Precision mitochondrial medicine

Patrick F Chinnery¹,²*

¹ Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
² Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
* Correspondence: pfc25@cam.ac.uk

Abstract

Mitochondria play a key role in cell homeostasis as a major source of intracellular energy (adenosine triphosphate, ATP), and as metabolic hubs regulating many canonical cell processes. Mitochondrial dysfunction has been widely documented in many common diseases, and genetic studies point towards a causal role in the pathogenesis of specific late-onset disorder. Together this makes targeting mitochondrial genes an attractive strategy for precision medicine. However, the genetics of mitochondrial biogenesis is complex, with over 1100 candidate genes found in two different genomes: the nuclear DNA and mitochondrial DNA (mtDNA). Here we review the current evidence associating mitochondrial genetic variants with distinct clinical phenotypes, with some having clear therapeutic implications. The strongest evidence has emerged through the investigation of rare inherited mitochondrial disorders, but genome-wide association studies also implicate mtDNA variants in the risk of developing common diseases, opening to door for the incorporation of mitochondrial genetic variant analysis in population disease risk stratification.

1. Introduction

Mitochondria are ubiquitous compartments present in all nucleated mammalian cells. They are the principal source of intracellular energy in the form of adenosine triphosphate (ATP) which is generated through oxidative phosphorylation (OXPHOS). Although ATP can also be generated anaerobically by glycolysis, aerobic OXPHOS produces far more ATP. This is

This peer-reviewed article has been accepted for publication but not yet copyedited or typeset, and so may be subject to change during the production process. The article is considered published and may be cited using its DOI.

10.1017/pcm.2022.8

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
essential for anabolic processes including protein synthesis and cell division, and also physiological functions including neuronal firing, cardiac and skeletal muscle contraction, hormone biosynthesis and secretion. In addition to their role in energy metabolism, mitochondria also act as metabolic hubs modulating and controlling multiple cellular mechanisms including calcium signalling and as key partners in programmed cell death (apoptosis). As a consequence, mitochondria are central to human physiology and therefore, not surprisingly, have been implicated in the pathogenesis of many different human diseases1,2.

1.1 Mitochondrial biogenesis

Mitochondria are currently estimated to incorporate over 1,300 proteins3. The vast majority of these are encoded by the nuclear genome, but 13 are synthesised from small circles of double stranded DNA present within the mitochondrial matrix: mitochondrial DNA (mtDNA, \textbf{Figure 1}). The nuclear gene products include structural sub-units involved in oxidative phosphorylation that physically interface with mtDNA encoded components to deliver ATP synthesis. Additional nuclear proteins are involved in the maintenance of mitochondrial DNA, mtDNA transcription, intra-mitochondrial protein synthesis and the structural integrity of the organelle itself.

1.2. Mitochondrial DNA

Each cell contains multiple copies of mtDNA (\textbf{Figure 2}) with the precise amount being tightly regulated and varying from cell type to cell type: at one extreme, sperm contain \textasciitilde100 mtDNA molecules, whereas skeletal muscle fibres contain many tens of thousands of molecules. Human mtDNA is 16.5Kb and codes for 13 structural sub-units of the OXPHOS system and 24 RNAs which play a key role in intramitochondrial protein synthesis4. Only a small 1.1Kb segment of mtDNA is non-coding and involved in regulating replication and transcription of the mitochondrial genome, including a third strand of DNA called the displacement or ‘D’-loop which incorporates the poorly understood 7S DNA. mtDNA has a different amino-acid code to the nuclear genome and is exclusively maternally inherited in the general population. Although there have been recent reports of apparent paternal transmission of mtDNA5, there are other likely explanations for these findings6-9 (discussed below).

1.2.1 Heteroplasy and the threshold effect

Mutations of mtDNA can affect a proportion of the molecules (heteroplasmy) usually reflecting in their recent origin. Most mtDNA mutations only affect OXPHOS when the proportion of mutated molecules exceeds a critical threshold value, typically greater than 50\%. Several mutations only affect cellular biochemistry when greater than 75\% of mtDNA molecules are affected (\textbf{Figure 2})4,10. Not only does the biochemical threshold vary from mutation to
mutation, but also from cell type to cell type. The level of heteroplasmy can vary from cell to cell, organ to organ and from individual to individual. The reasons for this are only partially being unravelled. For some mtDNA mutations, the absolute amount of wild-type mtDNA appears to determine whether a cell expresses a biochemical defect (ie the mutations is haplo-insufficient)11, but this is not the case for others, where very a very high percentage level of the mutation is required to have an effect12. Very high thresholds probably reflect functional complementation by the residual wild-type molecules, which is only compromised when the proportion of mutant mtDNA is extremely high and wild-type levels correspondingly very low13,14. If all of the mtDNA is identical, this situation is termed ‘homoplasmy’.

1.2.2 Maternal inheritance and the genetic bottleneck

Profound differences in mtDNA heteroplasmy levels are often seen amongst siblings within the same maternal pedigree15. Similar observations Holstein cows led to the mtDNA genetic bottleneck hypothesis16, whereby a reduction in the amount of mtDNA passed from mother to child leads to a statistical sampling affect, with different proportions of mutant and wild-type mtDNA being passed on to each offspring (Figure 3). Recent evidence across several species supports the existence of a physical reduction in the amount of mtDNA passed from one generation to the next17-20. The key steps occur during early oocyte development in the developing female embryo, when the amount of mtDNA falls to \textasciitilde200 molecules in each primordial germ cell (PGC) in mice17,18, and \textasciitilde500 copies in human PGCs19. \textit{In silico} modelling has shown that this reduction is sufficient to cause a sampling effect leading to very different levels of heteroplasmy in primary oocytes generated from PGCs17, thus determining the level of heteroplasmy passed on to the next generation. Selective forces acting for and against propagation of specific mtDNA mutations can modulate this further21-23. Similar genetic bottlenecks also occur probably in somatic tissues contributing to different levels of heteroplasmy in different organs19,24-26.

2. Precision diagnosis of rare mitochondrial disorders

Our first insight into the role of mitochondrial genetic variants in precision medicine arose through the investigation of patients with rare inherited primary mitochondrial diseases.

2.1 Primary mitochondrial disorders – definition and prevalence

Primary mitochondrial disorders are presumed genetic disorders leading to a primary defect of OXPHOS and ATP synthesis27. It is important to distinguish these from the many different mitochondrial biochemical abnormalities described as a secondary phenomenon in many common and rare disorders. Genetic epidemiology studies have shown that primary mitochondrial disorders affect \textasciitilde1 in 4,300 of the general population28.
2.2 Clinical heterogeneity

Given the central role of mitochondrial ATP production in many different organ systems, it is perhaps not surprising that mitochondrial disorders can affect multiple different organ systems. Typically they involve tissues and organs with a high ATP dependence including the brain, hearing, visual and neuromuscular systems, the heart and endocrine glands including pancreatic islets27. The clinical overlap with common disorders, coupled with the fact that different individuals in the same family may have different organs and tissues involved, has made the clinical diagnosis of mitochondrial disorders particularly challenging. As a rule of thumb, people who have a multisystem disorder with some neurological involvement and no obvious explanation should be considered to have a possible mitochondrial disorder. Several classical mitochondrial clinical syndromes have been described (Table 1), but many patients do not share all of the clinical features defined by the canonical syndromic diagnoses. Intriguingly, some mitochondrial disorders are highly organ specific, causing sensorineural deafness, or visual impairment due to involvement of the retinal ganglion cell. However, many mitochondrial disorders involve multiple organ systems with many degrees of severity. Many children have multi-system mitochondrial disorders that do not fit neatly into one of the previously described clinical syndromes. Several mechanisms have been proposed to explain tissue selectivity and clinical heterogeneity, including differences in the burden of mtDNA mutations between tissues and organs (heteroplasmy, see above), and the existence of different tissue-specific isoforms of the nuclear encoded OXPHOS subunits – but our understanding is far from complete.

2.3 Genetic basis of mitochondrial disorders

Inherited mitochondrial disorders are caused by mutations in either nuclear genes encoding for mitochondrial proteins or mtDNA. The first pathogenic mutations of mtDNA were identified three decades ago. Three different homoplasmic missense mutations in respiratory chain genes encoding for complex 1 sub-units have been identified in families with Leber’s Hereditary Optic Neuropathy (LHON: m.11778A>G, m.3460A>G, and m.14484T>C)29-31. LHON is a maternally inherited disorder that causes sub-acute visual failure presenting in mid-adult life. It remains the most common mitochondrial disease world-wide, but is unusual because the phenotype is highly tissue specific and the underlying mtDNA mutations have a striking incomplete penetrance: the ratio of affected males to females is approximately 4:1, with 40% of male mutation carriers and \textasciitilde{}10% of females developing symptoms32. Early on it was recognised that a particular mitochondrial genetic background was associated with the disorder33, and recent population studies have shown that common polymorphisms influence the clinical penetrance of the underlying pathogenic mtDNA mutation34. Remarkably, LHON mtDNA mutations are found in \textasciitilde{}1:300 of the population35 and both environmental and
additional genetic interactions likely play a key role in clinical expression, most notably cigarette smoking and heavy alcohol use36. Thus, LHON has set the paradigm for gene-environment interactions in mitochondrial disorders and provides evidence of epistasis between different genetic variants within the mtDNA, and possibly the nuclear genome.

Around the same time, the first heteroplasmic pathogenic mutations were identified. Mutations in the transfer RNA gene for Leucine UUR was described in families with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS)37. Although subsequent work has shown the full clinical syndrome is actually uncommon, the same mutation has been associated with maternally inherited diabetes, an eye movement disorder called chronic progressive external ophthalmoplegia (CPEO), and/or maternally inherited diabetes and deafness. The m.3243A>G \textit{MTTL1} mutation remains the most common heteroplasmic mtDNA mutation presenting in the clinic38.

Finally, large scale deletions of mtDNA were found to encompass key mitochondrial structural genes and transfer RNA genes causing CPEO either in isolation or in combination with other central neurological features, diabetes, cardiac induction block as part of the Kearns-Sayre syndrome39,40. Unlike the previous two disorders, large-scale mtDNA deletions are only very rarely inherited and usually caused a sporadic disorder41.

The last three decades have seen a huge increase in the number of different point mutations and deletions of mtDNA associated with primary mitochondrial disorders, some with overlapping phenotypes and some associated with distinct clinical syndromes which are either tissue specific or involve multiple different organ systems.

\subsection*{2.4 Nuclear gene mutations causing mitochondrial diseases}

The first likely nuclear genetic disorders causing mitochondrial diseases were identified in 1989. Families with autosomal dominant CPEO showing clear male to male transmission were described with multiple secondary deletions of mtDNA in skeletal muscle42. This raised the concept of ‘disorders of mtDNA maintenance’, with the underlying nuclear genetic basis for disorders being identified several years later43,44. These findings opened up the field to identify further nuclear genetic mitochondrial disorders, including defects affecting mtDNA maintenance, individual respiratory chain sub-units or their assembly, genes maintaining mitochondrial structural integrity or involved in fission and fusion of mitochondria, and genes involved in the intra-mitochondrial protein synthesis2,45. Initial candidate gene and genetic linkage studies were superseded by next generation sequencing approaches involving panels46, exome sequencing47, and transcriptomics48,49 and latterly whole genome sequencing50,51. The number of genes identified in families with biochemical evidence of mitochondrial disease continues to increase, with \textasciitilde350 identified to date52. This falls far short
of the predicted number of different mitochondrial proteins (~1100) indicating there are further disease genes yet to discover, although it is possible that some of these genes have such a catastrophic effect that we will never see them presenting in the clinic.

2.5 Investigation of suspected mitochondrial diseases

The traditional approach for investigating mitochondrial diseases involves assimilating a portfolio of clinical evidence supplemented by the investigation of vulnerable organ systems, followed by a tissue biopsy leading to histochemical and/or biochemical investigation of the OXPHOS system53. This approach requires the involvement of specialist laboratories, is time consuming, expensive and can lead to protracted diagnostic odyssey54. It is also not completely definitive, because many individuals with known mitochondrial disorders do not have detectable biochemical abnormalities using conventional diagnostic tests. The particular pattern of histochemical or biochemical defect has helped target molecular genetic analyses, which was particularly valuable when the capability for high throughput sequencing was limited. This has changed dramatically over the last five years as explained below.

2.5.1 The added complexity of mtDNA heteroplasmy

Tissue differences in mtDNA heteroplasmy can present a challenge for molecular diagnosis. Non-dividing (post mitotic) cell tissues typically have higher levels of heteroplasmic mtDNA mutations than dividing cells. At its most extreme, for the most common heteroplasmic mutation (m.3243A>G) the level of heteroplasmy decreases in blood over time, probably because of selection against the pathogenic variant at the stem cell level55,56. This means that the heteroplasmy level can fall below the detection threshold for some molecular tests. This can be circumvented by studying skeletal muscle or another tissue such as urinary epithelial cells57. For some mitochondrial disorders, particularly those caused by single large scale mtDNA deletions, the underlying gene defects are undetectable in blood. The important clinical point here is that absence of a mtDNA mutation from blood does not exclude a high level in clinically relevant tissues, and clinicians suspecting a mitochondrial disorder should not stop their investigations if the initial molecular genetic tests come back negative.

2.5.2 Pitfall of pseudo-heteroplasmy

Segments of mitochondrial DNA have translocated from the organelle into the nucleus over evolutionary time58. The majority of these reside in non-coding space and are epigenetically silenced. These so called “nuclear mitochondrial sequences” (NUMTS) can introduce a confounder in a molecular diagnostic pathway, resembling true mtDNA heteroplasmy7. This is the likely explanation for the recent description of apparent paternal transmission of mtDNA, which is more likely to be due to the transmission of NUMTS down the paternal line creating the impression of an heteroplasmic variant transmission6-9. Although in theory this could lead
to misdiagnosis of mtDNA diseases, in practice this is unlikely. In a recent survey of NUMTS in over 66,000 humans there was no evidence that nuclear NUMTS sequences harboured variants resembling known pathogenic mtDNA mutations (in press). Nonetheless this is a potential confounder that should be considered particularly during the exploration for new genetic causes for mitochondrial diseases. There are both molecular and bioinformatic approaches to minimise NUMTS contamination of mtDNA sequencing.

2.5.3 Genomic diagnosis

Standard diagnostic whole genome sequencing (WGS) approaches re-sequence an individual’s genome 40-60 fold to optimise the chance of detecting pathogenic variants with confidence. Given the very high copy number of mtDNA in blood, this means that standard WGS also provides a complete mitochondrial DNA sequence at ~2000 fold, enabling the detection of heteroplasmic variants down to the variant allele frequency (VAF, or heteroplasmy level) ~1%.\(^5^9\) The retrospective analysis of confirmed diagnoses of mitochondrial disease indicates that blood WGS is likely to detect over 90% of known pathogenic mutations of mtDNA and nuclear DNA, providing a strong argument that blood WGS should be the first line diagnostic test\(^6^0\). For the reasons explained above, in the absence of a clear diagnosis from WGS, the standard diagnostic algorithm is appropriate with the added benefit of providing biochemical functional evidence to support the molecular basis of a novel genetic variant or novel gene defect.

2.5.4 Current diagnostic yield and the implications of a negative test

Several studies have shown that the diagnostic yield of both exome and WGS depends on the how carefully individual families are selected for investigation. The yield is greater when patients fulfil established diagnostic criteria (such as the Nijmegen criteria\(^6^1\)), particularly if this involves the biochemical confirmation of an underlying respiratory chain enzyme deficiency\(^4^6,4^7,5^0,6^2,6^3\). Perhaps the closest estimate of the true diagnostic yield in relatively unselected patients comes from the 100,000 Genomes Project in England, where patients with a suspect mitochondrial disorder were referred for WGS from both non-specialist and specialist centres\(^5^1\). It is important to note that patients were only referred after undergoing conventional genetic investigations for a mitochondrial disorder. In this study, WGS delivered a molecular diagnosis in an additional 31% of families, with the highest yield in children, and particularly when parental DNA samples were available. However, over half of the new diagnoses were not classical mitochondrial diseases, emphasising the challenge of clinically defining a mitochondrial disorder up front. As mentioned above, WGS is capable of detecting >90% of currently known genetic causes of mitochondrial disease. Putting this information together, WGS has the potential to diagnose the vast majority of known mitochondrial diseases, approaching ~95% of referrals from secondary (hospital) care. However, it is
important to note that patients with a positive genetic diagnosis do not fulfil clinical diagnostic
criteria, and not all have a detectable biochemical abnormality, so it would be inappropriate
to exclude patients from the opportunity to undergo exome or WGS in the absence of a
classical clinical presentation.

There are several reasons why genetic testing can negative in mitochondrial
disorders: (i) for a mtDNA mutation, the level of heteroplasmy may be undetectable in the
tested tissue (eg mtDNA deletions may not be detected in blood DNA, but reach high levels
in skeletal muscle causing disease); (ii) the underlying causal nuclear gene may not been
discovered yet; (iii) structural variants or repeat sequences may be missed using current
diagnostic and bioinformatic pipelines; and, (iv) detected variants may be difficult to interpret,
perhaps lying in deep intronic regions. Thus, negative genetic testing does not exclude the
diagnosis of a mitochondrial disorder. However, our capability to provide a WGS based
diagnosis for mitochondrial disease has been greatly enhanced by the growing global data
set of whole mtDNA and whole nuclear genome sequencing which facilitates
interpretation59,64, and this will undoubtedly improve in the coming years.

2.5.5 Importance of a genomic diagnosis for mitochondrial diseases

Reaching a genomic diagnosis has important implications for families with mitochondrial
disease.

- **Prognosis and surveillance.** The advent of molecular testing has allowed natural
 history studies of genetically defined groups at scale across the globe. This has
 provided an insight into prognosis and likely complications can be effectively managed
 in individual patients. Typically this includes surveillance for cardiomyopathy, hearing
 loss and diabetes mellitus – all of which can be managed with standard approaches
 including transplantation and implantation.

- **Prevention.** The different molecular diagnoses have profoundly different implications
 for the family, including a sporadic disorder (large scale mtDNA deletion), maternal
 inheritance (pathogenic mtDNA mutation), or dominant recessive and x-linked
 inheritance. It is important to emphasise that, from a clinical perspective, it may be
 impossible to distinguish these options at the bedside. However, a molecular
 diagnosis enables reliable genetic counselling in each context and pre-natal or pre-
 implantation diagnosis. For mtDNA mutations there is the added opportunity of
 mitochondrial transfer to prevent transmission65-67,68, which has been successfully
 used to prevent Leigh syndrome69.

- **Mechanisms and treatments.** A precise genetic diagnosis enables targeted treatments
 such as co-enzyme Q10 and analogues in defects of ubiquinone biosynthesis70, or
 riboflavin supplementation on patients with SLC52A2 mutations71. Several gene
therapy approaches are also in development and require a precise molecular
diagnosis72. Disease gene discovery for mitochondrial disorders has also identified
many molecular pathways essential for mitochondrial biogenesis and maintenance.
Many of these are attractive treatment targets that are currently being explored in pre-
clinical studies, or in some instances through experimental medicine at early phase
studies, often in partnership with industry73.

3. Genomic variants affecting mitochondrial function and common diseases

Primary genetic mitochondrial disorders share many clinical features with common human
diseases, including Parkinson's disease, dementia, diabetes and hypertension27. This raises
the possibility that genetic variants with less severe or catastrophic effects could be present
in the population as polymorphisms and affect the risk of developing common complex late-
onset human disorders4. Animal models with specific primary mitochondrial disorders share
some of these phenotypes including features of premature ageing74. These combined
observations opened up a field of enquiry which is yielding results likely to be important for
precision medicine.

3.1 Role of common nuclear genomic variants in common diseases

Building on the observation of specific phenotypes seen in rare primary mitochondrial disease
patients, candidate nuclear gene studies have been performed to determine whether or not
polymorphic variants in the same gene might be genetic risk factors for common disorders.
There are several examples in the literature, perhaps most notably being in \textit{POLG}, the gene
coding for the only mtDNA polymerase γ. Common polymorphic variants and heterozygous
pathogenic mutations have been reported in association with late onset idiopathic Parkinson's
disease75, although not all studies have reproduced these findings76. Likewise, the 16184-
16193 poly-C length variant in the mtDNA non-coding region has been associated with type
2 diabetes in specific populations77, but not others78. The majority of candidate gene studies
have been underpowered for the effect size being reported, questioning the strength of the
original findings, which often did not incorporate well-known nuclear genetic risk loci in the
same analyses. Although mitochondrial genes have fallen within high risk loci mapped for
common disorders in hypothesis-free genome-wide association studies (as for \textit{ATP5G1} in
type 2 diabetes)79, a recent meta-analysis found no evidence of enrichment for mitochondrial
genes in genome-wide association data for 24 age-related human traits80. There are therefore
no convincing examples of specific nuclear alleles associated with common
diseases within known mitochondrial genes. This is, perhaps, surprising given the previous
arguments made in this review. However, functional redundancy of essential metabolic
pathways and the semi-autonomous nature of mitochondria are potential explanations80.
3.2 Mitochondrial DNA

Ultimately de novo mtDNA mutations affect a single molecule and begin in an heteroplasmic state. Over time, the level of heteroplasmy can increase or decrease, with rate of segregation accelerated by the germ line genetic bottleneck (see above). Ultimately a genetic variant may become fixed in the maternal line and thus be homoplasmic. Both heteroplasmic and homoplasmic variants of mtDNA have been associated with disease.

3.2.1 Population genetics of mtDNA

The uniparental inheritance of mtDNA has been exploited by anthropologists to study human population migrations. As modern humans emerged from Africa ~150 thousand years ago and spread around the globe, the different regional populations acquired different mtDNA variants defining so-called haplogroups. The frequency of specific haplogroups can vary over relatively short geographical distances, likely due to genetic drift and population bottleneck effects which particularly affects less common genetic variants. However, an analysis of over 30,000 human mtDNA sequences sampled from across the globe shows that the haplogroup defining mtSNVs are not randomly distributed across the genome. These findings implicate selected forces acting for and against genetic variants at particular sites based on their functional consequences. Biochemical studies using cybrid cell lines, which control for the underlying nuclear genetic background, add weight to the idea that common mtDNA polymorphisms can have functional effects on mitochondrial function which extend beyond OXPHOS. Population genetic studies have cast further light on this.

3.2.2 Evidence haplogroups an effect in primary mitochondrial DNA disorders.

The strongest evidence that mtDNA haplogroups influences human disease comes from the investigations of LHON, which in Europeans is caused by one of three homoplasmic mtDNA mutations: m.11778G>A, m.14484T>C, m.3460A>G (see above). Shortly after their first definition it was recognised that these mutations preferentially associate with mtDNA haplogroup J which is found in ~11% of Europeans. Detailed mtDNA genotyping showed that the association was not due to founder effects, with the most marked association for m.14484T>C. Recent population studies have shown that that the mtDNA haplogroup likely influences the clinical penetrance of the underlying pathogenic mtDNA variant. Extensive biochemical analyses support evidence of a biochemical interaction between the different genetic variants, adding weight to the concept that similar haplogroup specific genetic variation could contribute to common human diseases where mitochondrial dysfunction is important.

3.2.3 Preliminary evidence that mtDNA haplogroups affect common disease risk.
Many candidate gene studies have been performed looking for evidence of association between mtDNA haplogroups and common disorders including astenozoospermia88, type 2 diabetes and its complications89-92, coronary artery disease89,93, hypertension94, multiple sclerosis95, and neurodegenerative disorders including Parkinson’s disease96, Alzheimer’s disease97. The majority of these studies were relatively small, with several hundred participants, and few involved direct replication98. Large scale replication studies have been performed in a number of instances99-102, most notably in idiopathic Parkinson’s disease where consistent effect on disease risk has been identified, with haplogroup UK reducing risk and haplogroup J increasing risk. In addition, mtDNA variants have been convincingly associated with metabolic phenotypes in several populations, raising the possibility that mtDNA variation could be combined with known nuclear risk loci in (for example) polygenic risk scores.

3.2.4 Population association studies of mtDNA variants

A recent study in 1928 people in the Japanese Biobank looked for associations between 2023 mtDNA variants derived from whole genome sequence data to impute mtDNA variants in 147,437 Japanese individuals with 99 common traits103, and observed pleiotropy of mtDNA genetic risk on the five late-onset human complex traits including creatine kinase levels. A larger study of 473 mtDNA variants in 358,916 individuals in UK Biobank discovered 260 novel mtDNA-phenotype associations, including novel variants enriched in type 2 diabetes and multiple sclerosis82. There were also many mtDNA associations with common physiological parameters including biochemical markers of liver and renal function, and routine blood cell measures including the red blood cell count, mean corpuscular haemoglobin, mean red blood cell volume (including the m.11778A>G LHON mutation, see above), platelet count and platelet volume. MtDNA variants were also associated with height and longevity, including the common m.1555A>G variant discussed below. Not all previously replicated disease associations were confirmed in this study (eg Parkinson’s disease), because even at this scale, the number of affected individuals with a particular disease category was small compared to the targeted disease association studies performed previously. Overall, these findings support the concept that common polymorphic variants of mtDNA influence human characteristics and disease phenotypes in combination with other genetic and environmental aetiological factors, mirroring phenotypes seen in patients with severe primary mitochondrial disorders who harbour genetic defects that more profound biochemical effects4. The underlying mechanisms are starting to be unravelled, and likely extend beyond OXPHOS. Recent evidence implicates cell proteostasis mediated through the circulating metabolite N-formylmethionine which plays a central role in mitochondrial protein synthesis104.

https://doi.org/10.1017/pcm.2022.8 Published online by Cambridge University Press
3.2.5 Heteroplasmic variants

High depth mtDNA sequencing that accompanies WGS has enabled population-level studies of mtDNA heteroplasmy and its transmission105. For example, there is recent evidence that heteroplasmic mtDNA variants contribute to cardiovascular disease risk through an effect on blood pressure106. Some of these variants may emerge during life and possibly be a consequence of the disorder or its treatment, but some of the variants may have been maternally inherited, raising the possibility that heteroplasmic mtDNA variants contribute to the 'missing heritability' of some common diseases107. High levels of heteroplasmic mtDNA mutations have been detected in affected brain regions in Parkinson’s disease (PD)108, Alzheimer’s disease109 and frontotemporal dementia110. Some of the mutations affect several brain regions, making it increasingly likely that they are maternally inherited, potentially contributing to the known increased risk of developing PD in maternal relatives. These findings are supported by mouse models where mtDNA heteroplasmy can contribute to premature ageing74,111.

4. Mitochondrial genes in pharmacogenetics

There are a limited number of well-established associations between genetic variants in mitochondrial genes and drug induced side effects. People with mitochondrial disease due to complex heterozygous mutations in the gene encoding the mtDNA polymerase Y (POLG) are susceptible to sodium valproate induced liver toxicity, as the part of the Alpers-Huttenlocher syndrome112. For this reason, sodium valproate should be avoided in patients with this particular genetic disorder. This has led many clinicians to avoid prescribing sodium valproate for all mitochondrial disorders, although clear evidence is lacking beyond POLG-related disease. Although we identified an association between common polymorphisms in POLG and unexplained drug-induced liver injury caused by sodium valproate113, these findings have not been replicated and are therefore tentative.

The m.1555A>G mtDNA mutation is carried by ~1:300 of the population35 and has been associated with aminoglycoside induced hearing loss114,115. This has led many to screen for this mutation before beginning aminoglycosides including streptomycin and gentamycin, particularly in the intensive care setting. However, population studies do not provide strong evidence of a link between this variant and sporadic hearing loss116, suggesting that this may be a particular vulnerability seen in families with maternally inherited deafness, and not in the general population at large. Functional studies suggest that a deeper understanding of the mtDNA sequence will be informative in avoiding the complications of using other antibiotics117,118, but clinical data is lacking at present.

5. Conclusions
Genomics has underpinned a diagnostic revolution enabling the precision diagnosis of rare inherited mitochondrial disorders. This underpins clinical management and is driving forward treatments, including at the molecular level. In this context, the precise molecular diagnosis has a profound effect on the management of recurrence risks and disease surveillance, and thus the management of complications.

Although at its infancy, it is clear that genetic variation of mtDNA also plays an important role in determining many human physiological parameters and is a risk factors for common human diseases. Evidence linking nuclear-mitochondrial genes and common disease is, however, limited. Precisely how these findings feed into precision medicine strategies for common disease has yet to emerge. Our understanding of mitochondrial pharmacogenomics is also likely to expand in coming years, given the recent evidence that canonical cell signalling pathways can be altered by genetic variants of both mitochondrial DNA, highlighting the central role of the mitochondrion in cell function. Although speculative at present, it is likely that understanding the genetic code responsible for the biogenesis of our mitochondria will influence how we use medicines in the future – to optimise treatment effects and minimise toxicity.

Acknowledgements

PFC is a Wellcome Trust Principal Research Fellow (212219/Z/18/Z), and a UK NIHR Senior Investigator, who receives support from the Medical Research Council Mitochondrial Biology Unit (MC_UU_00028/7), the Medical Research Council (MRC) International Centre for Genomic Medicine in Neuromuscular Disease (MR/S005021/1), the Leverhulme Trust (RPG-2018-408), an MRC research grant (MR/S035699/1), an Alzheimer's Society Project Grant (AS-PG-18b-022). This research was supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Conflict of interest

The author declares no conflict of interest

References

Figures

Figure 1. Human mitochondrial DNA. The 16,569 base pair human mitochondrial DNA (mtDNA) includes an inner ‘light’ (L)-strand and an outer ‘heavy’ (H)-strand. MtDNA genes encoding structural subunits of the mitochondrial respiratory chain include \(\text{ND1–ND6} \) and \(\text{ND4L} \) (complex I); \(\text{CYB} \) (complex III); \(\text{CO1–3} \) (complex IV); and \(\text{ATP6} \) and \(\text{ATP8} \) (complex V). The 22 tRNA and 2 rRNA genes are interspersed between the peptide-encoding genes and are essential for protein synthesis within mitochondria (amino acid letter codes). MtDNA replication is initiated by transcription within the noncoding mtDNA displacement (D) loop and proceeds from the origin of heavy-strand replication (O\(_H\), also known as OriH) until the origin of light-strand replication (O\(_L\)) is exposed, allowing light-strand synthesis to proceed clockwise until the entire molecule is copied. Alternatively, symmetric strand-coupled replication might occur in certain circumstances.
Figure 2. mtDNA heteroplasmy and the threshold effect. Recent mtDNA mutations are usually heteroplasmic. Organs, cells and probably mitochondria can contain varying proportions of mutated and wild-type mtDNA. If a mutation is pathogenic, the cell can usually tolerate a high percentage level before the biochemical threshold is exceeded and a biochemical defect develops. The level of heteroplasmy can vary between individuals within the same family, and also change during life in some tissues and organs.
Figure 3. mtDNA genetic bottleneck. A reduction in the amount of mtDNA passed from one generation to the next leads to a statistical sampling effect and very different proportions of mutant and wild-type mtDNA in the offspring of the next generation.
Table 1. Canonical mitochondrial disease clinical syndromes

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Primary features</th>
<th>Additional features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpers Huttenlocher syndrome</td>
<td>Childhood onset refractory seizures, developmental delay and liver failure.</td>
<td>Hypotonia, ataxia, sensitivity to valproate.</td>
</tr>
<tr>
<td>Chronic progressive external ophthalmoplegia (CPEO)</td>
<td>External ophthalmoplegia and bilateral ptosis</td>
<td>Proximal myopathy</td>
</tr>
<tr>
<td>Infantile myopathy and lactic acidosis (fatal and non-fatal forms)</td>
<td>Hypotonia in the first year of life, Feeding and respiratory difficulties</td>
<td>Cardiomyopathy and/or the Toni-Fanconi-Debre syndrome</td>
</tr>
<tr>
<td>Kearns-Sayre syndrome (KSS)</td>
<td>PEO onset before age 20 with pigmentary retinopathy, plus one of the following: CSF protein greater than 1 g/l, cerebellar ataxia, heart block.</td>
<td>Bilateral deafness, Myopathy, Dysphagia, Diabetes mellitus and hypoparathyroidism, Dementia</td>
</tr>
<tr>
<td>Leber hereditary optic neuropathy (LHON)</td>
<td>Subacute painless bilateral visual failure, Males:females approx. 4:1, Median age of onset 24 years</td>
<td>Dystonia</td>
</tr>
<tr>
<td>Leigh syndrome (LS)</td>
<td>Subacute relapsing encephalopathy with cerebellar and brain-stem signs presenting during infancy</td>
<td>Basal ganglia abnormalities</td>
</tr>
<tr>
<td>Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)</td>
<td>Chronic progressive external ophthalmoplegia, ptosis, gastrointestinal dysmotility (pseudo-obstruction), peripheral neuropathy, and myopathy</td>
<td>Diffuse leukoencephalopathy</td>
</tr>
<tr>
<td>Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS)</td>
<td>Stroke-like episodes before age 40 years, Seizures and/or dementia, Ragged-red fibres and/or lactic acidosis</td>
<td>Diabetes mellitus, Cardiomyopathy, Bilateral deafness, Pigmentary retinopathy, Cerebellar ataxia</td>
</tr>
<tr>
<td>Myoclonic epilepsy with ragged-red fibres (MERRF)</td>
<td>Myoclonus, Seizures, Cerebellar ataxia, Myopathy</td>
<td>Dementia, optic atrophy, Bilateral deafness, Peripheral neuropathy, Spasticity, Multiple lipomata</td>
</tr>
<tr>
<td>Neurogenic weakness with ataxia and retinitis pigmentosa (NARP)</td>
<td>Late childhood or adult-onset peripheral neuropathy with associated ataxia and pigmentary retinopathy</td>
<td>Basal ganglia abnormalities, Abnormal electroretinogram, Axonal sensori-motor neuropathy</td>
</tr>
<tr>
<td>Pearson Syndrome</td>
<td>Sideroblastic anaemia, Pancytopenia, Exocrine pancreatic failure</td>
<td>Renal tubular defects</td>
</tr>
</tbody>
</table>