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Abstract
Wearable robots, sometimes known as exoskeletons, are incredible devices for improving human strength, reducing
fatigue, and restoring impaired mobility. The control of powered exoskeletons, on the other hand, is still a chal-
lenge. This necessitates the development of a technique to simulate exoskeleton–wearer interaction. This study uses
a two-dimensional human skeletal model with a powered knee exoskeleton to predict the optimal lifting motion
and assistive torque. For lifting motion prediction, an inverse dynamics optimization formulation is utilized. In
addition, the electromechanical dynamics of the exoskeleton DC motor are modeled in the lifting optimization for-
mulation. The design variables are human joint angle profiles and exoskeleton motor current profiles. The human
joint torque square is minimized subject to physical and lifting task constraints. Then, the lifting optimization prob-
lem is solved by the gradient-based sparse nonlinear optimizer (SNOPT). Furthermore, the optimal exoskeleton
torque is implemented through a two-phase control strategy to provide optimal assistance in lifting. Experimental
validations of the optimal control with 6 Nm and 16 Nm maximum assistive torque are presented. Both 6 Nm and
16 Nm maximum optimal assistance of the exoskeletons reduce the mean values of vastus lateralis, biceps femoris,
and latissimus dorsi muscle activations compared to the lifting without the exoskeleton. However, the mean value
of the vastus medialis activation is increased by a small amount for the exoskeleton case, although its peak value
is reduced. Finally, the experimental results demonstrate that the proposed lifting optimization formulation and
control strategy are promising for powered knee exoskeleton for lifting tasks.

1. Introduction
In recent years, there has been a significant amount of work on developing the lower limb powered
exoskeletons to assist human motion to enhance human strength, reduce human metabolic energy cost,
and rehabilitate abilities lost due to brain injuries, spinal cord injuries, and strokes [1–3]. In the United
States, it is estimated that 8.79 million people between the ages of 21 and 64 years have difficulties
in lifting objects [4]. In addition, the exoskeletons can prevent injuries and increase human endurance
for lifting tasks. Specifically, the knee joint plays a vital role in completing the transition [5]. Therefore,
design and control of a powered knee exoskeleton are important for lifting tasks. Moreover, experimental
validation of the control of the exoskeleton in the laboratory is required before implementation.

Over the past few years, various optimization-based dynamic modeling techniques have been
investigated to simulate exoskeleton–wearer interaction [6–8]. In a recent study [9], an integrated human-
in-the-loop simulation approach was used to design and evaluate a lower limb exoskeleton. A novel
two-torque compensation controller to minimize spring interaction forces and maximize assistance was
virtually designed and evaluated for the lower leg exoskeleton. Running motions were used to investigate
the exoskeleton effects on the wearer’s biomechanical loading conditions. In ref. [10], a physics-based
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optimization formulation was proposed to find the optimal control of a powered elbow exoskeleton to
aid the human–robot collaborative lifting task.

For lifting assistance, there have been a limited amounts of studies on developing both active and
passive exoskeletons to assist humans in the literature [11–19]. Wei et al. [11] used a semi-squat sym-
metric lifting model to obtain the hip joint torque and power for a lifting task. An adaptive hip active
exoskeleton system was designed based on the power output curve of the hip joint during lifting. Millard
et al. [14] built a 12-degrees-of-freedom (DOFs) two-dimensional (2D) human model with a 3-DOFs
box and 9-DOFs motor-driven spine and hip exoskeletons. A sequential quadratic programming (SQP)-
based direct optimal control approach was used to predict the human movements and the forces during
the lifting to reduce the lower back injury. A powered pneumatic driven 1-DOF back exoskeleton was
proposed in ref. [15] to assist lifting motion. It was reported that the developed prototype could mitigate
lower back pain by reducing muscle activity range from 18 to 25% during lifting tasks. Sado et al. [19]
designed and controlled a 6-DOFs active–passive lower-body exoskeleton to maximize the human joint
torques and minimize the muscular activation for squatting and walking assistance in manual material
handling tasks.

Some researchers have developed only knee joint powered exoskeletons to reduce metabolic cost and
muscle activities for squat lifting [18–20]. Gams et al. [20] used three different controllers (gravity com-
pensation, position, and oscillator-based) in the knee exoskeleton to compare the effects on metabolic
consumption during squatting. An electromyography (EMG)-driven semi-active knee exoskeleton was
designed by Wang et al. [21] to reduce the muscle fatigue of the lower limb when squatting. Although
the exoskeleton developed by Yu et al. [22] was highly back-drivable and had high torque, it lacked the
optimal control of the exoskeleton. Several knee-powered exoskeletons were also developed to assist
human mobility tasks similar to squat lifting, such as standing up and sitting down [23, 24]. Shepherd
et al. [23] proposed a novel series elastic actuated (SEA) configuration for a knee exoskeleton. The
exoskeleton was able to track the desired torque using a torque sensor by employing the motor’s current
as the input of torque control for sit-to-stand assistance. Karavas et al. [24] developed a knee exoskeleton
for standing-up and sitting-down motion assistance where a SEA was utilized to actuate the exoskeleton.
In recent studies [25–28], there has been a significant improvement in the development of powered knee
and hip exoskeletons, particularly in terms of their design, actuation, and learning-based control, which
make these devices more effective in assisting with walking and rehabilitation.

In this study, we propose a subject-specific optimal control strategy for powered knee exoskele-
tons for squat lifting tasks. The proposed work uses inverse dynamics optimization to predict the
human-exoskeleton symmetric lifting motion and optimal assistive torque. An SQP algorithm in sparse
nonlinear optimizer (SNOPT) is used to solve the lifting optimization problem [29]. The predicted opti-
mal results are used in the human-exoskeleton lifting control strategy. A new exoskeleton control strategy
is implemented in the experimental setup to provide real-time optimal assistance to the human knee joint
during lifting. Comparisons are carried out between the simulation and experimental data.

The contents are organized as follows: the human-exoskeleton models are first described in Section 2,
and the equations of motion (EOM) are also detailed in Section 2. The optimization formulation for the
lifting problem is presented in Section 3. The detailed exoskeleton control strategy and experimental
setup are discussed in Section 4. Section 5 presents the simulation results. The lifting validations with
and without exoskeletons are also presented. Finally, discussion and concluding remarks are given in
Section 6.

2. Human-exoskeleton model and EOM
The human-exoskeleton system consists of a human-exoskeleton model and its kinematics and dynam-
ics. Denavit–Hartenberg (DH) representation method was used to express the kinematics of the human
mechanical system [30].
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Figure 1. (a) The 2D human skeletal model with knee exoskeleton and (b) Knee exoskeleton.

2.1. Human-exoskeleton model
A 2D human skeletal model is considered in this work [31], as shown in Fig. 1(a). The human skeletal
model is symmetric along the sagittal plane and has n = 10 DOFs, including three global DOFs. In
Fig. 1(b), it is illustrated that two 1-DOF powered exoskeletons are attached at the knee joints using straps
for the experiment. Exoskeleton’s mass and inertia are added to the upper and lower legs mathematically.
Therefore, the coupled human-exoskeleton mass and inertia of the upper and lower legs are calculated
for the simulation. The human skeletal model is constructed using the robotic formulation of the DH
method [30]. Each DOF represents relative rotation/translation of two body segments connected by a
revolute/prismatic joint. For translational and rotational joints, the DOF is given in the local z-direction.
It is noted that the global rotation joint (z3), spine joint (z4), and hip joint (z7) coincide at the same
location. The positive directions for all the local rotation joints (z3 ∼ z10) are clockwise in the global Y-Z
plane. The two physical branches are the spine-arm branch and leg branch. Two arms are represented in
the spine-arm branch by a single branch, since only 2D symmetric lifting is studied. In the leg branch,
two legs are combined as a single branch, including thigh, tibia, and foot. In this study, the subject’s body
segment length data are generated from the Xsens motion capture system (MVN Analyze Pro software)
based on the measured height and foot length. The DH parameters for the human model are described
in Table I, where L1 to L7 are the human joint link lengths.

2.2. Equations of motion
In this paper, the kinematics and dynamics of the human model are studied using recursive kinematics
and Lagrangian dynamics, and details refer to refs. [32, 33]. The process is comprised of two parts:
forward kinematics and backward dynamics. Forward kinematics transmits motion from the root to the
end effectors, while backward dynamics transfers forces from the end effectors to the root. The human
dynamics equation can be written as [32, 33]:

τhi = tr

(
∂Ai

∂qi

Di

)
− gT ∂Ai

∂qi

Ei − fT
k

∂Ai

∂qi

Fi − GT
i Ai−1z0 (1)
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Table I. DH table for 2D human model.

DOF � d a α Translation/rotation Branch
1 π 0 0 π/2 Global translation (GT1) Global branch
2 π/2 L4+L5 0 −π/2 Global translation (GT2)
3 0 0 0 0 Global rotation (GR1)
4 −π/2 0 L1 0 Spine joint rotation (Q1) Upper body branch
5 π 0 L2 0 Arm joint rotation (Q2)
6 0 0 L3 0 Elbow joint rotation (Q3)
7 π/2 0 L4 0 Hip joint rotation (Q4) Lower body branch
8 0 0 L5 0 Knee joint rotation (Q5)
9 −π/2 0 L6 0 Ankle joint rotation (Q6)
10 0 0 L7 0 Subtalar joint rotation (Q7)

where τhi is the human torque at ith joint. On the right-hand side of Eq. (1), the first term is inertia and
Coriolis torque, the second term is the torque due to gravity, the third term is the torque due to external
forces, and the fourth term is the torque due to external moments:

Di = IiCT
i + Ti+1Di+1 (2)

Ei = miri + Ti+1Ei+1 (3)

Fi = rkδik + Ti+1Fi+1 (4)

Gi = hkδik + Gi+1 (5)

where tr( · ) is the trace of a matrix. Ai,Ci are global position and acceleration transformation matrices,
Ii is the inertia matrix for link i, Di is the recursive inertia and Coriolis matrix, Ei is the recursive
vector for gravity torque calculation, Fi is the recursive vector for external force–torque calculation, Gi

is the recursive vector for external moment torque calculation, g is the gravity vector, mi is the mass of
link i, ri is the COM of link i in the ith local frame, fk = [0 fky fkz 0]T is the external force applied
on link k, rk is the position of the external force in the kth local frame, hk = [hx 0 0 0]T is the
external moment applied on link k, z0 = [0 0 1 0]T is for a revolute joint, z0 = [0 0 0 0]T is
for a prismatic joint, and finally, δik is Kronecker delta, and the starting conditions are Dn+1 = [0] and
En+1 = Fn+1 = Gn+1 = [0]. The sensitivities to state variables are detailed in [32, 33].

2.2.1. Exoskeleton dynamics
The electromechanical dynamics of DC motors of the exoskeletons are modeled in this study. The
dynamics equations can be expressed as follows [34]:

L
dI

dt
= V − K

dθ

dt
− RI (6)

Tmotor = KI (7)

Tl = Tmotor − Jm

d2θ

dt2
− b

dθ

dt
(8)

where V , I , L, and R are the voltage input, current, inductance, and resistance, respectively. The mechan-
ical terms Jm, b, K, and θ are the rotor moment of inertia, coefficient of viscous friction of the motor,
motor torque constant, and rotor angle, respectively. Tmotor is the motor output torque, and Tl is the
load torque of the exoskeleton. The gearbox ratios (GBr) are chosen so that the devices can provide the
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required torque output. Here, the exoskeleton includes the motor and the gearbox. So, the output torque
(τe) of the exoskeleton can be expressed as follows:

τe = GBr × Tl (9)

Furthermore, we assume that the exoskeleton’s motion aligns with human joint motion. As a result,
the derivative of the rotor angle θ̇ and θ̈ can be expressed in terms of human joint angle derivative q̇ and
q̈ with gear ratio, respectively:

θ̇ = GBr × q̇ (10)

θ̈ = GBr × q̈ (11)

where q̇ and q̈ are human angular velocity and acceleration for a joint, respectively.

2.2.2. Human-exoskeleton EOM
The coupled human-exoskeleton EOM and sensitivity analysis are formed using a recursive Lagrangian
dynamics formulation. The overall dynamics can be expressed as follows:

τhi + τei = tr

(
∂Ai

∂qi

Di

)
− gT ∂Ai

∂qi

Ei − fT
k

∂Ai

∂qi

Fi − GT
i Ai−1z0 (12)

where τei is the exoskeleton output torque for ith joint. The ground reaction forces (GRFs) are calculated
from Eq. (1) using a two-step active-and-passive algorithm in refs. [32, 33].

3. Optimization formulation
3.1. Design variables
The motor current I(t) profiles and human joint profiles q(t) are discretized using cubic B-splines [35].
The design variables (x) are human joint angle control points Phuman and exoskeleton current con-
trol points Pcurrent. As a result, the design variables for the human-exoskeleton motion prediction are
x = [

PT
human PT

current

]T.

3.2. Objective functions
The objective function is to minimize the summation of the normalized human joint torque squares
[36, 37]:

min
x

J1 (x) =
n∑

i=3

∫ T

0

[
τhi(x)(

τU
i − τ L

i

)
]2

dt (13)

where T is the specified total time for the lifting task, and τU
i and τ L

i are upper and lower torque limits
for the ith joint, respectively.

3.3. Constraints
Time-dependent constraints include (1) human joint angle limits, (2) human joint torque limits, (3)
human feet contacting position, (4) box forward position, (5) collision avoidance, (6) human dynamic
stability condition, and (7) exoskeleton torque limits. Time-independent constraints include (8) initial
and final hand positions, (9) static conditions at the beginning and end of the motion, and (10) initial,
mid-time, and final joint angles of the spine, shoulder, elbow, hip, knee, and ankle. Time-dependent
constraints are calculated sequentially in the optimization process at every time discretization point. In
contrast, the optimization calculates the time-independent constraints at a specific time.
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Figure 2. Collision avoidance constraint.

(1) Human joint angle limits:

qL ≤ q (x, t) ≤ qU (14)

where qL and qU are the lower and upper joint limits for human [38–41], respectively.
(2) Human joint torque limits:

τ L ≤ τ (x, t) ≤ τU (15)

where τ L and τU are the lower and upper joint torque limits for human [38–41], respectively.
(3) Human feet contacting position:

pfeet (x, t) = ps
feet (16)

where ps
feet is the specified feet contact position on level ground.

(4) Box forward position:

Zwrist(x, t) − Zpelvis(x, t) ≥ 0 (17)

where Zwrist and Zpelvis are the global Z coordinates of the human wrist and pelvis points [32].
(5) Collision avoidance:

dhuman (x, t) ≥ rhuman + dep

2
(18)

where dhuman is the calculated distance between the hand and the circle center on the body segment
representing the body thickness, dep is the box depth, and rhuman is the radius of the circle filled on
human limbs as shown in Fig. 2(a) [27]. There are seven circles on the human limb: five are on the leg
(ankle, shank, knee, thigh, and hip) and two on the spine as shown in Fig. 2(b).

(6) Dynamic stability condition:

phuman_ZMP (x, t) ∈ FSR (19)

where zero moment point (ZMP) position is inside the foot support region (FSR) for human [32].
(7) Exoskeleton torque limits:

τ L
exo ≤ τ exo (x, t) ≤ τU

exo (20)

where τ L
exo is lower torque limit, and τU

exo is the upper limit for the exoskeleton.
(8) Initial and final hand positions:

phuman_hand (x, t) = ps
human_hand (t) ; t = 0, T (21)

where, ps
human_hand is the specified hand position at initial and final times.

(9) Initial and final static conditions:

q̇human (x, t) = 0; t = 0, T (22)
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Figure 3. The diagram of the proposed lifting assistance control algorithm. Here, θk0 and θkf are initial
and final knee angles, respectively. τl and τu are the lower and upper limits of the exoskeleton torque.
τ ∗

exo(θe) is the optimal exoskeleton torque in joint angle domain, and τexo(θe) is the real exoskeleton
assistive torque.

(10) Initial, mid-time, and final joint angles for the spine, shoulder, elbow, hip, knee, and ankle:∣∣qi_human (x, t) − qE
i_human (t)

∣∣ ≤ ε; t = 0,
T

2
, T (23)

where ε = 0.2 rad, and qE
i_human is the experimental joint angle for the spine, shoulder, elbow, hip, knee,

and ankle joints.

4. Knee exoskeleton control and experiments
4.1. Control strategy
We propose a new exoskeleton control strategy which uses the offline solved optimal simulation results
under the controlled environment in real time to assist human lifting. This control algorithm has two
phases as shown in Fig. 3 and consists of two offline optimizations: lifting optimization and assistive
torque interpolation optimization.

In Section 2.1, we modeled a 2D human model with a knee exoskeleton. For the optimization in the
first phase, an inverse dynamics optimization formulation is used to find the optimal exoskeleton torque,
τ ∗

exo(t) and optimal knee angle θ ∗
k (t) for the lifting task, as discussed in Section 3. However, for exoskeleton

control, the exoskeleton reads the knee encoder angle (θe), and outputs the exoskeleton torque, which is
a function of the knee joint encoder angle τexo(θe). Therefore, we need to transfer the discretized optimal
exoskeleton torque τ ∗

exo(t) obtained from the simulation in the time domain to a continuous function of
the encoder angle in joint angle domain. In this study, we use a B-spline interpolation to represent τexo(θe)
as in Eq. (24):

τexo

(
s, Pτexo , θe

) =
m∑

i=1

Ni (s, θe)
(
Pτexo

)
i
θe0 ≤ θe ≤ θef (24)

where s = [
θe0 , . . . . . , θef

]T is the encoder angle knot vector, Pτexo = [
(Pτexo )1, . . . . . . , (Pτexo )m

]T is the
exoskeleton torque control point vector, m is the number of control points, θe is the current encoder
angle, and Ni(s, θe) is the basis function. Here, θe0 and θef are initial (squat position) and final
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Figure 4. Comparison between B-spline interpolation and optimal exoskeleton torques as a function
of human knee angles.

(standing position) exoskeleton encoder angles, respectively. These angles of encoder were obtained
from the experiment.

The second optimization is to find the exoskeleton torque control points Pτexo , to minimize the sum-
mation of the error squares of the optimal exoskeleton torque (simulation) and exoskeleton torque from
the encoder angle (Eq. (24)):

min
Pτexo

J2

(
Pτexo

) =
θef∑

θe=θe0

[
τexo

(
s, Pτexo , θe

) − τ ∗
exo (t (θe))

]2 (25)

s.t. : τexo

(
Pτexo , θe

) − τ ∗
exo (t (θe)) = 0, θe = θe0 , θef (26)

This problem is solved using an SQP method in SNOPT [23]. The second optimization is able to find
the optimal torque control points for the exoskeleton torque τexo(θe) in terms of the encoder angle for
lifting tasks.

In phase 2, based on the knee encoder angle during lifting, the optimal assistive torque is calculated
from the B-spline interpolation function in real time using Eq. (24) in joint angle domain. This gives
human knee joint an assistive torque. It is noted that the encoder angle must be within the given initial
and final boundary conditions to provide optimal assistance. If it is outside the knee joint boundaries, a
randomly selected small and safe constant assistive torque τexo = 2.1 Nm is provided.

A comparison between exoskeleton torque obtained from B-spline interpolation (τ ∗
exo) and opti-

mal exoskeleton torque profiles (τexo) are illustrated in Fig. 4. Figure 5 presents the optimal real-time
exoskeleton torques with respect to knee joint angles with the maximum assistive torque as 6 Nm and
16 Nm, respectively.

4.2. Experimental procedure
The Institutional Review Board (IRB) approved the optimal control of the powered knee exoskeleton
lifting experiment was conducted at Biodynamics Optimization and Motion Control Lab at Oklahoma
State University. The test subject was a healthy 22-year-old male with no previous injuries, and a written
consent form from the subject was taken before the experiment. The subject’s height and weight were
1.90 m and 81.36 Kg, respectively.

For this study, the subject had two lab visits. For the first visit, the subject’s anthropometric measure-
ments were taken. Xsens motion capture system was used to obtain 3D kinematic data at 60 Hz, and the
whole body sensors protocol was considered, as shown in Fig. 6. The Xsens system was first calibrated.
Delsys Trigno EMG sensors were attached to the subject’s left leg and spine. For this experiment, the
EMG activities of vastus medialis, vastus lateralis, and biceps femoris from the left leg and latissimus
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Figure 5. The optimal exoskeleton torque as a function of human knee angles during lifting. The knee
joint angle starts from a squat position.

Figure 6. Lifting experiment setup without the exoskeleton.

dorsi from the upper body were measured at 2000 Hz. The subject’s maximum voluntary contractions
(MVCs) for the four muscles were measured for muscle activation normalization. In this study, three
trials were conducted for each muscle at every MVC testing position [42, 43]. A 30-s rest period was
observed between two trials. The participant was instructed to exert his maximum force during each
MVC testing session. For lifting task, the subject was instructed to lift an 11-Kg box without the exoskele-
ton with two feet standing on two Bertec force plates (Bertec, Columbus, Ohio, USA). However, the
participant was allowed to choose his own lifting strategy. The lifting motion was recorded in Xsens’s
MVN Analyze Pro software (MVN Awinda, Xsens Technologies BV, Enschede, the Netherlands). The
GRFs were recorded using OptiTrack Motive 3.0 software (Natural Point, Corvallis, OR, USA) at 1000
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Figure 7. Lifting experiment setup with the exoskeleton.

Hz. In addition, EMGworks Acquisition (Delsys Inc., Natick, MA, USA) was used to collect and record
the raw data of the EMG. The lifting task was repeated three times with a 3-min break between them.
Next, the processed data from the MVN Analyze and Motive 3.0 were used to validate the simulation
results against the experimental results without the exoskeleton. The recorded EMG data series were
transferred to EMGworks Analysis (Delsys Inc., Natick, MA, USA) to obtain EMG activity in milli-
volts. Then EMG data series were further processed in MATLAB (MathWorks Inc., Natick, MA, USA),
where data were bandpass-filtered with the cutoffs at 10–450 Hz, rectified, and then lowpass-filtered
with a cutoff frequency of 6 Hz. Finally, the filtered EMG data series were normalized by the corre-
sponding MVC EMG values. For processed GRFs, the average of two force plates was taken at each
trial. Finally, we compared the average of the three experimental trials against the predicted data.

For the second visit, a light-weight, highly-back-drivable wearable knee exoskeleton developed by
Picasso Intelligence, LLC, was used in this study. The unilateral mass of the exoskeleton was 2.25 Kg,
and it could provide the maximum 25 Nm output torque. The exoskeleton’s smart motor included
a motor, gear, driver, encoder, and controller. It used CAN bus protocol and was controlled by a
teensy-based PCB board with a CAN bus chip. The proposed control strategy from Section 4.1 was
implemented, and the code was uploaded to the teensy board of the exoskeleton control board. Finally,
the subject was asked to wear Xsens whole body sensors, EMG sensors, and the exoskeleton to perform
the lifting task again, as shown in Fig. 7. Similar to the first visit, the lifting motion was recorded in
Xsens’s MVN Analyze Pro software, EMG raw data series were recorded in EMGworks Acquisition,
and GRFs were recorded using OptiTrack Motive 3.0 software. A bluetooth-connected customized
MATLAB GUI interface was used to collect the exoskeleton knee joint angle and knee joint torque.
The lifting task was repeated three times, each with a 3-min break between them. The EMG data series
were processed in EMGworks Analysis and MATLAB. Next, the processed data from the MVN Analyze,
Motive 3.0, and Matlab GUI were used to validate the simulation results against the experimental results
with the exoskeleton.

5. Results
The lifting NLP problem is solved using an SQP method in SNOPT [29]. The initial guess for the opti-
mization is x = [

PT
human PT

current

]T = [0]. For cubic B-spline interpolation, we use five control points
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Table II. DC motor electromechanical parameters.

Parameters
R (�) 0.58
L (mH) 0.21
Jm(gcm2) 895
b (Nms) 0.08
GBr 8
Motor voltage (V) 24-48
Torque constant (K) (Nm/A) 2.1
Output peak torque (Nm) 25

Table III. Task parameters for the lifting.

Parameters
Box weight (Kg) 11
Box height (m) 0.155
Box depth (m) 0.535
Initial hand position (x, y, z) (m) (0.0, 0.217, 0.412)
Final hand position (x, y, z) (m) (0.0, 1.152, 0.464)
Total time, T (s) 1.4

 

Figure 8. Simulation snapshots for 2D human 11 Kg box lifting without the exoskeleton.

(nctrl=5) for each joint. There are a total of 50 (n∗nctrl) design variables and 217 nonlinear constraints
for the lifting optimization without exoskeleton. The optimal solution is obtained in 0.59 s CPU time. The
electrical and mechanical parameters of the DC motor are presented in Table II. For the lifting optimiza-
tion with the exoskeleton, there are a total of 55 (n∗nctrl+number of exo joints∗nctrl) design variables
and 222 nonlinear constraints. Two exoskeleton torque limits are considered in the optimization: [-6, 6]
Nm and [-16, 16] Nm. The optimal solution is obtained in 1.51 and 1.54 s CPU time, respectively. An
Intel R© CoreTM i7 2.11 GHz CPU and 16 GB RAM computer is used for the optimization. The input data
for the box lifting task are given in Table III.

5.1. Lifting validation without the exoskeleton
First, Fig. 8 illustrates the snapshots of the predicted lifting motion at different lifting times. Figure 9
compares experimental and simulation joint angles for the human spine, shoulder, elbow, hip, knee, and
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Figure 9. Human joint angle profiles comparison between simulation and experiment without exoskele-
ton for 11 Kg box lifting.

(a) (b)

Figure 10. GRFs comparison of experiment and simulation without exoskeleton for 11 Kg box lifting.

ankle joints. The horizontal and vertical GRFs are compared between experiments and simulation in
Fig. 10.

5.2. Lifting validation with the exoskeleton
Figure 11 demonstrates the snapshots of the predicted lifting motion with 6 Nm maximum assistive
torque. The optimization formulation predicts a similar lifting motion for the 16 Nm exoskeleton case as
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Figure 11. Simulation snapshots for 2D human lifting with optimal exoskeleton assistance, and the
maximum assistive torque is 6 Nm.

Figure 12. Human joint angles comparison between simulation and experiment with optimal exoskele-
ton torque, and the maximum assistive torque is 6 Nm.

the motion of 6 Nm case in Fig. 11. The comparison of experimental and simulation joint angles for the
human spine, shoulder, elbow, hip, knee, and ankle joints are presented in Figs. 12 and 13. Figures 14
and 15 compare the horizontal and vertical GRFs between experiments and simulations.

5.3. Comparison of different assistive torque cases
We compare three cases in this section: without exoskeleton, exoskeleton with the 6 Nm maximum assis-
tive torque, and exoskeleton with 16 Nm maximum assistive torque. The comparison of optimal human
joint torques for the three cases is shown in Fig. 16. Figure 17 provides the comparison of experimen-
tal human joint angles. The GRFs of three cases are compared in Fig. 18. Finally, the comparisons of
muscle activations are presented in Fig. 19.
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Figure 13. Human joint angles comparison between simulation and experiment with optimal exoskele-
ton torque, and the maximum assistive torque is 16 Nm.

(a) (b)

Figure 14. GRFs comparison of experiment and simulation with optimal exoskeleton torque, and the
maximum assistive torque is 6 Nm.

6. Discussion and conclusions
In this work, the snapshots of predicted lifting motion illustrate that the proposed lifting optimization
formulation successfully predicts a natural lifting motion without exoskeleton as shown in Fig. 8. The
predicted spine, hip, knee, and ankle joint angles are compared well with the experimental data in Fig. 9.
However, there are some deviations for the spine, elbow, and shoulder joint angle profiles, and this may
be due to less constraints imposed on the skeletal model’s upper body compared to the lower body.
For example, the leg joint angle profiles have good predictions because the feet are fixed on the ground
during lifting due to foot contact constraint. The predicted GRFs are reasonable, as shown in Fig. 10.
The trends of simulation result closely follow the trends of the experiment data. However, the predicted
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Figure 15. GRFs comparison of experiment and simulation with optimal exoskeleton torque, and the
maximum assistive torque is 16 Nm.

Figure 16. Human joint torque simulation comparison of different cases (without an exoskeleton,
maximum 6 Nm, and 16 Nm exoskeleton optimal assistances) for 11 Kg box lifting.

vertical GRF values are higher than the experimental GRF until 80% of the lifting cycle but are within
2.27% of the experimental GRF.

For the lifting with exoskeletons, the optimization predicts the natural symmetric lifting motions for
both optimal assistance cases, the maximum 6 Nm case (Fig. 11). We can observe the differences in
lifting motion trajectories at 50% lifting cycle snapshots between liftings with and without exoskeletons
(Fig. 8). With exoskeletons, the knee and elbow bend less at 50% lifting cycle compared to the case
without exoskeleton. This clearly indicates that the lifting strategies have changed due to assistive torque.
For joint angle comparisons (Figs. 12 and 13), for both cases, the predicted joint angle profiles show
similar trends and magnitudes as the experimental data. We also notice larger discrepancies for upper
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Figure 17. Human joint angles experimental comparison of different cases (without an exoskeleton,
maximum 6 Nm, and 16 Nm exoskeleton optimal assistances) for 11 Kg box lifting.

(a) (b)

Figure 18. GRFs comparison of different cases (without an exoskeleton, maximum 6 Nm, and 16 Nm
exoskeleton optimal assistances) for 11 Kg box lifting.

body joints than the lower body joints. In addition, the predicted vertical GRFs are within 1.63% and
1.76% of the experimental GRFs, respectively, as shown in Figs. 14 and 15.

We can see the differences in joint torques between the cases without exoskeletons and the cases
with exoskeletons, as shown in Fig. 16. However, for the cases with exoskeletons, only human knee joint
torques have different values because different knee assistive torques are applied to knee joints. For
other joints, the human torques are very similar because no exoskeletons are applied to those joints. It
is observed that the actual peak human knee joint torque magnitudes decreased by 30.53% and 45.45%
due to the exoskeleton assistance. In addition, the normalized cost function values (torque square) are
0.519, 0.438, and 0.413 for 0 Nm, the maximum 6 Nm, and the maximum 16 Nm optimal assistance
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(a) (b)

(c) (d)

Figure 19. Muscle activations comparison of different cases (without an exoskeleton, maximum 6 Nm,
and 16 Nm exoskeleton optimal assistances) for 11 Kg box lifting.

cases. The human dynamic effort (cost function) is decreased by 15.61% and 20.42% with assistances
compared to the lifting motion without exoskeleton. Therefore, knee assistive torque changes overall
lifting motion trajectory and dynamic effort.

In Fig. 17, the joint angles have similar magnitudes and patterns for the cases with and without
exoskeletons. In Fig. 18, horizontal GRFs have similar trends and magnitude for the cases with and
without exoskeletons. For the vertical GRFs, without and with exoskeleton cases have similar trends
during the lifting. For the maximum 16 Nm assistance case, the vertical GRF is higher than that of 0 Nm
assistance case between 20% and 80% of the lifting cycle. For the maximum assistance of 6 Nm case, the
vertical GRF is higher than that of 0 Nm assistance case during the entire lifting process. The exoskeleton
motor is attached to thigh and shank through wrapped frames. Therefore, the forces generated by the
exoskeleton motor are applied to the human thigh and shank to assist lifting. This causes variations in
the vertical GRFs for knee exoskeletons.

We consider three muscles (knee extensor: vastus medialis and vastus lateralis; knee flexor: biceps
femoris) from the lower extremity and one spine muscle (latissimus dorsi) from the upper extremity
for muscle activation comparison, as shown in Fig. 19. The trends of the muscle activations are similar
for the cases with and without exoskeletons for the lifting task. However, the exoskeletons significantly
reduce these muscle activations for the maximum 16 Nm assistive torque case. It is observed that the
peak values of vastus medialis, vastus lateralis, biceps femoris, and latissimus dorsi are reduced by
56.05%, 64.98%, 67.15%, and 29.13%, respectively. For the maximum 6 Nm assistive torque case, only
biceps femoris’ activity is reduced significantly, and the peak value is reduced by 42.82%. Furthermore,
the mean values of muscle activations for vastus medialis, vastus lateralis, biceps femoris, and latissimus
dorsi are 0.161, 0.346, 0.123, and 0.132, respectively, for the 6 Nm case. These mean values are changed
to 0.163, 0.197, 0.079, and 0.099 for the 16 Nm case. Correspondingly, for the case without exoskeleton,
the mean values of muscle activations are 0.149, 0.356, 0.192, and 0.134, respectively. It is observed
that for vastus lateralis, biceps femoris, and latissimus dorsi muscles, the exoskeleton decreases the
activations by 3.00%, 35.61%, and 2.06%, respectively, for the 6 Nm case, and 44.65%, 58.98%, and
26.39%, respectively, for the 16 Nm case. It is worth noting that although the peak value of vastus
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medialis muscle activation decreases by the exoskeletons, the mean value increases by small amounts
of 8.11% and 9.69% for the 6 and 16 Nm cases, respectively.

In this study, we used an inverse dynamics optimization to predict the human-exoskeleton symmetric
lifting motion, then the optimal exoskeleton torque was transferred in joint angle domain to control
the powered exoskeleton in real time. The optimal control of knee exoskeleton was implemented to
provide optimal assistance to the human knee joint for lifting. The overall method worked well, and
the simulation results were reasonably matched with the experimental data. In summary, the proposed
optimal control method is subject-specific and has the capability to reduce human torques and muscle
activations. As a result, dynamic human effort and injuries can be mitigated by using the proposed
optimal control of the powered knee exoskeleton during object lifting. The limitations of this work are
that we only consider the squat lifting strategy and a single subject for the experiment. For future work,
we will also investigate the stoop lifting technique. In addition, we will validate the control strategy and
lifting optimization by collecting more data from subjects with different percentiles and gender. We also
plan to develop the learning-based approach by training an artificial neural network (ANN) based on
the simulation results to provide real-time optimal assistance for lifting tasks.
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