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Abstract

Objective Cocaine is a highly addictive psychostimulant that affects synaptic activity with struc-
tural and functional adaptations of neurons. The transmembrane synaptic vesicle glycoprotein
2A (SV2A) of pre-synaptic vesicles is commonly used to measure synaptic density, as a novel
approach to the detection of synaptic changes. We do not know if a single dose of cocaine suf-
fices to affect pre-synaptic SV2A density, especially during adolescence when synapses undergo
intense maturation. Here, we explored potential changes of pre-synaptic SV2A density in target
brain areas associated with the cocaine-induced boost of dopaminergic neurotransmission, spe-
cifically testing if the effects would last after the return of dopamine levels to baseline.Methods:
We administered cocaine (20 mg/kg i.p.) or saline to rats in early adolescence, tested their
activity levels and removed the brains 1 hour and 7 days after injection. To evaluate immediate
and lasting effects, we did autoradiography with [3H]UCB-J, a specific tracer for SV2A, in
medial prefrontal cortex, striatum, nucleus accumbens, amygdala, and dorsal and ventral areas
of hippocampus. We also measured the striatal binding of [3H]GBR-12935 to test cocaine’s
occupancy of the dopamine transporter at both times of study. Results:We found a significant
increase of [3H]UCB-J binding in the dorsal and ventral sections of hippocampus 7 days after
the cocaine administration compared to saline-injected rats, but no differences 1 hour after
the injection. The [3H]GBR-12935 binding remained unchanged at both times. Conclusion:
Cocaine provoked lasting changes of hippocampal synaptic SV2A density after a single
exposure during adolescence

Significant outcomes
• Single dose of cocaine fails to alter synaptic SV2A density 1 hour after injection
• Single dose of cocaine raises synaptic SV2A density in dorsal and ventral hippocam-
pus 7 days after injection

• Cocaine at a single exposure suffices to provoke lasting synaptic alterations in
adolescent rats

Limitations
• We used only adolescent male rats, so we cannot extend the findings to adult or
female rats

• We applied a high dose of cocaine (20 mg/kg), leaving it to be determined if lower
concentrations would lead to similar findings

• We did not apply additional methods for the assessment of synaptic density in
addition to autoradiography

• We included a small sample size (n = 6-8 rats/group)

Introduction

Cocaine is a drug of abuse that can lead to repeated use and addiction in humans (Ward et al.,
1997) and animals, including rats (Deroche-Gamonet et al., 2004). As reviewed by Brown and
Pollard (Brown and Pollard, 2021), cocaine is well-known for its sympathomimetic psychosti-
mulant action, mediating both behavioural and physical arousal, even at low doses. However,
cocaine intoxication has complications that affect almost all organs, in particular the nervous,
cardiovascular and respiratory systems (Brown and Pollard, 2021).
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The psychostimulant effects of cocaine mainly relate to inter-
actions with monoaminergic pathways, including dopaminergic
synapses. Cocaine inhibits dopamine re-uptake by occupying the
pre-synaptic dopamine transporters (DAT), thus raising the
extracellular neurotransmitter presence above the physiological
level and increasing dopaminergic neurotransmission (reviewed,
e.g., by Kalivas (2007), Zhu and Reith (2008), Docherty and
Alsufyani (2021)). Dopamine receptor occupancy is an important
factor in cocaine addiction that tends to be proportional to the
degree of cocaine craving (Wong et al., 2006). The cocaine effects
on extracellular dopamine are transient, however, as demonstrated
by microdialysis (Hurd and Ungerstedt, 1989), intravenous
administration of low dose of cocaine produces immediate
and dramatic increases of striatal dopamine levels, peaking at
10 minutes after cocaine administration and returning to baseline
in 30 minutes.

Cocaine intake also significantly affects neuronal activity by
producing important structural and molecular changes in multiple
brain areas. Cocaine-induced neuroplasticity has been detected in
structures related to dopaminergic neurotransmission and reward
mechanisms (reviewed, e.g. in Uys and Reissner (2011), Nyberg
(2014)). These adaptations can be variable. For example, changes
of N-methyl-D-aspartate receptor signalling induced by cocaine in
different structures are heterogeneous and sometimes contradic-
tory, mainly due to the complexity of the signalling pathways
and the differences of experimental paradigms associated with
cocaine administration, as summarised by Ortinski (Ortinski,
2014). A single dose of cocaine induces long-term potentiation
in midbrain dopamine neurons (Ungless et al., 2001), and other
studies revealed neuroplastic effects of acute cocaine exposure,
indicatingmolecular, structural and functional changes of themes-
olimbic system core (Kozell and Meshul, 2001, Grignaschi et al.,
2004, Sarti et al., 2007, Friend et al., 2021).

Adolescence is a sensitive period of life in which synapses
undergo major maturation and fine-tuning events, reshaping brain
connectivity and morphology with distinct regional variations,
particularly in the cortex (Khundrakpam et al., 2016, Juraska
and Drzewiecki, 2020). It is plausible that in this period, events that
interfere with synaptic function (including drug exposure) signifi-
cantly influence synaptic maturation. In animals, acute and
repeated exposures to cocaine during adolescence cause changes
of neurotransmission and neuroplasticity, affect the expression
of trophic factors and synaptic elements, and induce immediate
or persisting risks to cognition, behaviour and brain development
(for review, see Caffino et al. (2021)).

The synaptic vesicle glycoprotein 2A (SV2A) commonly reveals
synaptic density variations in the brain. Synaptic vesicle glycopro-
teins 2 constitute a class of transmembrane proteins of all synaptic
vesicles (Buckley and Kelly, 1985), and the main isoform SV2A is
expressed ubiquitously in all grey matter brain structures, albeit
with regional variations (Bajjalieh et al., 1993, Varnäs et al.,
2020). SV2A commonly serves as a marker of synaptic density
in neuroimaging studies, although some questions remain of the
interpretation of the imaging outcomes (Rossi et al., 2022).
SV2A seems to have a number of different functions in neurons
(for an overview, see Rossi et al. (2022)) but SV2A indubitably
has crucial roles in the modulation of neurotransmission
(Crowder et al., 1999, Bradberry and Chapman, 2022) that make
it an interesting target of the study of cocaine addiction. A number
of specific tracers of SV2A exist, including UCB-J (Mercier et al.,
2014) that proved to be optimally applicable to in vivo neuroimag-
ing by means of positron emission tomography (PET) when

radiolabeled with 11C (Nabulsi et al., 2016). Postmortem imaging
techniques such as autoradiography with [3H]UCB-J also served
to assess changes of synaptic SV2A density in preclinical studies
(Binda et al., 2021, Raval et al., 2021, Thomsen et al., 2021).

Here, we administered a single high dose of cocaine to rats dur-
ing early adolescence, with the aim of proving if cocaine has effects
on pre-synaptic SV2A density in different brain areas after the
cocaine-induced boost of extracellular dopamine. We assessed
changes of SV2A density in dopaminergic pathways by evaluating
[3H]UCB-J autoradiograms 1 hour and 7 days after cocaine admin-
istration. We did [3H]GBR-12935 autoradiography at both times
to verify the occupancy of DAT, as a marker of dopaminergic
system functionality (as previously described, e.g. by Wong et al.
(1998)) after the extinction of acute effects of cocaine.

Materials and methods

Animals. We conducted all animal procedures according to the
FELASA guidelines for animal experimentation with permission
from the Danish Animal Experiment Inspectorate (license number
2016-15-0201-01105) and reported experiments according to the
ARRIVE guidelines. We used 28 male Sprague-Dawley rats
(Taconic Biosciences, Denmark) of average post-natal day
(PND) 35 at the time of experimentation with sacrifice on PND
35 or 42, roughly consistent with the peri-adolescence period
(Sengupta, 2013).We chose animals of these ages according to pre-
vious literature of cocaine exposure in adolescent rats (Giannotti
et al., 2015, Caffino et al., 2017, Caffino et al., 2018, Caffino
et al., 2020). Before the experiment, the rats underwent 7 days
of environmental habituation in a climate-controlled facility
(12 h light/ 12 h dark cycle, average temperature of 22°C, average
humidity of 55%) with ad libitum access to food and water.

After randomisation, we intraperitoneally injected a single dose
of cocaine (20 mg/kg, N= 16) or saline (N = 12) as control. After
the assessment of locomotion parameters to evaluate the success of
the treatment, we randomly assigned the rats to two groups, each
consisting of 14 animals, including cocaine-injected (N= 8) and
saline-injected (N= 6) rats. We euthanised animals of the two
experimental groups by decapitation at different time points, 1
hour or 7 days after single injection.We rapidly removed and froze
the whole brains in powdered dry ice and stored them at −80°C.

Open field test (OFT). We performed OFT in a flat and empty
arena with a surface of 200 × 200 cm2, divided into 4 equal quad-
rants with a surface of 100× 100 cm2 each and bordered by walls to
prevent interactions between conspecifics during the test. We
recorded the entire space of movement of the animals with a cam-
era installed above the arena. We tested the animals in the open
field for 30 minutes immediately after the cocaine or saline injec-
tion.We analysed the acquired videos by EthoVision XT® (Noldus)
software. An observer blind to the treatment groups analysed the
mean velocity (cm/s) and distance moved (cm).

Anatomy and cryostat sectioning. We sectioned fresh-frozen
whole brains with a cryostat (Cryostar NX70, Thermo Scientific)
and identified anatomical regions of interest according to the
Paxinos and Watson rat brain atlas (Paxinos and Watson,
2004), including the medial prefrontal cortex (Bregma (B)
3.72 mm, Interaural (I) 12.72 mm), striatum and nucleus
accumbens (B 1.80 mm, I 10.80 mm), amygdala (B −2.40 mm,
I 6.60 mm), dorsal and ventral hippocampus (B −4.80 mm,
I 4.20 mm). We cut the brains along the coronal plane, producing
sequential brain sections of 20 μm-thickness. We mounted brain
sections on poly-L-lysine coated microscope slides (Thermo
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Scientific). We mounted an average of six brain sections on each
slide and stored them at −80°C.

[3H]UCB-J labelling.We thawed the slides at room temperature
for 1 hour and then pre-washed them for 15 minutes in Tris-HCl
buffer (pH 7.4) containing 50 mM Trizma® base (Sigma) and
milliQ water. We divided the slides into two groups to assess total
binding (TB) and non-specific (NS) binding. For each animal, we
used one slide for TB and one slide for NS for each brain area.
We incubated the slides for 1 hour either in TB solution, contain-
ing 1 nM [3H]UCB-J (Novandi Chemistry AB; molar activity
78 Ci/mmol) in Tris-HCl buffer, or NS binding solution containing
1 nM [3H]UCB-J and 100 μM levetiracetam (Sigma-Aldrich) in
Tris-HCl buffer. We post-washed the slides in Tris-HCl buffer
and milliQ water and dried them at room temperature.

[3H]GBR-12935 labelling. We used slides of the striatum to
assess the availability of DAT as previously described (Stokholm
et al., 2021). For each animal, we used one slide for TB and one
slide for NS binding. We thawed the slides at room temperature
for 1 hour and then incubated them in a buffer solution containing
50 mM Trizma® base (Sigma), 300 mM NaCl, 0.2% bovine serum
albumin (Sigma), 1 μM cis-flupentixol (provided by H. Lundbeck
A/S) and milliQ water. We then incubated the slides either in
the TB solution containing radiolabeled 2 nM GBR-12935
(PerkinElmer; molar activity 40 Ci/mmol) in the buffer solution
or in the NS binding solution containing 2 nM GBR-12935 and
1 μM GBR-12909 (Sigma). We incubated slides overnight at 4°C.

Autoradiography acquisition and analysis. We performed
autoradiography acquisitions for 2 hours for [3H]UCB-J and
22 hours for [3H]GBR-12935 with the digital real-time auto-
radiography BeaQuant system (ai4r, France) (Donnard et al.
2009). An experimenter blind to the treatment groups analysed
the autoradiograms with Beamage software (version 3.1.2, ai4r,
France) using a pixel size of 100 μm. We manually defined regions
of interest, respecting the interindividual anatomical differences,
and we averaged values from symmetrical brain structures. We
subtracted NS binding values (cp/min/mm2) from TB values
(cp/min/mm2) to obtain specific binding values.

Statistical analysis. We statistically analysed data with
GraphPad Prism® 9.4.1. The data passed the Shapiro-Wilk test
for normality. We compared experimental groups (saline-treated
vs cocaine-treated; sacrifice after 1 hour vs sacrifice after 7 days)
with unpaired two-tailed t-tests. We considered p-values<0.05
as indicative of statistical significance, with graphical represen-
tation of significance by means of asterisks ((*p< 0.05,
**p< 0.01, ***p< 0.001). The corresponding author will make
complete data collections available upon reasonable request.

Results

Cocaine-treated rats had significantly increased locomotion. The
open field test results showed a significant increase in the locomo-
tion measures of cocaine-injected (N= 16) compared to saline-
injected (N= 12) rats. Cocaine-injected rats in particular showed
increased mean speed (Fig. 1(a)) (þ125.24%; p= 0.0003***) and
increased distance travelled (Fig. 1(b)) (þ123.37%; p= 0.0003***)
compared to control rats.

We listed the means, standard deviations, p-values and t-values
of [3H]UCB-J and [3H]GBR-12935 autoradiography analyses in
Table 1. [3H]UCB-J binding was unchanged 1 hour after cocaine
administration. Cocaine-injected rats showed no differences of
[3H]UCB-J binding compared to control rats in any brain areas
analysed 1 hour after the treatment, as shown in medial prefrontal

cortex (Fig. 2(a)), striatum (Fig. 2(b)), nucleus accumbens
(Fig. 2(c)), amygdala (Fig. 2(d)) and dorsal (Fig. 2(e)) and ventral
(Fig. 2(f)) hippocampus. In contrast, [3H]UCB-J binding had
increased 7 days after cocaine administration in dorsal
(þ 8.96%, p= 0.0140*; Fig. 3(e)) and ventral hippocampus
(þ 13.17%, p= 0.0177*; Fig. 3(f)), compared to control rats.
[3H]UCB-J binding remained unchanged in medial prefrontal cor-
tex (Fig. 3(a)), striatum (Fig. 3(b)), nucleus accumbens (Fig. 3(c))
and amygdala (Fig. 3(d)) 7 days after the cocaine injection, com-
pared to saline-injected control rats. The cocaine-injected rats
presented no significant changes of striatal [3H]GBR-12935 bind-
ing 1 hour (Fig. 4(a)) or 7 days (Fig. 4(b)) after the treatment,
compared to control rats.

Discussion

As described, we tested if a single dose of cocaine administered
during adolescence alters the density of the SV2A protein, evalu-
ating both short- (1 hour) and long-(7 days) lasting effects. As
cocaine raises dopaminergic neurotransmission (Kalivas, 2007,
Zhu and Reith, 2008, Docherty and Alsufyani, 2021), and SV2A
is involved in different aspects of the modulation of neurotrans-
mission (reviewed in Rossi et al. (2022)), we tested the hypothesis
that changed SV2A levels in brain areas targeted by dopaminergic
pathways eventually would relate to synaptic adaptations incurred
by the increased dopamine availability. Previous studies already
demonstrated that a single dose of cocaine, administered at the
same concentration used in this experimental work (20 mg/kg),
is sufficient to elicit molecular, structural (Giannotti et al., 2015,
Caffino et al., 2017, Caffino et al., 2018) or behavioural changes
(Caffino et al., 2020) in early adolescent rats.

We assessed the successful administration of cocaine by testing
the locomotion parameters by OFT. Psychostimulants, like
cocaine, induce a sharp increase in dopamine neurotransmission
with increased locomotor activity (reviewed, e.g. in Beninger
(1983)). We performed the OFT for 30 minutes immediately fol-
lowing the injection as befits the timespan of dopamine raised by
the effects of cocaine (Hurd and Ungerstedt, 1989). Cocaine-
treated rats moved with elevated mean velocity and distance

Fig. 1. Open field test results. (a) Velocity mean (cm/s) measured in saline-treated
(N= 12; mean = 5.46 cm/s; SD= 0.77 cm/s) and cocaine-treated (N = 16; mean = 12.30
cm/s; SD= 5.82 cm/s) animals; p< 0.001***. (b) Distance moved (cm) measured in
saline-treated (N= 12; mean = 9633.90 cm; SD = 1324.61 cm) and cocaine-treated
(N= 16; mean = 21,519.42 cm; SD= 10,259.72 cm) animals; p< 0.001***. The data
are presented as the mean ± SD; SD is graphically shown as vertical bars. Symbols
indicate different timepoints for sacrifice (triangles: 1 hour, circles: 7 days).
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compared to control rats. The cocaine-induced increase of locomo-
tor activity previously was reported in the literature (e.g. Yeh and
Haertzen (1991)), and early adolescence rats have been shown to
have the greatest rise of motor activity following cocaine adminis-
tration, compared to rats of other ages (Badanich et al., 2008).

We verified the activity of the dopaminergic system bymeans of
[3H]GBR-12935 autoradiography, showing that striatal [3H]GBR-
12935 binding was unchanged in cocaine-treated rats compared to
controls at both times of analysis. Cocaine persistency in the
dopaminergic system has been assessed by different studies; for
example, Hurd and Ungerstedt (1989) showed that the striatal
cocaine-induced rise of dopamine returns to baseline within
30 minutes from the administration. However, another study

(Javaid and Davis, 1993) demonstrated that cocaine levels remain
high 1 hour after intraperitoneal injection in different rat brain
areas, meaning that cocaine occupancy of DAT may be expected
at this time. The present [3H]GBR-12935 autoradiography results
suggest that at 1 hour, and 7 days after the treatment, cocaine no
longer occupies DAT in the striatum and that dopaminergic
transmission is normal at both times.

The [3H]UCB-J autoradiography results imply no significant
changes 1 hour after the treatment, but the SV2A density of
cocaine-injected rats had increased compared to control animals
7 days after the administration in dorsal and ventral hippocampus
(Table 1). It is noteworthy also to mention the trend towards an
increase in SV2A density in amygdala 7 days after the treatment

Table 1. [3H]UCB-J and [3H]GBR-12935 autoradiography data. For each analysed brain area, table shows the mean, the standard deviation (± SD), the p- and t-values
for the comparison between cocaine-treated rats vs. saline-treated rats at the two temporal points, 1 hour and 7 days after injection

[3H]UCB-J autoradiography

Area Time point Injection
Average [3H]UCB-J binding

(cp/min/mm2) Standard deviation p-value, t-value

Medial prefrontal cortex 1 hour Saline 20.57 1.71 p= 0.1282
t= 1.634

Cocaine 19.08 1.66

7 days Saline 18.60 1.59 p= 0.4236
t= 0.828

Cocaine 19.57 2.50

Striatum 1 hour Saline 12.92 1.48 p= 0.2740
t= 1.146

Cocaine 11.79 2.04

7 days Saline 11.44 1.29 p= 0.9179
t= 0.1053

Cocaine 11.33 2.27

Nucleus accumbens 1 hour Saline 14.99 2.45 p= 0.6368
t= 0.485

Cocaine 14.35 2.44

7 days Saline 13.56 3.05 p= 0.8520
t= 0.191

Cocaine 13.85 2.66

Amygdala 1 hour Saline 14.08 2.51 p= 0.2715
t= 1.153

Cocaine 12.39 2.87

7 days Saline 12.39 1.28 p= 0.0651
t= 2.030

Cocaine 14.31 2.02

Dorsal hippocampus 1 hour Saline 14.54 1.40 p= 0.5737
t= 0.578

Cocaine 14.14 1.14

7 days Saline 13.83 0.57 p= 0.0140 (*)
t= 2.873

Cocaine 15.07 0.93

Ventral hippocampus 1 hour Saline 14.18 2.23 p= 0.3497
t= 0.973

Cocaine 13.32 0.99

7 days Saline 13.62 1.02 p= 0.0177 (*)
t= 2.787

Cocaine 15.42 1.19

[3H]GBR-12935 autoradiography

Area Time point Injection
Average [3H]GBR-12935 binding

(cp/min/mm2) Standard deviation p-value, t-value

Striatum 1 hour Saline 0.62 0.09 p= 0.8557
t= 0.186

Cocaine 0.63 0.15

7 days Saline 0.78 0.13 p= 0.2943
t= 1.097

Cocaine 0.70 0.15
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(Table 1). These data suggest that a single administration of
cocaine can provoke changes of SV2A density that are evident
at least one week after the exposure, much beyond the acute effects

of the drug. Since SV2A does not identify a specific agent of neuro-
transmission (Buckley and Kelly, 1985), it is difficult to associate
the [3H]UCB-J autoradiography outcomes with specific types of

Fig. 2. Effects of a single dose of cocaine on SV2A den-
sity 1 hour after the treatment. Representative autora-
diograms of [3H]UCB-J total binding in saline-treated
and cocaine-treated rats 1 hour after the treatment in
(a) medial prefrontal cortex, (b) striatum, (c) nucleus
accumbens, (d) amygdala, (e) dorsal hippocampus
and (f) ventral hippocampus. The scale bar represents
the number of radioactive disintegrations. No changes
in [3H]UCB-J specific binding were detected.
Comparison of [3H]UCB-J specific binding in saline-
treated (N = 6) vs. cocaine-treated (N = 8) rats 1 hour
after the administration in (g) medial prefrontal cortex,
(h) striatum, (i) nucleus accumbens, (j) amygdala,
(k) dorsal hippocampus and (l) ventral hippocampus.
The data are presented as the mean ± standard
deviation (SD); SD is graphically shown as vertical bars.
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neurons and specific phenomena. However, cocaine is known to be
associated with molecular and functional changes in synapses; for
example, cocaine-facilitated neuroplasticity has been observed in

several brain structures, including amygdala (e.g. Goussakov
et al. (2006), Fu et al. (2007)) and hippocampus (e.g. Thompson
et al. (2002), Thompson et al. (2004), Thompson et al. (2005),

Fig. 3. Effects of a single dose of cocaine on SV2A
density 7 days after the treatment. Representative
autoradiograms of [3H]UCB-J total binding in saline-
treated and cocaine-treated rats 7 days after the
treatment in (a) medial prefrontal cortex, (b) stria-
tum, (c) nucleus accumbens, (d) amygdala, (e) dorsal
hippocampus and (f) ventral hippocampus. The scale
bar represents the number of radioactive disintegra-
tions. Changes in [3H]UCB-J specific binding were
detected in dorsal and ventral hippocampus.
Comparison of [3H]UCB-J specific binding in saline-
treated (N = 6; N= 5 for ventral hippocampus) vs.
cocaine-treated (N = 8) rats 7 days after the adminis-
tration in (g) medial prefrontal cortex, (h) striatum,
(i) nucleus accumbens, (j) amygdala, (k) dorsal
hippocampus (p < 0.05*) and (l) ventral hippocampus
(p< 0.05*). The data are presented as the mean ±
standard deviation (SD); SD is graphically shown as
vertical bars.
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del Olmo et al. (2006), Keralapurath et al. (2014), Keralapurath
et al. (2017)), with different protocols of drug exposure and using
different techniques. Some studies focused on the effects of cocaine
in the dorsal and ventral hippocampus (e.g. Keralapurath et al.
(2014), Keralapurath et al. (2017), Preston et al. (2019), Werner
et al. (2020), Qi et al. (2022)), with varying synaptic alterations
observed in these areas and across the different studies.
Therefore, we suggest the increased hippocampal SV2A density
to be linked with cocaine-induced changes in synapses which
may occur after a single drug exposure. However, to our
knowledge, specific studies of the contribution of SV2A to drug-
facilitated neuroplastic processes are lacking.

The involvement of the hippocampus in onset, development
and maintenance of addiction through drug-associated memory
formation has already been hypothesised and investigated
(reviewed by Kutlu and Gould (2016)). So, the presence of
cocaine-induced changes in hippocampal synapses after a single
dose may be linked with the formation of drug-associated memo-
ries and may relate to the onset of addiction in adolescence.
However, we did not investigate long-term behavioural effects in
the present study, so further studies are necessary to fully under-
stand the particular molecular events that are attributable to these
changes, and how SV2A may participate in cocaine-induced neu-
roadaptations. Comparisons with adult animals are also necessary
to clarify if these effects are related to adolescence or if they extend
to adulthood.

The lack of changes in [3H]UCB-J binding in the medial pre-
frontal cortex of cocaine-injected rats compared to controls is
worth a comment. The literature is equivocal about the effects
of cocaine in this region. For example, some studies
(e.g. Robinson and Kolb (1999), Muñoz-Cuevas et al. (2013))
reported increased dendritic spine density in rodent frontal cortex
after repeated cocaine exposure. Caffino et al. (2018) showed that a
single dose of cocaine with the same concentration of 20 mg/kg
used here provoked a decrease of dendritic spine density and an
impairment of post-synaptic elements of glutamatergic terminals
in the medial prefrontal cortex of adolescent rats aged 35 days
at the time of the injection, with effects detected 7 days after the
drug exposure. A PET study (Angarita et al., 2022) of SV2A density

in the medial prefrontal cortex of patients with cocaine use disor-
der revealed decreased [11C]UCB-J binding in frontal cortices, but
in this work, the subjects had a history of repeated cocaine expo-
sures, different from the present experimental setup in which we
analysed the effects of a single dose in rat. Overall, further studies
are necessary to clarify if and how acute cocaine effectively can
modify synapses of the medial prefrontal cortex with short- or
long-term effects.

In conclusion, the present experimental work investigated both
the immediate and lasting effects of a single high dose of cocaine on
a measure of pre-synaptic SV2A density in male adolescent rats by
using [3H]UCB-J autoradiography. The results revealed an
increased tracer binding in the dorsal and ventral hippocampus
7 days after the injection of cocaine compared to saline-injected
rats. We emphasised the possible importance of the detected syn-
aptic changes in hippocampus as possible early indicators of
cocaine addiction development in adolescents, but further studies
are needed to understand the ultimate causes of such changes.
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Fig. 4. Effects of a single dose of cocaine on DAT occu-
pancy 1 hour and 7 days after the treatment.
Representative autoradiograms of [3H]GBR-12935 total
binding in (a) striatum of saline-treated vs. cocaine-
treated rats 1 hour after the treatment and (b) striatum
of saline-treated vs. cocaine-treated rats 7 days after the
treatment. The scale bar represents the number of radio-
active disintegrations. No changes in [3H]GBR-12935 spe-
cific binding were detected. (c) Comparison of [3H]GBR-
12935 specific binding in the striatum of saline- (N= 6)
and cocaine-injected (N = 8) animals 1 hour after the
administration. (d) Comparison of [3H]GBR-12935 bind-
ing in the striatum of saline- (N= 6) and cocaine-injected
(N = 8) animals 7 days after the administration. The data
are presented as the mean ± SD; SD is graphically shown
as vertical bars.
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