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Abstract

Physically-based avalanche propagation models must still be locally calibrated to provide robust
predictions, e.g. in long-term forecasting and subsequent risk assessment. Friction parameters
cannot be measured directly and need to be estimated from observations. Rich and diverse
data are now increasingly available from test-sites, but for measurements made along flow propa-
gation, potential autocorrelation should be explicitly accounted for. To this aim, this work pro-
poses a comprehensive Bayesian calibration and statistical model selection framework. As a proof
of concept, the framework was applied to an avalanche sliding block model with the standard
Voellmy friction law and high rate photogrammetric images. An avalanche released at the
Lautaret test-site and a synthetic data set based on the avalanche are used to test the approach
and to illustrate its benefits. Results demonstrate (1) the efficiency of the proposed calibration
scheme, and (2) that including autocorrelation in the statistical modelling definitely improves
the accuracy of both parameter estimation and velocity predictions. Our approach could be
extended without loss of generality to the calibration of any avalanche dynamics model from
any type of measurement stemming from the same avalanche flow.

Introduction

The complexity of snow avalanche physics is related to the variability and changing nature of
snow (Schweizer and others, 2003; Ancey, 2006; Castebrunet and others, 2012; Steinkogler and
others, 2014). Evidence obtained at full-scale experimental slopes (Sovilla and others, 2008;
Vriend and others, 2013; Prokop and others, 2015; Faug and others, 2018) shows a myriad
of avalanche propagation and stopping regimes (Köhler and others, 2016), and numerical
propagation models can reproduce these observations with increasing realism (Bartelt and
others, 2016; Gaume and others, 2018). However, knowledge concerning the mechanical
behaviour of snow during motion and associated processes (granulation, erosion/deposition,
etc.) remains incomplete (Steinkogler and others, 2015; Truong and others, 2018). From a
macroscopic point of view, experimental approaches (Casassa and others, 1989; Rognon and
others, 2008; Kern and others, 2009) and the proposal of Voellmy (1964) suggest rheological
behaviours which remain ad hoc. This renders on-site calibration on the basis of local data
unavoidable (Ancey and Meunier, 2004; Salm, 2004; Eckert and others, 2012) to, e.g. predict
high-return-period avalanches in land use planning and assess the related risk (Keylock and
others, 1999; Meunier and others, 2004; Favier and others, 2014b,a). This is all the more true
given that studies have shown that avalanche propagation models are highly sensitive to their
friction parameter values (see e.g. Borstad and McClung, 2009; Fischer, 2013).

After deterministic inversion methods had shown their limits (Dent and Lang, 1980; Dent
and others, 1998; Ancey and others, 2003), and following progress made in many fields where
accurate numerical model calibration is now recognized as a crucial issue (e.g. Oakley and
O’Hagan, 2002; Carmassi and others, 2018), the Bayesian framework has become an appealing
avenue in snow science over the past years, especially in the frequent case of small data sam-
ples (e.g. Ancey, 2005; Straub and Grêt-Regamey, 2006; Eckert and others, 2007, 2008, 2009,
2010; Schläppy and others, 2014). Specifically, Gauer (2009) used a Bayesian framework to
calibrate the friction parameters of three avalanche sliding block models and Fischer and
others (2014) proposed a method to evaluate simulations compared to Doppler radar observa-
tions. Ultimately, Naaim and others (2013) could establish empirical links between friction
parameters and physical properties of snow.

However, most of these existing approaches remain limited to rather coarse field data (e.g.
samples of runout distances supplemented by input conditions), and when more comprehensive
data sets have been considered, improper likelihood formulations have been used more often than
not (Fischer and others, 2015). For instance, little attention has been given so far to the specific
difficulty induced by potential autocorrelation between the data used for calibration. Whereas this
is not a matter, for example, a sample of runout corresponding to distinct avalanche events, the
assumption of independent observations is much more questionable in the current context of the
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increasingly diverse and rich measurements made on test-sites
within the same avalanche. Many environmental applications have
indeed demonstrated that neglecting potential autocorrelation
between different measurements used in a calibration scheme can
lead to biases in parameter estimation and/or to lower predictive
performances (see e.g. Kuczera, 1983; McInerney and others,
2017; Schaefli and Kavetski, 2017; Sun and others, 2017). If this
happens, both the physical interpretation of parameter estimates
and the operational use of model predictions can be questioned.

On this basis, in this paper, we propose a Bayesian approach to
calibrate the friction parameters of an avalanche propagation model
using data of high temporal resolution (of the order of 1 s). Inspired
by studies done for the calibration of hydrological models (e.g.
Kuczera and Parent, 1998; Evin and others, 2014), the main novelty
of our work is to explicitly account for potential autocorrelation
between measurements made along the avalanche flow within the
calibration framework. In what follows, we demonstrate that
doing so results in a model better supported by the data that
improves the accuracy of friction parameter estimates and of velocity
predictions. Application is made on a well-documented avalanche
event from the Lautaret full-scale test-site (Thibert and others,
2015). The used velocity data were obtained from high rate position-
ing from photogrammetric images. Such data were already applied
by various authors to avalanche simulations performed with refer-
ence friction parameter values (e.g. Turnbull and Bartelt, 2003;
Gauer, 2014; Dreier and others, 2016), but without including
them within an explicit calibration scheme. That taking into account
potential autocorrelation between measurements within the calibra-
tion is unavoidable to get unbiased estimates is further demon-
strated with synthetic data analogue to the case-study.

In this work, as a proof of concept, we use the sliding block ava-
lanche model, also known as 1-D Voellmy model instead of state of
the art depth-averaged models (Naaim and others, 2004; Christen
and others, 2010; Bartelt and others, 2012). We are aware of its lim-
itations, notably that it makes it impossible to depict, e.g. flow
depth variations in space and time. Also, some authors have
shown that it may underestimate avalanche velocities (see e.g.
Ancey and Meunier, 2004; Gauer, 2014). However, for hazard miti-
gation, simple models with few parameters remain useful (Salm,
2004) and have the advantage to allow fast computation in com-
parison to more complex ones. A very simple avalanche propaga-
tion model is therefore a good choice for developing a calibration
approach which could be in the future applied to any other,
more advanced, avalanche propagation model as soon as autocor-
relation in measurements series is suspected.

Avalanche model calibration principle

Sliding block propagation model

Our model considers the avalanche as a rigid body sliding over a
bidimensional curvilinear profile starting from the top of the path.
The mass m and body shape variations of the avalanche are
neglected. Under these assumptions, the motion equation of the
avalanche mass centre is:

du
dt

= g sin u− F
m
, (1)

where u = ‖�u‖, du/dt is the acceleration, g is the gravity constant,
θ is the local slope angle and F = ‖�F‖ is the frictional force. In
this study, we consider the classical Voellmy friction law
(Voellmy, 1964). This means that the friction force is:

F = mmg cos u+mg
jh

u2, (2)

depending on two friction parameters Θ = {μ, ξ}. Often it is
assumed that μ evolves with the physical properties of snow
whereas ξ may correspond to the geometry of the avalanche
path and to terrain roughness (Ancey and others, 2003).
However, whether this interpretation is sound or not is not our
debate here. We do not make any further assumption regarding
the linkages between (μ, ξ) and snow and topographical variables
and simply search for the best couple on the basis of the data. The
propagation model also depends on three forcing variables x = {T,
h, xstart} where T defines the topography of the terrain, h the mean
flow depth of the avalanche and xstart the release abscissa (the pro-
tected runout length) of the avalanche mass centre(Ancey and
Meunier, 2004; Eckert and others, 2007).

Statistical model formulation

Let us denote f our avalanche propagation model. The model f
predicts the avalanche speed (m · s−1) and position along the
slope (m) at a time t (s). The model depends on parameters
Q [ Rp and forcing variables x [ Rd . The observed velocity,
collected on the field, at time t is noted by vt and we denote
vobs = {v1, …vn} the set of observations where n denotes the num-
ber of observations.

The aim of model calibration is (1) to find the optimal com-
bination of parameters Θ that minimizes the discrepancy between
the observations vobs and the model simulation f(Θ, x) and (2) to
rigorously quantify the associated uncertainty. To this end, we use
the generic statistical model:

M:vt = ft(x, Q)+ et , ∀t [ {1, . . . n}, (3)

where ft(Θ, x) denotes the simulation of the avalanche velocity at
time t and ϵt is the model error. With this classical additive for-
mulation, propagation model errors and observation errors are
modelled altogether in the residuals ϵt.

In nearly all existing avalanche model calibration approaches,
model errors are implicitly or explicitly assumed as independent
and identically normally distributed (iid). In other words,
et

iid
� N (0, s2), ∀t [ {1, . . . n}, where N denotes the Normal dis-

tribution and σ2 is the common variance of the errors. However,
this may be a too strong assumption for different measurements
made along the same avalanche. For instance, the errors ϵt are
likely to present a non-negligible correlation between two con-
secutive time steps (in other words, ϵt and ϵt−1 may be corre-
lated). To include the errors’ autocorrelation in the calibration
we propose to model them as an autoregressive (AR) process.
Specifically, we consider an AR model of order 1 only (AR1).
AR models of higher order could be used but this would imply
the estimation of additional parameters, a non-trivial task in
our case of a limited velocity sample. In addition, results obtained
for the application indeed suggest that an AR1 is sufficient to
accurately account for the data variability (see Application, results
and discussion section). Thus, the errors ϵt can be expressed as:

et = fet−1 + ht , ht
iid
� N (0, s2) ∀t [ {1, . . . n}, (4)

where f [ R and ηt are the coefficient and innovations of the AR1
process, respectively. If |ϕ| < 1, (et)t[N is defined as the unique sta-
tionary solution of Eqn (4). In our study, |ϕ| < 1 (see Application,
results and discussion section) that guarantees the stationarity of
(et)t[Z. Note also that with this model the innovations ηt are nor-
mally independently distributed but not the errors ϵt.

Hereafter, the model with the assumption of normally distrib-
uted and independent errors is denoted M0 and the model with
AR1 errors is denoted M1. Depending on the Mi model with
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i∈ {0, 1}, the whole set of parameters to be estimated is different.
Table 1 summarizes the parametrization of the competing statis-
tical models considered. Hence, model M1 with ϕ = 0 corre-
sponds to M0.

Bayesian framework

The probability of the data can be maximized with respect to the
model parameters (Fisher, 1922). Bayesian statistic is an useful
framework to estimate model parameters from scarce data.
Within this approach, the quantification of uncertainty in param-
eter estimation is straightforward. In fact, the advantage of the
Bayesian approach is that the uncertainty on parameters is
assessed through credibility intervals by contrast to traditional
methods (confidence intervals) (Bayes, 1763; Bernardo and
Smith, 2009). Hence, Bayesian statistics is now widely accepted
as a reasonable option in environmental sciences (Berliner,
2003; Clark, 2005) and we use this framework in what follows.

For simplicity, let us denote γ, the set of parameters related
to the errors, it means γ = {σ2} for M0 and γ = {ϕ, σ2} for M1,
and x = {T, h, xstart} the forcing variables. Under a Bayesian frame-
work, the joint posterior distribution of the parameters is the follow-
ing one:

p(Q, g|vobs, x)/ L(vobs|Q, g, x)p(Q, g), (5)
where L(vobs|Q, g, x) is the likelihood of the observations and π
(Θ, γ) is the joint prior distribution. Thus, the likelihood
L(vobs|Q, g, x) is required. Under the M0 model, the observations
follow a Gaussian distribution and the likelihood
L(vobs|Q, g, x, M0) writes as:

1

(2ps2)n/2
exp − 1

2s2

∑n
t=1

(vt − ft(Q, x))2
[ ]

. (6)

Under the M1 model, the likelihood L(vobs|Q, g, x, M1) writes as
(for more detail, see Appendix A):��������

1− f2

2ps2

√
exp − 1− f2

2s2
(v1 − f1(Q, x))2

[ ]

× 1

(2ps2)(n−1)/2 exp − 1
2s2

∑n
t=2

h2
t

[ ]
.

Note that, in this study, we do not calibrate the quantities xstart, h, T
because they were inferred from the data to put the effort on the
friction law calibration. The sensitivity to these quantities in
avalanche models has been studied in the works of e.g. Barbolini
and Savi (2001), Borstad and McClung (2009), Buhler and
others (2018). The authors found that changes in avalanche volume
have a larger effect on both runout distance and avalanche velocity
and that the friction coefficient μ (in a Coulomb model) is of high
importance. However, this question should be analysed deeper in a
formal statistical framework and it is out of the scope of this work.

Metropolis–Hastings algorithm

The main practical difficulty in Bayesian inference is how to com-
pute the normalizing constant in Bayes theorem. We overcome it

by implementing a sequential Metropolis–Hastings algorithm,
hereafter denoted MH (Metropolis and others, 1953; Torre and
others, 2001). The MH algorithm proposes a generic way to con-
struct a stationary and ergodic Markov chain that converges, under
mild conditions, to the posterior distribution π(Θ, γ|vobs, x). The
Markov chain returned by the algorithm can be considered as a
sample from π(Θ, γ|vobs, x).

The following description of the MH algorithm is obtained
from Robert (2015). Let us denote, for simplicity, c = {Θ, γ} the
set of the error and model parameters. For the application of
the MH algorithm, it is needed an initial value c(0) and a proposal
distribution q. Each iteration k of the algorithm consists in:

1. Generating c′ ∼ q(.|c(k−1)).
2. Calculating u � U(0, 1).
3. Taking

c(k) = c′ if u ≤ a,
c(k−1) otherwise

{
(8)

with

a = min
L(vobs|c′, x)p(c′)

L(vobs|c(k−1), x)p(c(k−1))

q(c(k−1)|c′)
q(c′|c(k−1))

, 1

( )
, (9)

where we recall that L(vobs|c, x) and π(c) = π(Θ, γ) stand for the
likelihood of velocity observations and the joint prior distribution,
respectively. As mentioned in Robert (2015), the performance of
the algorithm depends on the choice of q. For example, a standard
choice for the proposal distribution q is a multinormal distribu-
tion centred in c(k−1) and with a given covariance Σq, which
defines a random walk. For our application, Σq was tuned accord-
ing to the optimal acceptance rates that grant fast convergence of
the MH algorithm (Gelman and Rubin, 1992).

Model selection using Bayes Factor

To compare the accuracy of the two competing models M0 and
M1, we use the Bayes factor. The Bayes factor is a criterion of
the evidence provided by the data (in our case vobs) to reject a
model (M0) compared to another one (M1). The Bayes factor
is defined as the ratio of marginal probabilities (see more details
in Kass and Raftery, 1995):

B10 = p(vobs|M1, x)
p(vobs|M0, x)

, (10)

where

p(vobs|Mi, x) =
∫
L(vobs|ci, Mi, x)p(ci|Mi, x) dci,

i [ {0, 1}.

(11)

The conditioning by Mi highlights that likelihood, prior and pos-
terior distributions depend on the considered model. The Bayes
factor can be estimated by applying importance sampling and
using the MH sample drawn from the posterior density
p(ci|vobs, x, Mi) (see more details in Appendix B). An interpret-
ation of the numerical value obtained to determine if there is evi-
dence provided by the data to reject the model M0 compared to
M1 according to the value of log10 B10 is proposed in the work of
Kass and Raftery (1995), where log10 denotes the common loga-
rithm. Notably, a log10 B10 value between 1 and 2 indicates strong

Table 1. Considered statistical models and corresponding parameters

Model Errors Parameters

M0 Independent and identically distributed N (0, s2) Θ, σ2

M1 AR1 Θ, ϕ, σ2
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evidence in favour of rejecting M0 compared to M1, and log10
B10 > 2 a decisive evidence in favour of M1.

Application data

Avalanche data from the Lautaret test-site

The case study is an avalanche released at the Lautaret full-scale
test-site (Thibert and others, 2015). This test-site, located in the
French Alps, holds a succession of avalanche paths. Here, the
path referred as ‘path number 2’ was used to artificially trigger
an avalanche on 13 February 2013 (Fig. 1). This path is 450 m
long, dropping from 2400 to 2100 m a.s.l. (Fig. 2). Its upper
part, where the acceleration of the flow occurs, is steep with an
average inclination of 37° and a maximal slope around 45° in
the starting area. This part of the path is steep-sided and around
10 m-wide, so that the flow is channelized. The lower part of the
path is mainly the run-out zone, a large and naturally open slope.
At the transition between the two parts, a road (Col du Galibier
road, open in summer only) crosses the avalanche path, which
generates a local slope rupture in the avalanche track.

The avalanche released on 13 February 2013 was composed of
a dense part with a limited saltation layer on top. Properties of the
snow involved in the flow were characterized with a density,
temperature and hardness profile of the released snow layer.
Snow grain types and dimensions were also characterized. The
avalanche was released at 11.58 hours when air temperature
was about −10°C. A 0.25 m thick layer of fragmented and
decomposing snow particles was released. The mean density was
250 kg · m−3, ranging between 270 and 225 kg · m−3 from the bot-
tom to the surface of the released snow cover. In the released layer,
particles diameter is less than 0.5 mm. Snow temperature was
between −4.7 and −5°C. Hardness was ‘fist’ (hand index) and
measured as 20 N in Ram Resistance Equivalents (Fierz and
others, 2009).

Avalanche front positions were determined using a high rate
photogrammetric system that was specifically developed (Soruco
and others, 2011; Thibert and others, 2015). We used a low-cost
non-metric imagery system (numerical reflex Nikon D2Xs cam-
eras in DX format, CMOS sensor with Nikon 85 mm f/1.4 AF
fixed focal lenses). An advanced ad hoc tuning was performed
to account for the radial distortion of the lenses, the decentration
of the principal point (principal point shift) and the exact focal
length of the lenses required for the correct scaling of the images
(Faig and others, 1990). The resulting error in positioning ava-
lanche fronts was estimated to be less than 25 cm after image
orientation on ground control points and a comparison of direct
photogrammetric measurements to laser scanning on a test area.
Synchronization between the two cameras was achieved within a
precision of 6 · 10−6 s, therefore the error associated with the time
sequence is also negligible. Eventually, terrestrial laser scanning
was used to retrieve terrain elevation before and after avalanche
triggering (Prokop, 2008; Prokop and others, 2015), so as to quantify
the snow mass transfer by the avalanche (Fig. 1). In Appendix D,
Figure 10 shows some examples of images used in the photogram-
metric process.

The sliding block model is a one-dimensional model repre-
senting the successive positions of the centre of mass of the ava-
lanche, thus we used the following procedure to determine the
velocity vector vobs. At each time t, we computed the centre of
mass position of the avalanche using a set of front points
Dt [ R3 from the delineated front. Dt excludes the lateral front
points because they are less active in the avalanche flow (Pulfer
and others, 2013):

ct =
∑

pt[Dt
pt

nt
, (12)

where nt is the number of elements in Dt . Note that, from the data
available, it is not possible to calculate with certainty the position
of the mass centre of each avalanche front. In this study, we esti-
mated each of them using eqn (12), arguably a rough estimation
but sufficient for obtaining an approximation of the avalanche
velocity consistent with the modelling framework we are using.
Figure 1 shows the front of the avalanche and the centre of
mass at each 5 s. Then, the velocity at time t is estimated as the
mean velocity of the centre of mass between two successive
images:

vt = ct − ct−1

Dt
. (13)

In our application, Δt = 1s and the data set is composed of 21
observations. We consider the first 21 s before the avalanche splits
in sub-avalanches to ensure the validity of the application of a
sliding block model. The mean flow depth h value was calculated
as the mean of the difference between the snow depth of the

Fig. 1. Three-dimensional topography of path number 2 of the Lautaret test-site,
some front positions (black lines) of the avalanche released on 13 February 2013
as determined from photogrammetric measurements and changes in snow depth
before/after the avalanche as inferred from terrestrial laser scanning.

Fig. 2. Two-dimensional topography of the considered avalanche path (path number
2 of the Lautaret test-site), and position of the avalanche mass centre each second
for the studied avalanche released on 13 February 2013 (red circles).
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digital elevation model taken after the release of the avalanche and
the snow depth registered at the mass centre locations during the
avalanche motion. The value calculated was h = 2.19 m with a
standard deviation of 0.78 m. This estimation is rough but it is
a reasonable value given the characteristics of the avalanche
studied.

The topography T was constructed as follows: the site under
study has a simple geometry. It is a rather straight avalanche
path starting with a cornice and of limited and rather constant
width. The chosen 2-D topography is the main flow path starting
from the cornice in the middle of the path (see more details in
Thibert and others, 2015). From a fine-scale Digital Elevation
Model, it was extracted as a grid of horizontal resolution of
1.4 m. This is largely small enough to make the impact of the
numerical approximation on the computed velocities negligible.
Indeed, Bühler and others (2011) showed that a spatial resolution
of 25 m is sufficient for avalanche modelling.

Figure 2 shows the topography T and the points where the
fronts were recorded.

Synthetic data generation

In order to further evaluate the accuracy of parameter estimation
with the two models, we used synthetic data. This standard
approach in statistical developments allows validation because
‘truth’ (i.e. the parameter values used for the synthetic data gen-
eration) is known. Any parameter values could have been used at
this stage. To resemble the most possible to the measured ava-
lanche velocities, we chose the combination of parameter esti-
mates corresponding to the measured case study. Also, to
highlight that taking into account autocorrelation between mea-
surements within the calibration is crucial to get unbiased esti-
mates when such autocorrelation actually exists, our synthetic
data were generated with model M1.

Specifically, synthetic velocity time series were generated from
the maximum a posteriori (MAP) resulting from the application
of our calibration approach to the avalanche described above with
model M1. The MAP is the mode of the posterior distribution,
namely the most plausible value given the data (Table 2). In detail,
after the MAP estimators of the μ, ξ, σ2 and ϕ parameters of M1

model were determined for the avalanche, we proceed as follows:

1. An avalanche model simulation was conducted using the μMAP

and ξMAP parameters. The result of this simulation is a velocity
time series denoted by f(ΘMAP, x).

2. An AR(1) error of parameters s2
MAP and ϕMAP was simulated.

3. The AR(1) error simulated was added to f(ΘMAP, x). If negative
velocity was obtained, the AR(1) error was resampled.

We generated 100 samples of synthetic data following this pro-
cedure and, for each of these, the 21 velocity values which corres-
pond to the same location of the measurement were kept (to stay
with the same data size as for the avalanche). Figure 3 shows some
examples of the velocity samples generated versus the avalanche
data.

Application, results and discussion

The avalanche

Prior distributions
Our Bayesian framework was used to calibrate the parameters of
the M0 and M1 models (see Table 1). Marginal prior distribu-
tions used are described in Table 3. Parameters were assumed
marginally independent a priori. This assumption is not strong
because the dependence of the parameters is reflected in their
joint posterior distribution (Gilks and others, 1995; Eckert and
others, 2010). Informative marginal priors were used for all para-
meters but one, ϕ, for which a vague (poorly informative) prior
was used instead, namely an uniform distribution U(−1, 1).
This latter choice was done because prior knowledge for ϕ was
unavailable. Instead, informative marginal prior distributions for
other parameters could be determined on the basis of expert
knowledge and well known reference values from Salm and
others (1990). In addition, a comprehensive prior sensitivity ana-
lysis was conducted (see Appendix C). It demonstrates that our
results are highly robust to the prior choice so that this question
is no longer further considered in what follows.

Convergence of the MH algorithm
For both models, we generated 50 000 MH samples and the last
25 000 were kept. The first 25 000 iterations were discarded as a
burn-in period. This step avoids dependence on initial values.
To further assess the convergence of the MH algorithm, we com-
puted standard diagnoses (Kuczera and Parent, 1998; Torre and
others, 2001; Robert and Casella, 2009; Eckert and others,
2010). The R Core Team (2019) package coda created by
Plummer and others (2006) was used to calculate some of
these. Specifically, three parallel chains were generated starting
from different initial points and it was graphically checked that
they were mixing well enough (not displayed). Also, the
Kolmogorov–Smirnov test (H0: the two samples were drawn
from the same continuous distribution) was applied to the sam-
ples from the different chains and results showed that these
were indeed drawn from the same distribution. In addition, for
both models and all parameters, it was checked that acceptance
rates (defined as the number of candidates accepted over the
total number of iterations of the MH algorithm) were close
enough to 0.25, the optimal value according to Robert (2015)

Table 2. Parameter values used for the generation of the synthetic data set.
They correspond to the maximum (MAP) obtained with model M1 for the
avalanche of the 13 February 2013

Parameter MAP estimate

μMAP 0.32
ξMAP[m · s−2] 495.73
s2
MAP[m

2 · s−2] 8.07
ϕMAP 0.65

Fig. 3. Samples of the generated synthetic longitudinal velocity profiles (colour lines)
and observations corresponding to the studied avalanche (dots).

Table 3. Parameters marginal prior distributions. The prior distribution of ϕ
applies only to M1 model. Γ represents the Gamma distribution and U the
uniform distribution

μ∼ Γ(9, 0.03) σ2∼ InvGamma(3, 20)
ξ∼ Γ(25, 40) f � U(−1, 1)
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reach fast convergence in a random walk. Finally, the Gelman–
Rubin convergence criterion was computed (Gelman and
Rubin, 1992). It is based on the difference between a weighted
estimator of the variance and the variance of the estimators
from the different chains (Robert and Casella, 2009). In our
case, it equals 1 for all parameters, a perfect result. This all
demonstrates that convergence was clearly reached for both
models applied to the case study, leading to meaningful numerical
approximations of the joint posterior distributions and, hence,
reliable posterior estimates of the parameters of both models
and of the Bayes factor.

Posterior distributions and posterior estimates
Figure 4 shows the parameter prior and posterior densities
according to the MH samples. In Figures 4a–c (respectively,
Figs 4d–g), the M0 densities are shown (respectively, M1) and
Table 4 sums up the corresponding descriptive statistics.
Eventually, posterior correlations between model parameters are
shown in Figures 5 and 6 for M0 and M1, respectively. For the
two models, the marginal posterior distributions have lower vari-
ance than their priors, meaning that the observations have con-
veyed information into the analysis (see Fig. 4), an expected result.

The variances of the posterior distribution of the friction para-
meters μ and ξ in the M0 model are lower than in M1 model.
This result (arguably the sole undesirable one with M1 compared
to M0) could be a consequence of the interactions between the
friction coefficients and error parameters in the more parame-
trized M1 model (four free parameters instead of three with
M0). Indeed, there is strong correlation between the parameters
ξ and ϕ (0.49) for the model M1, which may preclude reaching
sharp estimates of friction parameters with model M1.
Conversely, even if there is a high correlation between the

parameters μ and ξ with both models, switching from M0 to
M1 reduces it from 0.85 to 0.50. The high correlation between
the two parameters of the Voellmy friction law is known since
the first calibration approaches of, e.g. Dent and Lang (1980).
This usually limits robust interpretation of obtained estimates,
so that reducing it thanks to M1 should be seen as advantageous.
This correlation reduction may be a collateral effect of having one
more free parameter, allowing a bit more flexibility to fit the data.
Similar effect is reflected in the lower correlation between σ2 and
the friction parameters with M1 than with M0. Note by the way
that fairly assessing such correlations is a real strong point of our
formal Bayesian calibration approach.

Remarkably, posterior estimates of friction parameters are very
contrasted under both models. Even if posterior densities are not
significantly different at the 95% credibility level (notably because
of the higher a posteriori variance with model M1), differences in
posterior estimates reaches 13% for μ (relative difference between
0.34 with M1 instead of 0.3 with M0), and 70% for ξ (relative dif-
ference between 696 m2 · s−1 with modelM1 and 410 m2 · s−1 with
model M0). This indicates that using either M0 or M1 makes a
huge difference if one aims at interpreting the value of posterior
estimates, for, e.g. relating avalanche friction characteristics to
snow and topographical conditions.

Another remarkable result is the diminution of the error vari-
ance σ2 from model M0 to model M1 (Table 4). Indeed, the
errors variance σ2 is higher if the autocorrelation ϕ is not
included. Specifically, the standard deviation of the errors
decreases from 3.6 to 3.1 m · s−1 indicating that with model M1

velocity predictions may be seen as 13% more accurate (relative
difference between both estimates), another desirable property
for practical use in snow science. Eventually, the autocorrelation
parameter ϕ is largely positive, with a posterior mean of 0.71.
Also, its posterior 95% credibility interval whose lower bound is
0.33 firmly excludes the zero value corresponding to M0. This
pleads for a high and significant autocorrelation between veloci-
ties along flow propagation.

Model posterior estimates
We calculated for model M0 the posterior estimate of Voellmy
model simulations f (Θ, x) from the posterior estimates of para-
meters μ and ξ (Table 4). Resulting posterior estimates of
model errors ϵt were analysed by applying the Ljung–Box test
(H0: the data are independently distributed). We found a
p-value lower than 0.05 indicating that there is a significant auto-
correlation of model errors. In other words, cor(ϵt, ϵt−1) for all t

Fig. 4. Prior and posterior densities of model parameters. Panels (a–c) model M0 and panels (d–g) model M1.

Table 4. Posterior distribution characteristics: posterior mean, posterior
standard deviation (sd.), median (50% percentile) and 95% credibility interval
(2.5% and 97.5% percentiles).

Model

M0 M1

μ ξ[m · s−2] σ2[m2 · s−2] μ ξ[m · s−2] σ2[m2 · s−2] ϕ

Mean 0.3 409.74 12.71 0.34 696.12 9.79 0.71
sd. 0.07 101.12 3.53 0.08 305.71 2.62 0.17
q0.025 0.16 264.30 7.66 0.18 306.97 5.93 0.33
q0.50 0.3 393.34 12.17 0.34 627.36 9.33 0.73
q0.975 0.43 649.64 20.98 0.50 1475.67 16.15 0.96

378 María Belén Heredia and others

https://doi.org/10.1017/jog.2020.11 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2020.11


> 1 is significant. Hence, one of the assumptions underlying stat-
istical model M0 is not fulfilled by the data. On the other hand,
applying standard statistical tests to posterior estimates of model
errors shows no evidence of non-Gaussian errors (Shapiro test
H0: the sample is normally distributed, p-value > 0.05) or hetero-
scedasticity. The assumptions of Gaussian errors of common vari-
ance underlying statistical model M0 are thus fulfilled.

We proceeded similarly for statistical model M1, applying the
same statistical tests to the posterior estimates of the innovations
ηt of the AR(1) model. Remember that, in the M1 model, the
independent assumption is on the innovations ηt and not on
the errors ϵt. Test results show that innovations are indeed inde-
pendent (p-value of the Ljung–Box > 0.05), and normally distrib-
uted (p-value of Shapiro test > 0.05) with common variance.
These results show that M1 represents correctly the autocorrel-
ation of the errors, and, more widely, that contrary to model
M1 all of its underlying assumption are fulfilled, which promotes
its use from a strict statistical point of view.

Predictive velocity distributions
To analyse how the statistical model choice affects velocity esti-
mation, we propagated parameter uncertainty up to model

predictions. Two sets of posterior predictive simulations were
performed, the first integrating over the posterior distribution
of friction parameters only, leading the posterior predictive
distribution p(vx|vobs, x, Mi) of the avalanche propagation
model, and the second integrating over the distribution of
both friction parameters and model error parameters leading
the full posterior predictive distribution of avalanche velocities
for the case study p′(vx|vobs, x, Mi). More precisely, the first
writes:

p(vx|vobs, x, Mi) =
∫
f (Q, x) p(Q|vobs, x, Mi) dQ, (14)

and, the second one:

p′(vx|vobs, x, Mi) =
∫

f (Q, x)+ e
( )

p(Q, g|vobs, x, Mi) dQ dg.

(15)

Eventually, to quantify the added value of parameter inference,
the prior distribution of the velocity was also calculated by

Fig. 5. Joint posterior distribution of parameters of M0 model highlighting inter-parameter correlations.

Fig. 6. Joint posterior distribution of parameters of M1 model highlighting inter-parameter correlations.
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integrating over the prior distribution on the friction and
model error parameters:

p(vx|x, Mi) =
∫

f (Q, x)+ e
( )

p(Q, g|Mi) dQ dg. (16)

By using a Bayesian approach, we obtained a sample of para-
meters (μ, ξ, σ2) for M0 (and also of ϕ for M1). Then, we
computed avalanche model simulations using these two sam-
ples to obtain several curves of velocity. Finally, we drawn
the percentile of each curve in Figure 7. Also, this figure
shows the resulting 90% credibility intervals. For both models,
comparison between prior and posterior credible intervals
shows that predicted velocities are logically shifted towards
observations. Uncertainty reduction (change in the width of
the 90% credible intervals) is stronger with M0, but also exists
with M1. This simply reflects the larger a posterior variance
of model M1 parameters highlighted above.

In detail, almost all the elements of vobs, except two with model
M0 and one with model M1, are inside the 90% posterior cred-
ibility intervals drawn on p′(vx|vobs, x, Mi) (blue dotted lines
Fig. 7), so that from this perspective the added value of M1 is
not obvious. However, why M1 model is advantageous clearly
appears if one focuses on the deterministic Voellmy model com-
ponent (dotted orange lines in Fig. 7): predictions come closer to
observations and notably the velocity underestimation generally
attributed to the Voellmy sliding block model (see e.g. Ancey
and Meunier, 2004; Gauer, 2014) is reduced. Indeed, only 33%
of the observations are inside the 90% posterior credibility inter-
vals of the sliding block model simulations p(vx|vobs, x, M0),
compared to 62% with M1 model.

Another quantification is provided by the systematic difference
between both models that we evaluated through the mean differ-
ence and the mean quadratic difference between the medians of
predicted velocities under M0 (Fig. 7a, black line) and M1

(Fig. 7b, black line). If we denote q50vx ,Mi the median (50% per-
centile) of the posterior predictive distribution of velocities under
model Mi, the first writes:

D1 = 1
240

∫240
0

(q50vx ,M1 − q50vx ,M0 ) dx

and the second:

D2 =
�������������������������������������
1
240

∫240
0

(q50vx ,M1 − q50vx ,M0 )
2 dx

√

Obtained values are Δ1 = 1.31 m · s−1 and Δ2 = 1.72 m · s−1. The
positive value of the mean difference and the fact that it is not
that much lower than the mean quadratic difference clearly
shows that the inclusion of autocorrelation into the modelling
truly leads to systematically higher velocity predictions. Predicted
velocities are rather constant between x = 50 m and x = 250 m
(plateau phase), around 15 m · s−1 with M0. The underestimation
withM0 with regards toM1 can be estimated by the ratio between
Δ2 and this velocity to 11.5%.

All in all, the analysis of predictive velocity distributions fur-
ther confirms that model M1 should be preferred to get sharper,
less underestimated, point estimates of avalanche velocities and to
assess the related uncertainty fairly (credibility intervals larger but
more likely to realistically describe the range of possible results).

Model selection
Finally, the logarithm of the Bayes Factor log10 B10 was calculated
to compare the M0 model to the M1 model and we obtained a
value of 2.02. According to the interpretation suggested in Kass
and Raftery (1995, p. 777) evidence, given by the data, to reject
the M0 model compared to the M1 model is thus decisive.
Indeed, log10 B10 > 2 simply implies that given the data model
M1 is more than 100 times more likely than the model M0.

Synthetic data

We then applied our Bayesian framework to calibrate the para-
meters of the 100 synthetic velocity profiles generated using the
MAP estimators of model M1. We used the same marginal
prior distributions as before (see Table 3). For each synthetic ava-
lanche, we generated 20 000 MH samples and the last 10 000 were
kept. Convergence was verified with the same diagnoses as for the
measured data. We could then determine the ability of the M0

and M1 models to retrieve the true model parameter values
used for the synthetic data generation. For this, we calculated
the 90% coverage rates for the different parameters, this means,

Fig. 7. Predictive velocity distributions versus data: (a) model M0 and (b) model M1. 90% posterior credibility intervals (CI) are computed according to Eqns (14)
and (15) for the Voellmy propagation model (orange dotted lines), and the complete propagation and error model (blue dotted lines), respectively. Black plain line
denotes the posterior median of the complete model. 90% prior credibility intervals are computed according to Eqn (16) (green dotted lines). Observations used for
calibration appear as red points.
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the number of 90% credibility intervals recovering the true value
of Table 2. According to the results of Table 5, M1 model has a
much better ability to determine the true model parameter values
compared to the M0 model. This especially applies to σ2 for
which M0 model is fully unable to identify the true value and,
to a lower extent, to μ, for which the true value is in the posterior
90% credibility interval less than two times over three. Conversely,
90% coverage rates with M1 model are rather fair, varying
between 82 and 98% for all the four parameters.

To further compare the precision of the estimates led by the
two models, the MAP estimators corresponding to the full syn-
thetic sample are presented in Figures 8a–d. In mean, both mod-
els result in an underestimation of the μ parameter, but the
underestimation with M1 is much smaller than withM0. In add-
ition, the true value is well within the range of variability of the
different estimates corresponding to the 100 synthetic avalanches
with M1 whereas it is clearly outside with M0. Similarly, param-
eter σ2 is much better estimated by M1 model. Parameter ξ is
slightly underestimated by M0 model and slightly overestimated
by M1 model, but both models perform reasonably. Finally,
M1 model estimates correctly the autocorrelation parameter ϕ.
Overall, this analysis confirms that only M1 model is able to
retrieve the true parameter values as soon as autocorrelation
between measurements actually exists. In other words, not
accounting for autocorrelation within model calibration when
autocorrelation actually exists carries high risk to lead to biased
estimates. This provides another very strong argument in favour
of M1 since, as evidenced by the case study, significant autocor-
relation may indeed exist between measurements made along the
same avalanche flow.

Eventually, the common logarithm of the Bayes factor calcu-
lated for each synthetic avalanche (see Fig. 8e) indicates for all
synthetic velocity series decisive evidence to reject the M0

model compared to the M1 model. This result is all the more
logical given that the Bayes factor asymptotically selects the true
model when it is included within a sample of competing models.

However, this can be seen as a last strong point to advise using
model M1 as soon as autocorrelation is suspected.

Conclusion and outlook

In this work, a Bayesian calibration of an avalanche flow dynamics
model from data of high temporal resolution [1s] was developed.
The objective of this work was to show how potential autocorrel-
ation between measurements made along an avalanche flow can
be considered within the calibration of an avalanche model, and
to demonstrate that this improves the accuracy of friction para-
meters estimation and velocity predictions.

Two statistical models representing the discrepancies between
observations and simulations were proposed: the first one, M0,
classically considered the errors as independent and identically
normally distributed, and the second one, M1, modelled the
errors as an autoregressive process of order 1. The latter accounts
for potential autocorrelation between measures made along the
same avalanche flow, a question which has been poorly addressed
in the snow science literature so far. Our objective was to deter-
mine the accuracy of parameter estimation when the autocorrel-
ation is included or not in the modelling. More generally, we
wanted to develop a framework able to link in a more mathemat-
ically consistent way, the rich and diverse data now increasingly
available from avalanche test-sites with numerical propagation
models.

Application was made on a well-documented avalanche event
and on synthetic data. The avalanche was released at the Lautaret
full-scale test-site on 13 February 2013 and the corresponding vel-
ocity time series was obtained from high rate positioning photo-
grammetry. A synthetic data set of 100 velocities time series
mimicking the avalanche was created in order to further test
our approach and to illustrate its benefits. Results for the ava-
lanche showed strong and significant autocorrelation between
predicted velocities. It also appeared that the velocity time series
was correctly modelled by the statistical model M1 only
(Ljung–Box test p-values > 0.05) so that there was decisive evi-
dence to reject M0 compared to M1. In addition, resulting pos-
terior estimates for friction parameters μ and ξ and velocities
along the path were shown to be different and arguably more real-
istic (for the estimated velocities) with M1 than those obtained
with M0. Eventually, our synthetic data confirmed that in the
presence of autocorrelation between measurements, not account-
ing for it may lead to biased estimates. This all demonstrates the
necessity and usefulness to explicitly account for autocorrelation
within the calibration, both to realistically predict avalanche char-
acteristics and to get friction parameter estimates that can be

Table 5. The 90% coverage rates for the synthetic data sample. For each
parameter and both models, the 90% coverage rate corresponds to the
number of times over the sample of 100 synthetic avalanches for which the
90% posterior credibility interval includes the true value used for data
generation. In other words, 90% is the perfect validation score. Parameter ϕ
applies to model M1 only

M0 M1

Parameter μ ξ σ2 μ ξ σ2 ϕ

Coverage rate 64 84 0 98 82 98 93

Fig. 8. (a–d) Boxplots of the MAP estimators under models M0 (red colour) and M1 (blue colour) corresponding to the 100 synthetic avalanches. The true par-
ameter values used for synthetic data generation are shown with a green colour line. (e) Boxplot of log10B10 obtained for the 100 synthetic avalanches. The value of
2 in green corresponds to the reference value of Kass and Raftery (1995) above which evidence in favour of M1 is decisive.
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related to snow and topographical characteristics in a meaningful
way, two points of crucial importance in snow science. Hence,
since avalanche velocities are time series, as a good practice of
modelling, potential autocorrelation of the errors should always
be envisaged, since we clearly demonstrate that neglecting this
effect may lead to undesirable consequences.

To develop and illustrate our approach, we chose the simple
sliding block model with the Voellmy friction law because it is
faster to run than more computationally intensive state of the
art avalanche models. As it was mentioned in the Introduction,
we used this simple model as a proof of concept but our approach
could be generalized to other friction laws (e.g. the Coulomb one
which has the advantage of having a single parameter (μ)), and to
other ways of describing avalanche flows (e.g. depth-averaged
equations or a sliding block with a PCM formulation, which
would avoid the estimation of the flow depth) after suitable adap-
tation of the algorithm. Also, on the existing basis, it should be pos-
sible to include within the calibration other quantities which can be
measured simultaneously as, for example, the snow depth in the
release area, the runout distance, the deposited volume, etc. This
would better constrain the calibration, leading to potentially less
uncertain posterior estimates. In such a case, an appropriate likeli-
hood would need to be proposed and a higher number of observa-
tions would be required to calibrate the new likelihood parameters.
To overcome this shortcoming using several avalanches altogether
could be an option which was out of the scope of this work.

One of the main drawbacks of a Bayesian approach is the high
number of simulations that are needed (at least 1000 simulations)
to reach convergence in a Markov Chain Monte Carlo setting.
Also, a compromise between the number of parameters that can
be estimated and the size of the data must be found. Hence,
whether or not our approach can be practically implemented
with the most computationally intensive avalanche model and
how many unknown parameters can be inferred as a function
of the available data sets remain the questions to be investigated.

Finally, it is worth to mention that the avalanche size and vel-
ocities we found are typical of a medium size avalanche (class 3
on the CAA international avalanche scale). Specifically, friction
parameter values correspond to the range of values that can be
found in the literature. In future work, it could therefore be
informative to apply our approach to a much large sample of
avalanches to exploit its potential for inferring relevant physics
(e.g. to find the relationship between friction parameters and
snow conditions). Ultimately, this all should (1) lead to a more
accurate evaluation of the highest-return-period events required
for avalanche risk assessment, and (2) simultaneously improve
our knowledge of the relevant physics by providing sharper quan-
tification of underlying processes.
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Appendix A: Likelihood of an AR1 process

Since |ϕ| < 1, the ϵt error has a representation in terms of the innovations ηt
(also known as MA(∞) representation, see Gouriéroux and Monfort, 1995
for more details):

et = fte0 +
∑t−1

i=0

fiht−i, (A1)

where we recall that ϕ and ηt−i are the coefficient and the innovations of the
AR1 process, respectively (see eqn 4).

From the last equation, the unique stationary solution is obtained for ϵ0
with zero mean and variance equal to σ2/1− ϕ2, independent from (η1, …, ηt),
and we get that:

E(et) = E(e0) +
∑t−1

i=0

fiE(ht−i) = 0, (A2)

Var(et) = f2tVar(e0) +
∑t−1

i=0

f2iVar(ht−i) =
s2

(1− f2) . (A3)

The marginal distribution of ϵt is Gaussian because it is the sum of independent
and identically normally distributed ηt. In particular the first error term ϵ1 is
Gaussian:

e1 � N 0,
s2

(1− f2)

( )
. (A4)

Considering that ϵ2 = ϕϵ1 + η2, the conditional distribution of ϵ2 given ϵ1 is
e2|e1 � N (fe1, s2). In a more general way:

et |et−1 � N (fet−1, s
2). (A5)

Then, the joint distribution of errors is:

p(e1, . . . , en|f, s2) = p(e1)
∏n
i=2

p(ei|ei−1). (A6)

From this equation, the likelihood expression of eqn (7) is obtained.

Appendix B: Numerical evaluation of the Bayes Factor

Thanks to the Bayes theorem, we can write:

1
p(vobs|Mi , x)

= p(ci|vobs, Mi, x)
L(vobs|ci, Mi, x)p(ci|Mi , x)

, (A7)

where i∈ {0, 1}.
If g is a density function defined on an ensemble Ω:

1
p(vobs|Mi, x)

= 1
p(vobs|Mi, x)

∫
ci[V

g(ci)dci

=
∫
ci[V

g(ci)p(ci|vobs, Mi, x)
L(vobs|ci, Mi, x)p(ci|Mi , x)

dci

.

From Monte Carlo simulations, 1/p(vobs|Mi, x) can thus be estimated as:

1
p(vobs|Mi , x)

= 1
N

∑N
j=1

g(c(j)
i )

L(vobs|c(j)
i , Mi , x)p(c

(j)
i |Mi, x)

, (A8)

where {c(j)
i ; j = 1, . . . , N} is a sample from the posterior distribution of Mi

(see Kass and Raftery, 1993, p. 19, eqn 12).
For this application, the g function was chosen as a multinormal distribu-

tion with mean equal to the empirical mean and covariance matrix equal to
the estimated covariance matrix of our Metropolis–Hastings sample,
respectively.

Appendix C: Prior sensitivity analysis

To study the robustness of our results, we conducted a prior sensitivity analysis
by varying prior information for model parameters (μ, ξ, σ2). We explored the
range of priors from the marginal informative priors used in the paper core up
to vague (poorly informative) priors as much as possible. In the case of M0

model, marginal vague priors could be tested for all the three parameters
instead of informative ones. For M1 model, however, the informative prior
should be always kept for ξ, because, if for this parameter a vague prior was
used, the MH algorithm convergence could not be achieved. This is explained
by the high correlation between the ξ and ϕ parameters (close to 0.5, see
Fig. 6). For the ϕ parameter, a uniform distribution U(−1, 1) was used in
all the analyses. The different combinations of informative and non-
informative priors tested are shown in Table 6. Corresponding posterior distri-
butions are shown in Figure 9.

Table 6. Marginal prior distributions used for the sensitivity analysis. Priors 3
and 5 are used with M0 model only, and prior 6 with M1 model only. Γ
denotes the Gamma distribution and InvΓ denotes the inverse Gamma
distribution. Prior1 is the one used in the paper core. ‘-’ denotes vague
marginal priors

Parameter μ ξ σ2

Prior1 Γ(9, 0.03) Γ(25, 40) InvΓ(3, 20)
Prior2 – Γ(25, 40) InvΓ(3, 20)
Prior3 Γ(9, 0.03) – InvΓ(3, 20)
Prior4 Γ(9, 0.03) Γ(25, 40) –
Prior5 – – –
Prior6 – InvΓ(3, 20) –
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Even if slight differences between the different posteriors can be noted as
one replaces one prior by another, overall, for both models, results remain
quite similar, leading in all cases to posterior estimates very close to the
ones obtained with the informative priors used in the paper core (see
Table 4). Also, the common logarithm of the Bayes Factors was calculated
between all combinations of M1 and M0 posterior samples and, in nearly
all cases, there is strong to decisive evidence to reject M0 compared to M1

model, as demonstrated in the paper core with informative priors. Indeed,
the obtained log10 (B10) values are between 0.57 and 2.49 with a mean of
1.38 and a standard deviation of 0.61. Hence, all in all, posterior inference

and model selection show little sensitivity to prior specification. Since it is
advised to use priors with a finite domain as much as possible to avoid spuri-
ous results (Kuczera and Parent, 1998) we kept the informative priors in the
paper core.

Appendix D: Images used in the photogrammetric process

In this appendix, some examples of images used in the photogrammetric
process are shown (Fig. 10).

Fig. 9. Prior sensitivity analysis. Post k, where k ranges from 1 to 6, are the posterior distributions obtained with the priors 1–6 of Table 6. Prior1 is the informative
prior used in the paper core. Panels (a–c): M0 model; panels (d–g): M1 model.

Fig. 10. Images used in the photogrammetric process. (a) and (b) are the left and right images for the avalanche released on 13 February 2013 for t = 20 s after
triggering. This couple is used for restitution and to map the location of the avalanche head. Markers plot the permanent ground control points used for image
orientation. To illustrate the spatial extension, the coordinates and elevations (in metres) are indicated for the upper and lower control points (m3, t6), and for
control point m5 at the location of Col du Galibier road. The right image (c) has been taken after the avalanche stops. Temporary control points t1 to t6 are
setup after the avalanche in the runout area to improve image orientation in this area according to the avalanche deposit.
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