s (* ) | | - | | F (y ) -G s (y ) | | | < e; thus | |F(JC)-GS(JC) | | <
r + 2e), and so dx(F, H) <r + 2e. Therefore dx{F, (&, jrf)a) < r.

(ii) Let e be a positive real number. For every x e X set U( (x) = F~l(B€(F(x)))
and consider the cover W = {Uf (x) : x € X}. By hypothesis, there is a locally finite
partition of unity {/i, : / € /} which is subordinate to ^ with | / | < a. For every
1 € / , we take one JC,- e X such that supp /J, c Ue(xt) and define / / = E, e / hj.F(Xj).
We argue as in (i) that dx(F, H) < e and this completes the proof.

LEMMA 2. Lef ^ c C*(X) and^ c. C*(X, E). Denote by c\usf the closure of
si in C*(X) WJY/I f/ie topology of uniform convergence. Then dx{F, (&', A>«0) =

PROOF. Let r = dx(F, < &, clu^)No) and let e be a positive real number. Take
H = E"=i A«--G<-' w i t h A<- e c1"-0^ md Gi e y> s u c h t h a t d*(F> H) <r + e. Now let
K be a positive real number with ||G,(x)|| < K for all x G X and / e {1, . . . ,«}, and
takeg, 6 si such that dx(hj, gt) < e/nK. ThenL = E"=i gi-Gj belongs to (^, s/)*a

?enA\\F(x)-L(x)\\ < \\F(x)-H(x)\\ + \\H(x)-L(x)\\ < r + 2eforallx e X. This
proves that dx(F, {&, s/)x0) < r. Since it is obvious that dx(F, (&, s/)^oho) > r,
the proof is complete.

Now we are going to apply the lemmas above to functions with precompact range.
In order to do this we shall need another definition and lemma.

LetF e C(X, E) and.fi/ c C(X), we say that si separates F (terminology inspired
by [10]) when for all real numbers r and t with 0 < r < t, and for every 5 e si(X),
there is a function h e si and a real constant p such that h(F~\cl(Br([F(S)}))) >
p > 0 and h(X \ F-l(B,({F(S)}))) = 0.

LEMMA 3. Let si be a uniformly closed subalgebra of C*{X) which contains the
unit and let F e C*(X, E). If si separates F then si ^-refines {F\.

PROOF. Define Ur(S) = F-l(Br({F(S)})) andVr(S) = F~l(cl Br({F(S)})) for
S 6 si(X) and r a positive real number. Let e be a positive real number and consider
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the covers of X, <% = {Ut(S) : S e */(X)} and V = {£/f/2(S) : 5 e
Since F has precompact range, "Ĵ  has a finite subcover {£/f/2(Si),..., Ue/2(Sn)}.
For every / with 1 < i < n take g, e J ^ such that gi(U(/2(Si)) > r, > 0, and
gi(X - £/2<r/3(S,)) = 0, being g, > 0. It is clear that g = gx + ... + gn belongs to sf
and g > p > 0 for some p e l . Since J ^ is closed under uniform convergence and
contains the unit, we have l/g e sf. If we define /i, = gt/g, then {/j, : 1 < / < «}
is a partition of unity subordinate to &/. And, as e was taken as an arbitrary positive
real number, we deduce that sf K0-refines {F}.

Let us see some applications of the lemmas above.

THEOREM 4. Let ̂ c C ' ( I ) , y c c*(X, E) be such that each element ofsrf(X)
is a singleton and& contains the constant functions. Ifs? separates F e C*(X, E),
then dx(F, (&, •*)«„) =0.

PROOF. This is clear by applying Lemma 1 (i), Lemma 2 and Lemma 3.

THEOREM 5. Let X be a compact space, sf a subalgebra ofC(X) which contains
the unitand& a vector subspace of C(X, E). IfF e C(X, E), then there is S €
such that dx(F, (&, j*)^) = ds(F, <$).

PROOF. By Lemma 2 we can suppose that &/ is a uniformly closed subalgebra
of C(X), since srf and c l M ^ have the same antisymmetric sets. Let us see that sf
No-refines to {F — G : G e <S\. Let e be a positive real number and consider the open
cover ^ of X, defined by ^ = {(F - Gi)-l(Bt({(F - G,)(5,)})) : G, 6 Sf, S, €
s/{X),i € I}. Set Ut = (F-G)-1(Be({(F-Gj)(S1-)})); for every/ e /and for all
y € X \ Uj, there is gy e s/ such that gy{S) / gy{y) and, since si/ is a subalgebra
of C(X) which contains the unit, we can suppose that gy(S) = 1, gy(y) = 0 and
gy > 0 on X. On the other hand, as srf is closed under uniform convergence, we
deduce that si is a lattice of functions. Thus, by applying a compactness argument,
we conclude that there is gt € s/ with g,(S,) = 1, g,(X \ £/,) = 0 and 0 < g, < 1.
Consider the cover of X defined by {§,"'((1/2, 1]) : i e / } ; it has, by compactness,
a finite subcover, {gJx{{\/2, 1]) : 1 < j < n}. If we define hj : gj/ Yll=i 8k, then
{hj : 1 < j < n] is a partition of unity subordinate to ^ . Thus, .e/ K0-refines
{F - G : G G <g\. By Lemma 1 (i), this proves that

(*) dx(F, (<#, */)*,) = suv{ds(F, &):Se s / ( X ) } .

In the sequel we prove that the supremum in the equality above is, in fact, a
maximum.
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We identify each element S in si(X) with a singleton in order to obtain a space
X as follows. Since every function belonging to s/ is constant on each element S in
s/(X), for every h e si we can define a map h : X —> K by /z(S) = /J(*S) for all
S e s/(X), where xs is an arbitrary point of S. Denote by si the algebra on X formed
by all the functions h with h e si. Then we endow X with the weak topology induced
by the functions in si. It is clear that X is a Tychonoff space which is a continuous
image of X by the identification map. Hence X is a compact space.

Now, for every G e ^ , w e define the map LG : X -* K+ by LG(S) = ds(F, G) =
sup{||F(;t) - G(x)\\ : x e 5} (we identify the elements of X with those of si{X)).
Let us see that LQ is upper-semicontinuous on X.

Let {Sa}aeD be a net on X which converges to an arbitrary point So of X. Consider
U( = (F - G)-\B(({(F - G)(S0)})) which is an open subset of X. In the first part
of the proof we have proved that there is a function h e si such that h(S0) = 1,
h(X \Uf) = 0 and 0 < h < 1. On the other hand h defines a continuous map h
on X with h(SQ) = 1. Thus there is 80 e £> such that A(S4) > 1/2 for all 5 > <50.
Hence if 5 > So and x e Ss we have ft(x) > 1/2; this implies that JC e Ue. Thus
Si c Ue for all 6 > <50 or, equivalently, (F - G)(SS) c £,({(F - G)(S0)}) for
all 5 > «o. Therefore ||F(JC) - G(x)\\ < sup{||F(y) - G(y)\\ • y e Ss} + e,
for all x e Ss and for all 8 > 80. From the inequality above we deduce that
LG(SS) = dSs(F, G) < dSo(F, G) + € = LG(S0) + €, for all 8 > 80. This proves that
LG is upper-semicontinuous.

Now consider L : X ->• K+ defined by L(5) = rfs(F, ^ ) = inf{LG(5) : G e #} .
Note that L is the infimum of a family of upper-semicontinuous maps, hence L is
upper-semicontinuous on the compact space X. Therefore there is So € X such that
L(S0) = sup{L(5) : S e X}. Thus, the supremum in the expression (*) is, in fact, a
maximum and this completes the proof.

REMARK. If <£ is an j^-module and si is a subalgebra of C(X) which contains the
unit then {&, si)*0 — <£. In this case the theorem above says that there is 50 e si(X)
such that dx(F, &) = dSo(F, <S).

The following result is Machado's Theorem. Note that, in the proof, only Lemma 1,
Lemma 2 and Theorem 5 are needed. In the sequel, if si is subalgebra of C(X, C), we
shall denote by siR the subalgebra of si formed by the real-valued functions in si.

THEOREM 6. (Machado) For a compact space X, let si be a subalgebra of C(X, C)
which contains the unit and let & be a vector subspace ofC(X, E) which is an si-
module over si. If F e C(X, E), then there is S e si(X) such that dx(F, &) =
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PROOF. Let 5? be the collection of all closed subsets of X such that 5 c X belongs
to S? if there is T c X verifying the following properties:

(i) 5 C T ,
(ii) 5 is an antisymmetric set for (£/w)R,

(iii) ds(F,&) = dx(F,&) = r.

It is clear that 5? is non empty since sf^ has, by the theorem above, an antisymmetric
set verifying (iii). Now we can order Sf in the following way: if S and T belong to
y we say that T < S when S c T and S is an antisymmetric set for Ge |̂r)m. Let us
see that every chain in (Y, <) has an upper bound in y . Suppose that {S, : i e 1}
is a chain in S?, and let S = f]{S,•. : i: e I}. We have that 5 belongs to &; if not
ds(F, &) < r, that is, there i s G e ^ with ds(F, G) < r. Let 0 < rx < r be such
that ds(F, G) < rx and let U = {x e X : \\F(x) - G(JC)|| < r,}, then 5 c U and,
by compactness, there is / e / such that 5, c U, which is a contradiction. Thus
S belongs to Sf and is an upper bound for the chain. By Zorn's Lemma, there is a
maximal element B in 5?. Now, B must be an antisymmetric set for si/. If not ( ^ | B ) R

would have an antisymmetric subset properly included in B, which is a contradiction.
Therefore B is an ^/-antisymmetric set and this completes the proof.

The following result is an application of the ideas above to realcompact spaces.

THEOREM 7. (Katetov) IfX is a paracompact space which is not realcompact, then
there is at least one locally finite open cover ofX whose cardinality is measurable.

PROOF. Since X is not realcompact, there is a free real maximal ideal M in C(X).
For every x e X, as M is free, there is gx e M such that gx > 0 on X and gx(x) = 1
(see [6] ). On the other hand, in a paracompact space, every open cover of the space
has a locally finite partition of unity subordinate to that cover. Hence, we can apply
Lemma 1 to the space X for si = C(X), <S = M and F = 1. Thus, as C(X) consists
only of singletons, we have that

dx(l, (M, C(X))) = sup{dw(l, M) : x e X} = 0.

That is, there is a locally finite partition of unity {A, : / € /} in C(X) and a family of
positive functions {g, : / e /} in M such that J2tei n-(x)-8i(x) > 1/2 for all x e X.
Let us define the following measure on the discrete space / . For / c /, /x(7) = 1
if J2i€j hi-gi ¥ M, and pi{J) = 0 otherwise. From the properties of real maximal
ideals, we deduce (see [6]) that /x is a countably additive, {0, l}-valued measure such
that fj,(I) = 1 and /i({/}) = 0 for each / 6 / . This proves that I has measurable
cardinality. Therefore the collection {coz ht : i e 1} defines a locally finite open
cover of X with measurable cardinality, and this completes the proof.
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We finish by giving a generalization of Tietze's Extension Theorem for vector-
valued continuous functions. This result solves a question left open by Blair in [3,
p. 69]. First we shall need some terminology.

LetXbeatopologicalspace, £ a Banach space and A a subset of X. If F e C(A, E)
we say that F is z-embedded in X (see [3] ) when for every closed subset N in E,
there is a zero-set Z in X such that Z n A = F~l(N). We say that F is uniformly
z-embedded in X when for every countable cover of F{A) consisting of open balls
of fixed radius, {£/„ : n e N}, there is a countable family of cozero-sets in X,
[Cn : n € N}, such that Cn D A = F~l(Un) for all n e N, and A is completely
separated from (~){X \Cn : n e N} (we say that two subsets of X, A and B, are
completely separated when there is h e C(X), with 0 < h < 1, such that h{A) = {0}
and h(B) = {1}). In the following E designates a separable Banach space and K a
convex closed subset of E.

LEMMA 8. Let F € C(A, K) which is uniformly z-embedded in X and let G €
C(X, K) such that dA{F, G) < r. Then, for every positive real number e there is
H e C(X, K) with dA(F, H) < e anddx(G, H) < r + 3e.

PROOF. Since K is separable, there is a sequence in K, {an : n e N}, such that
\J{B((an) : n e N} 2 K. Let Un = F~\B({an)), Vm = G-\BAam)) and consider
the covers f = {[/,: n e N) and f = {Vm : m e H) (note that ^ is a cover of K but
y is a cover of X). As F is uniformly z-embedded in X, there is a countable family of
cozero-sets in X, {Wn : n e N}, such that Wn C\ A = Un and A is completely separated
from p|{X \ ^n •• n e N}. Let h e C(X) such that 0 < h < 1, h(A) = {0} and
/i(fl{X \ Wn : n 6 N}) = {1}; if we set Wo = coz h, then >T = {Wn : n e N U {0}} is
an open cover of X formed by cozero-sets. Let us take now the cover of X defined by
•fDW = {VmDWn:m eH, n e N U {0}}. Since f n W is a countable open cover
of X formed by cozero-sets, there is a locally finite partition of unity subordinate to
the cover (see [1, Section 11]). Let {ht : i e N} be this partition of unity and let us
define the function H as follows, H = 52,6N

 c'-ni> where c, = an(l) if there are n e N
and m e N verifying:

(1) s u p p l e VmnWn;
(2) vmnwnnA^0.
Let n{i) be the smallest natural number n > 0 with this property. On the other hand,
Ci = am(i) when any pair (m, n) e N x N fails to verify (1) and (2) above, and m(i) is
the smallest natural number m such that supp /i, c Vm. We have, since ^ is a convex
subset of E, that H e C(X, £ ) .

For every xeAwe have that

i e N
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<Y/hi(x).\\F(x)-ci\\.
16N

Now, if x 6 A, it is clear that c, = an^ for all / e N such that x € A fl (supp A,-).
Hence, when x e A and /z,(x) 7̂  0, we have c, = an(/) and x e £/„(,•>; this implies
that \\F(x) - an(i)\\ < e. Thus \\F(x) - //(x)|| < e for all x € A or, equivalently,

Let us calculate now dx(F,G). For x e A we have ||G(x) — //(x)|| <
||G(x) - F(x)\\ + ||F(x) - H(x)\\ <r + e. If x £ A, then ||G(x) - H(x)\\ <
52ieHhj(x).\\G(x) - ci\\. Let us suppose that c, = am(l), then ||G(x) - am(i)\\ < e
for all x e X such that hj(x) ^ 0. On the other hand, when c, = an(l), there is
w, e N such that (1) supp 6, c Vm. n Wn0) and (2) Vm. D Wn(l) n A / 0. Choose
3» G Vmi n [/„,„; then ||G(y) - am || < e and ||F(j) - a-(,-,|| < e. On the other hand,
\\G(y) - F(y)\\ < r by hypothesis. Thus ||am. - afl(/)|| < r + 2e. Now, letx e Z be
such that hj(x) ^ 0. Since x € Vm, we have that ||G(x) — am. || < e, and consequently
that ||G(x) - an(0|| < r + 3e. Therefore ||G(x) - H(x)\\ < r + 3e for all x e X.
That is, dx(G,H) <r + 3e.

THEOREM 9. Lef / I k a subspace of the space X, and consider F e C(A, K) with
K a closed convex subset of a separable Banach space E. Then F may be extended
to a function in C(X, K) if and only if F is uniformly z-embedded in X.

PROOF. Given that AT is a metric space it is not hard to check necessity in the
theorem. Let us show sufficiency.

Let F € C(X, K) be uniformly z-embedded in X. We define Fo e C(X, K) like an
arbitrary constant value in K. By applying the lemma above we can get F, e C(X, K)
such that dA(Fu F) < 1/4. Suppose we have defined {Fu F2,..., Fn) c C(X, K)
such that dA(Fj, F) < \/4>, for 1 < j < n, and dx(Fh Fj+X) < \/A'~\ for 1 < j <
n — 1. By applying again the lemma above we can get Fn+i G C(X, K) such that
dA{Fn+u F) < l/4"+1 and dx(Fn, Fn+i) < 1/4" + 3/4"+1 < 1/4-1, that is, {FB}~ ,
is a sequence which converges uniformly to F in A and it is a Cauchy sequence in
C(X, K) for the uniform convergence topology. Let F be the uniform limit of {Fn}\
then F e C(X, K) and Fu = F. This completes the proof.

COROLLARY 10. Let X be a normal space and A a closed subspace of X. Then,
for every closed convex subset K of a separable Banach space E, we have that
C(X,K)U = C(A,K).

PROOF. This is clear by noting that every function in C(A, K) is uniformly z-
embedded in X when A is a closed subset of a normal space.
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REMARKS. With slight modifications in the proof of Lemma 8, we can generalize
the corollary above when X is a y -collectionwise normal space and K a y -separable
metrizable complete convex subset of a locally convex space E such that the metric
of K is defined by a countable family of seminorms (see [1] for a comprehensive
exposition of this topic). Also Theorem 9 may be generalized to a function with range
in a closed convex subset of an arbitrary Banach space when X is a paracompact
space, if we consider the obvious generalization of uniformly z-embedded function.
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