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Abstract One of the most fundamental problems in the study of Lagrangian submanifolds from a
Riemannian geometric point of view is the classification of Lagrangian immersions of real-space forms
into complex-space forms. In this article, we solve this problem for the most basic case; namely, we
classify Lagrangian surfaces of constant curvature in the complex Euclidean plane C2. Our main result
states that there exist 19 families of Lagrangian surfaces of constant curvature in C2. Twelve of the
19 families are obtained via Legendre curves. Conversely, Lagrangian surfaces of constant curvature in
C2 can be obtained locally from the 19 families.
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1. Introduction

A submanifold M of a Kaehler manifold M̃ is called Lagrangian if the almost complex
structure J of M̃ interchanges each tangent space of M with its corresponding normal
space. Lagrangian submanifolds appear naturally in the context of classical mechanics
and mathematical physics. For instance, the systems of partial differential equations of
Hamilton–Jacobi type led to the study of Lagrangian submanifolds and foliations in
the cotangent bundle. Moreover, Lagrangian submanifolds are part of a growing list of
mathematically rich special geometries that occur naturally in string theory.

For a Lagrangian submanifold with mean curvature vector H and shape operator A,
the dual 1-form of JH is the Maslov form. A Lagrangian submanifold is called Maslovian
if it has no minimal points and if its Maslov vector field JH is an eigenvector of AH .

One of the most fundamental problems in the study of Lagrangian submanifolds from
a Riemannian geometric point of view is to classify Lagrangian immersions of real-space
forms into complex-space forms. Such a submanifold is either totally geodesic or flat
if the immersion is minimal [17, 21]. For the non-minimal case, Lagrangian submani-
folds of constant curvature c in complex-space forms of holomorphic sectional curvature
4c were determined in [19] by using the notion of twisted products. Also, Maslovian
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Lagrangian immersions of real-space forms into complex Euclidean spaces were classi-
fied in [12,16]. Moreover, Lagrangian surfaces in the complex Euclidean plane C

2 have
been studied recently by many geometers (see, for example, [1–6,9,12,15,22,23]). In
particular, several important families of Lagrangian surfaces of constant curvature in C

2

were constructed in [3,9,15]. (For the recent survey on Lagrangian submanifolds from a
Riemannian point of view, see [10].)

In this article we classify Lagrangian surfaces of constant curvature in the complex
Euclidean plane without the Maslovian condition. Our main result states that there are
19 families of such Lagrangian surfaces. Twelve of the 19 families are constructed via
Legendre curves. Conversely, Lagrangian surfaces of constant curvature in C

2 are locally
obtained from these 19 families. As an immediate byproduct, many new examples of
Lagrangian surfaces of constant curvature in C

2 are discovered.

2. Preliminaries

Let M be a Lagrangian submanifold in the complex Euclidean n-space C
n. We denote

the Levi-Civita connections of M and C
n by ∇ and ∇̃, respectively. The formulae of

Gauss and Weingarten are given, respectively, by (see [7])

∇̃XY = ∇XY + h(X, Y ),

∇̃Xξ = −AξX + DXξ,

}
(2.1)

for tangent vector fields X and Y and normal vector field ξ, where D is the connection
on the normal bundle. The second fundamental form h is related to the shape operator
Aξ by 〈h(X, Y ), ξ〉 = 〈AξX, Y 〉. The mean curvature vector H of M is defined by H =
(1/n) Tr h, where n = dimM . A point p ∈ M is called minimal if H vanishes at p.

For vector fields X, Y , Z and W tangent to the Lagrangian submanifold, we have
(see [17])

DXJY = J∇XY,

〈h(X, Y ), JZ〉 = 〈h(Y, Z), JX〉 = 〈h(Z, X), JY 〉.

}
(2.2)

The equations of Gauss and Codazzi are given, respectively, by

〈R(X, Y )Z, W 〉 = 〈Ah(Y,Z)X, W 〉 − 〈Ah(X,Z)Y, W 〉, (2.3)

(∇h)(X, Y, Z) = (∇h)(Y, X, Z), (2.4)

where R is the curvature tensor and ∇h is defined by

(∇h)(X, Y, Z) = DXh(Y, Z) − h(∇XY, Z) − h(Y,∇XZ). (2.5)

We recall the following theorems for later use (see [8,18]).

Theorem 2.1. Let M be a simply connected Riemannian n-manifold and let σ be a
TM -valued symmetric bilinear form on M satisfying the following conditions:

(i) 〈σ(X, Y ), Z〉 is totally symmetric,
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(ii) (∇σ)(X, Y, Z) = ∇Xσ(Y, Z) − σ(∇XY, Z) − σ(Y,∇XZ) is totally symmetric; and

(iii) R(X, Y )Z = σ(σ(Y, Z), X) − σ(σ(X, Z), Y ).

There then exists a Lagrangian isometric immersion L : M → C
n whose second funda-

mental form h is given by h = Jσ.

Theorem 2.2. Let L1, L2 : M → C
n be Lagrangian isometric immersions of a Rie-

mannian n-manifold with second fundamental forms h1 and h2, respectively. If

〈h1(X, Y ), JL1�Z〉 = 〈h2(X, Y ), JL2�Z〉 (2.6)

for all vector fields X, Y , Z tangent to M , then there exists a bi-holomorphic isometry
φ of C

n such that L1 = L2 ◦ φ.

3. Legendre curves

A curve z = z(t) is called regular if its speed v(t) := |z′(t)| is nowhere zero. A regular
curve z : I → S3(r) ⊂ C

2 in the hypersphere S3(r) of radius r centred at the origin of C
2

is called Legendre if 〈z′(t), iz(t)〉 = 0 identically. It is known that a unit-speed Legendre
curve z(s) in S3(r) ⊂ C

2 satisfies z′′(s) = iκ(s)z′(s)−z(s)/r2, where κ(s) is the curvature
function of z in S3(1) (see [8]).

A unit-speed curve z(s) in S3(r) satisfies z′′(s) = −z(s)/r2 if and only if it is a
geodesic. A geodesic in S3(r) can be either Legendre or non-Legendre. For example,
z(s) = (cos s, sin s) is Legendre and z(s) = (eis, 0) is non-Legendre in S3(1) ⊂ C

2.
For a regular curve in S3(r) with speed v, we have the following.

Lemma 3.1. For a positive number r, the following results hold.

(1) If z : I → S3(r) ⊂ C
2 is a Legendre curve, it satisfies

z′′(t) = iλ(t)z′(t) +
v′

v
z′(t) − v2

r2 z(t), (3.1)

where λ = κv with κ being the curvature of z in S3(1).

(2) Conversely, if a regular curve z = z(t) in S3(r) ⊂ C
2 satisfying (3.1) for some

nowhere-zero real-valued function λ, then z = z(t) is a Legendre curve.

Proof. (1) If z : I → S3(r) ⊂ C
2 is a Legendre curve, we have 〈z, iz′〉 = 0. Since |z| = r

is constant, we also have 〈z, z′〉 = 0. Thus, z, iz, z′ and iz′ are mutually orthogonal. By
differentiating 〈z′, iz〉 = 0, we find 〈z′′, iz〉 = 0. Hence we have z′′ = iλ(t)z′ +µz′ +ϕz for
some real-valued functions λ, µ, ϕ. From the identity 〈z′′, z〉 + v2 = 〈z′, z〉′ = 0, we find
ϕ = −v2/r2. Also, by differentiating 〈z′, z′〉 = v2, we have 〈z′′, z′〉 = vv′, which implies
µ = v′/v. Further, after reparametrization of the Legendre curve by its arc length, we
find λ = κv. Consequently, we have (3.1).
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(2) Conversely, let z(t) be a regular curve in S3(r) satisfying (3.1) for some real-valued
nowhere-zero function λ. It follows from 〈z, z〉 = r2 that 〈z′′, z〉 = −v2. Also, from
〈z′, z′〉 = v2, we have 〈z′′, z′〉 = vv′. Combining these with (3.1) yields 〈iz′, z〉 = 0.
Hence, z is a Legendre curve in S3(r). �

Let
S2( 1

2 ) = {(x1, x2, x3) ∈ R
3 : x2

1 + x2
2 + x2

3 = 1
4}.

Then the Hopf fibration π : S3(1) → CP 1(4) ≡ S2( 1
2 ) is

π(z, w) = (zw̄; 1
2 (|z|2 − |w|2)) (3.2)

for (z, w) ∈ S3(1) ⊂ C
2.

For each Legendre curve γ = γ(t) in S3(1) ⊂ C
2, the projection π ◦ γ is a curve in

S2( 1
2 ). Conversely, each curve ξ in S2( 1

2 ) gives rise to a horizontal lift ξ̃ in S3(1) via π,
which is unique up to a factor eiθ, θ ∈ R. Each horizontal lift of ξ is a Legendre curve in
S3(1). Since the Hopf fibration π is a Riemannian submersion, each Legendre curve γ in
S3 is projected to a curve ξ in S2( 1

2 ) with the same curvature function.

4. Some existence results

We need the following results in the next section.

Proposition 4.1. Let µ = µ(u, v) and Φ = Φ(u, v) be real-valued functions defined
on a simply connected open subset U of R

2 which satisfy

∂Φ

∂u
=

∂µ2

∂v
	= 0,

(µvΦ−1
√

K − µ2)v +
(

2(K − µ2)µv + Φµu

(K − µ2)3/2

)
u

=
−µΦK√
K − µ2

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

where K is a real number such that K � µ2. Then PK
µΦ := (U, g0) equipped with the

metric

g0 = µ2 du2 +
Φ2

K − µ2 dv2

has constant curvature K. Moreover, up to rigid motions, there exists a unique Lagrang-
ian isometric immersion HK

µΦ : PK
µΦ → C

2, whose second fundamental form satisfies

h

(
∂

∂u
,

∂

∂u

)
= (K + µ2)J

∂

∂u
,

h

(
∂

∂u
,

∂

∂v

)
= µ2J

∂

∂v
,

h

(
∂

∂v
,

∂

∂v

)
=

(
Φ

K − µ2

)
J

∂

∂u
+ 2ΦJ

∂

∂v
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)
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Proof. A direct computation shows that the Levi-Civita connection of PK
µΦ satisfies

∇∂/∂u
∂

∂u
= (lnµ)u

∂

∂u
− (K − µ2)µµv

Φ2

∂

∂v
,

∇∂/∂u
∂

∂v
= (lnµ)v

∂

∂u
+

(
µµu

K − µ2 + (lnΦ)u

)
∂

∂v
,

∇∂/∂v
∂

∂v
= −Φ2µµu + (K − µ2)ΦΦu

µ2(K − µ2)2
∂

∂u
+

(
µµv

K − µ2 + (lnΦ)v

)
∂

∂v
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

and the Gauss curvature of PK
µΦ is the positive constant K. If we define a symmetric

bilinear form σ on PK
µΦ by

σ

(
∂

∂u
,

∂

∂u

)
= (K + µ2)

∂

∂u
,

σ

(
∂

∂u
,

∂

∂v

)
= µ2 ∂

∂v
,

σ

(
∂

∂v
,

∂

∂v

)
=

(
Φ

K − µ2

)
∂

∂u
+ 2Φ

∂

∂v
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

then it follows from (4.1), (4.3), (4.4) and the definition of g0 that 〈σ(X, Y ), Z〉 and
(∇σ)(X, Y, Z) are totally symmetric in X, Y , Z. A straightforward computation shows
that the curvature tensor R and σ satisfy condition (iii) of Theorem 2.1. Thus, The-
orems 2.1 and 2.2 imply that, up to rigid motions, there exists a unique Lagrangian
immersion HK

µΦ : PK
µΦ → C

2 whose second fundamental form is given by (4.2). �

Proposition 4.2. Let µ = µ(u, v) and ϕ = ϕ(u, v) be real-valued functions defined
on a simply connected open subset U of R

2 which satisfy

µv =
Kϕu + ϕµµu − µ2ϕu

µ(4K − 4µ2 − ϕ2)3/2 	= 0,

(
Gu

µ

)
u

+
(

µv

G

)
v

= −KµG, (4.5)

where G = 1/
√

4K − 4µ2 − ϕ2 and K is a real number greater than 4µ2 + ϕ2. Then
MK

µϕ := (U, g1) with metric g1 = µ2 du2 + G2 dv2 has constant curvature K. Moreover, up
to rigid motions, there exists a unique Lagrangian isometric immersion FK

µϕ : MK
µϕ → C

2

whose second fundamental form satisfies

h

(
∂

∂u
,

∂

∂u

)
= (K + µ2)J

∂

∂u
,

h

(
∂

∂u
,

∂

∂v

)
= µ2J

∂

∂v
,

h

(
∂

∂v
,

∂

∂v

)
=

(
1

4K − 4µ2 − ϕ2

)
J

∂

∂u
+

(
1√

4K − 4µ2 − ϕ2

)
J

∂

∂v
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)
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Proof. A direct computation shows that the Levi-Civita connection of MK
µϕ satisfies

∇∂/∂u
∂

∂u
= (lnµ)u

∂

∂u
− (4K − 4µ2 − ϕ2)µµv

∂

∂v
,

∇∂/∂u
∂

∂v
= (lnµ)v

∂

∂u
+

4µµu + ϕϕu

4K − 4µ2 − ϕ2

∂

∂v
,

∇∂/∂v
∂

∂v
= − 4µµu + ϕϕu

µ2(4K − 4µ2 − ϕ2)2
∂

∂u
+

4µµv + ϕϕv

4K − 4µ2 − ϕ2

∂

∂v
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

and the Gauss curvature of MK
µϕ is the constant K.

Next, let us define a symmetric bilinear form σ on MK
µϕ by

σ

(
∂

∂u
,

∂

∂u

)
= (K + µ2)

∂

∂u
,

σ

(
∂

∂u
,

∂

∂v

)
= µ2 ∂

∂v
,

σ

(
∂

∂v
,

∂

∂v

)
=

(
1

4K − 4µ2 − ϕ2

)
∂

∂u
+

(
1√

4K − 4µ2 − ϕ2

)
∂

∂v
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

It follows from (4.5), (4.7) and (4.8) that 〈σ(X, Y ), Z〉 and (∇σ)(X, Y, Z) are totally
symmetric. A direct computation shows that the curvature tensor R and σ satisfy con-
dition (iii) of Theorem 2.1. Thus, up to rigid motions, there is a unique Lagrangian
immersion FK

µϕ : MK
µϕ → C

2 whose second fundamental form is given by (4.6). �

Proposition 4.3. Let µ = µ(u, v) and ϕ = ϕ(u, v) be real-valued functions defined
on a simply connected open subset U of R

2 which satisfy

µv =
µ2ϕu − Kϕu − ϕµµu

µ(4µ2 + ϕ2 − 4K)3/2 	= 0,

(
Gu

µ

)
u

+
(

µv

G

)
v

= −KµG, (4.9)

where G = 1/
√

4µ2 + ϕ2 − K and K is a real number less than 4µ2 + ϕ2. Then
NK

µϕ := (U, g2) with metric g2 = µ2 du2 + G2 dv2 has constant curvature K. Moreover, up
to rigid motions, there exists a unique Lagrangian isometric immersion LK

µϕ : NK
µϕ → C

2

whose second fundamental form satisfies

h

(
∂

∂u
,

∂

∂u

)
= (K + µ2)J

∂

∂u
,

h

(
∂

∂u
,

∂

∂v

)
= µ2J

∂

∂v
,

h

(
∂

∂v
,

∂

∂v

)
=

(
1

4µ2 + ϕ2 − 4K

)
J

∂

∂u
+

(
1√

4µ2 + ϕ2 − 4K

)
J

∂

∂v
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

Proof. This can be proved in the same way as Proposition 4.2. �
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5. Main theorem

Theorem 5.1. Up to rigid motions of C
2, locally (in a neighbourhood of each point

belonging to an open dense subset), every Lagrangian surface of constant curvature in
C

2 is given by of one of the following 19 families.

(1) A totally geodesic Lagrangian plane.

(2) A flat Lagrangian cylinder over a curve.

(3) A flat Lagrangian surface L(s, t) = (γ1(s), γ2(t)) which is the direct product of two
regular curves γ1, γ2 in the complex line C.

(4) A flat Lagrangian cone L(s, t) = sz(t) over a unit-speed Legendre curve z in S3(1) ⊂
C

2.

(5) A flat Lagrangian surface defined by L(s, t) = eicsz(t), where c is a positive number
and z = z(t) is a unit-speed Legendre curve in S3(1/c) ⊂ C

2.

(6) A flat Lagrangian surface defined by L(s, t) = s1+ibz(t), where b is a positive num-
ber and z = z(t) is a Legendre curve of constant speed 1/b in S3(1/

√
1 + b2) ⊂ C

2.

(7) A flat Lagrangian surface defined by

L(s, t) = sz(t) +
∫ t

0
θ(t)z′(t) dt,

where z : I → S3(1) ⊂ C
2 is a unit-speed Legendre curve in S3(1) defined on an

open interval I � 0 and θ(t) is a non-constant real-valued function on I.

(8) A flat Lagrangian surface defined by

L(s, t) =
√

2e(i−2a)s

c
√

1 + a2
(cos(

√
1 + 4a2t), sin(

√
1 + 4a2t)),

where a, c are real numbers with c 	= 0.

(9) A flat Lagrangian surface defined by

L(u, v) =
∫ u

0
ρ(u, v)z(u − v)eiu du

− eiu
∫ v

0

ρvz′(u − v)
f2(u − v)

dv +
∫ v

0

∫ u

0
eiu(ρ(u, v)z(u − v))v du dv,

where f is a nowhere-zero real-valued function defined on an open interval I � 0,
ρ is a solution of the wave equation

ρuv − f ′(u − v)
f(u − v)

ρv − f2(u − v)ρ = 0,

with ρv 	= 0, and z = z(t) : I → S3(1) ⊂ C
2 is a Legendre curve with f(t) as its

speed and −1/f(t) as its curvature function.
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(10) A Lagrangian surface of positive curvature b2 defined by L(s, t) = (1 + e2ibs)z(t),
where c is a positive number and z(t) is a Legendre curve with constant speed 1

2
in S3(1/2b) ⊂ C

2.

(11) A Lagrangian surface of positive curvature b2 defined by

L(s, t) = e2ibsz(t) +
∫ t

0
z′(t)e−2iθ(t) dt,

where b is a positive number, θ(t) is a non-constant real-valued function defined on
an open interval I � 0 and z : I → S3(1/2b) ⊂ C

2 is a Legendre curve with speed
1
2 .

(12) A Lagrangian surface of positive curvature b2 defined by

L =
(
√

b2 cos2(bs) − c2 + ib sin(bs)) cos(bs)
exp{ib−1 tan−1(sin(bs)/

√
b2 cos2(bs) − c2)}

z(t),

where b and c are positive numbers with b > c and z(t) is a Legendre curve with
speed 1/

√
b2 − c2 in S3(1/(b2 − c2)).

(13) A Lagrangian surface of positive curvature b2 defined by

L =
(
√

b2 cos2(bs) + c2 + ib sin(bs)) cos(bs)
exp{−ib−1c tanh−1(c sin(bs)/

√
b2 cos2(bs) + c2)}

z(t),

where b and c are positive numbers and z(t) is a Legendre curve with speed
1/

√
b2 + c2 in S3(1/(b2 + c2)).

(14) A Lagrangian surface of negative curvature −b2 defined by

L(s, t) = z(t)(b + i
√

c2e−2bs − b2) exp{2bs − ib−1
√

c2e−2bs − b2},

where b and c are positive and z(t) is a Legendre curve with speed eθ(t)/c in
S3(1/c2).

(15) A Lagrangian surface of negative curvature −b2 defined by

L =
(
√

c2 − b2 cosh2(bs) − ib sinh(bs)) cosh(bs)
exp{−ib−1c tan−1(c sinh(bs)/

√
c2 − b2 cosh2(bs))}

z(t),

where z(t) is a Legendre curve with speed 1/
√

c2 − b2 in S3(1/
√

c2 − b2) with c >

b > 0.

(16) A Lagrangian surface of negative curvature −b2 defined by

L(s, t) =
(
√

c2 − b2 sinh2(bs) − ib cosh(bs)) sinh(bs)
{ib−1c tanh−1(c cosh(bs)/

√
c2 − b2 sinh2(bs))}

z(t),

where z(t) is a Legendre curve with constant speed
√

b2 + c2 in S3(1/
√

b2 + c2).
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(17) A Lagrangian surface PK
µΦ given in Proposition 4.1.

(18) A Lagrangian surface MK
µϕ given in Proposition 4.2.

(19) A Lagrangian surface NK
µϕ given in Proposition 4.3.

Proof. Let M be a Lagrangian surface of constant curvature K in C
2. Denote the

tangent bundle of M by TM . If M is minimal in C
2, then it is totally geodesic (see [17]).

So M is an open portion of a Lagrangian plane in C
2. This gives (1).

Next, let us assume that M is non-minimal. Then U = {p ∈ M : H(p) 	= 0} is a
non-empty open subset. In the rest of the proof, we shall work only on U . For each
point p ∈ U , we define a function γp by γp : T 1

p U → R : v �→ γp(v) = 〈h(v, v), Jv〉, where
T 1

p U = {v ∈ TpU : 〈v, v〉 = 1}. Since T 1
p U is a unit circle which is compact, there exists a

vector v ∈ T 1
p U such that γp attains an absolute minimum at v. Since p is a non-totally

geodesic point, (2.2) implies that γp 	= 0. So, by applying linearity, we have γp(v) < 0.
Because γp attains an absolute minimum at v, it follows from (2.2) that 〈h(v, v), Jw〉 = 0
for all w orthogonal to v. Thus, by using (2.2), we know that v is an eigenvector of the
shape operator AJv. Hence, there exists an orthonormal basis {e1, e2} of TpM with e1 = v

which satisfies

h(e1, e1) = λJe1, h(e1, e2) = µJe2, h(e2, e2) = µJe1 + ϕJe2 (5.1)

for some functions λ, µ, ϕ with (λ + µ)2 + ϕ2 > 0 on U . From (5.1) and the equation of
Codazzi we find

e1µ = ϕω2
1(e1) + (λ − 2µ)ω2

1(e2),

e2λ = (λ − 2µ)ω2
1(e1),

e2µ − e1ϕ = 3µω2
1(e1) + ϕω2

1(e2),

⎫⎪⎬
⎪⎭ (5.2)

where ∇Xe1 = ω2
1(X)e2. Also, from (5.1) and the equation of Gauss we have

λµ − µ2 = K = const. (5.3)

Case A. ϕ = 0. We divide this into several cases.

Case A.1. (λ − µ)µ = 0. In this case, the Lagrangian surface is a flat Lagrangian
H-umbilical surface. Thus we obtain (2) and (7) by the main theorem of [9].

Case A.2. λ = 2µ 	= 0. We have (10) and (11) by applying Theorem 1 of [12].

Case A.3. µ 	= 0 and λ 	= µ, 2µ. We have K 	= 0. Since ϕ = 0, (5.2) reduces to

e1µ = (λ − 2µ)ω2
1(e2), e2µ = 3µω2

1(e1), e2λ = (λ − 2µ)ω2
1(e1). (5.4)

Differentiating (5.3) with respect to e2 and applying (5.4) yield ω1
2(e1) = 0. Hence

there exists a local coordinate system {s, u} on M such that

g = ds2 + G2(s, u) du2 (5.5)
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for some function G with ∂/∂s = e1, ∂/∂u = Ge2. It follows from (5.4) and ω2
1(e1) = 0

that e2λ = e2µ = 0. Hence we have λ = λ(s) and µ = µ(s). Using (5.5), we find

∇∂/∂u
∂

∂s
= (lnG)s

∂

∂u
, ω2

1(e2) =
Gs

G
. (5.6)

Thus, by (5.4)–(5.6), we obtain (lnG)s = µ′/(λ − 2µ) = µµ′/(K − µ2), which implies
that G = F (u)/

√
|K − µ2| for some function F . Thus, (5.5) becomes

g = ds2 +
F 2(u)

|K − µ2(s)| du2. (5.7)

If t denotes an anti-derivative of F (u), then we obtain from (5.7) that

g = ds2 +
dt2

|K − µ2(s)| , G2(s) =
1

|K − µ2(s)| . (5.8)

Case A.3.i. K = b2 > 0. Since G satisfies Gss + KG = 0, we have G = c1 cos(bs) +
c2 sin(bs) for some constants c1, c2, not both zero. Thus we obtain G = r cos(bs + c) for
some constants r 	= 0 and c. So, after applying a suitable translation in s and a suitable
dilation in t, we obtain G = cos(bs). Therefore, we obtain g = ds2 + cos2(bs) dt2 and

∇∂/∂s
∂

∂s
= 0,

∇∂/∂s
∂

∂t
= −b tan(bs)

∂

∂t
,

∇∂/∂t
∂

∂t
= b sin(bs) cos(bs)

∂

∂s
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.9)

Case A.3.i.a. K = b2 > µ2 and b > 0. In this case, we have b2 = µ2 + sec2(bs) � 1.
Without loss of generality, we may assume that

λ =
2b2 − sec2(bs)√

b2 − sec2(bs)

and µ =
√

b2 − sec2(bs). Thus, by applying (5.1), (5.9) and Gauss’s formula, we find

Lss = i
2b2 − sec2(bs)√

b2 − sec2(bs)
Ls,

Lst = (i
√

b2 − sec2(bs) − b tan(bs))Lt,

Ltt = (i
√

b2 cos2(bs) − 1 + b sin(bs)) cos(bs)Ls.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.10)

After solving the first two equations of this system, we know that L is congruent to

L =
(
√

b2 cos2(bs) − 1 + ib sin(bs)) cos(bs)
exp{ib−1 tan−1(sin(bs)/

√
b2 cos2 bs − 1)}

z(t) (5.11)

for some C
2-valued function F (t). Substituting this into the last equation of (5.10) yields

z′′(t) + (b2 − 1)z(t) = 0. Also, from (5.11), we find |z(t)| = 1/(b2 − 1), 〈iz, z′〉 = 0 and
|z′(t)|2 = 1/(b2 − 1). Thus z(t) is a Legendre great circle in S3(1/(b2 − 1)) with speed
1/

√
b2 − 1. Hence we obtain (12) with c = 1 and z as a Legendre great circle.
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Case A.3.i.b. K = b2 < µ2 and b > 0. In this case, we have µ2 − b2 = sec2(bs). Hence
we may assume that λ = (2b2 + sec2(bs))/

√
b2 + sec2(bs) and µ =

√
b2 + sec2(bs). Thus

we obtain from (5.1), (5.9) and Gauss’s formula that

Lss = i
2b2 + sec2(bs)√

b2 + sec2(bs)
Ls,

Lst = (i
√

b2 + sec2(bs) − b tan(bs))Lt,

Ltt = (i
√

b2 cos2(bs) + 1 + b sin(bs)) cos(bs)Ls.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.12)

After solving this system in the same way as in Case A.3.i.a, we obtain (13) with c = 1
and z as a Legendre great circle.

Case A.3.ii. K = −b2 < 0 and b > 0. Since G satisfies Gss + KG = 0, we obtain
G = c1 cosh(bs) + c2 sinh(bs) for some constants c1, c2, not both zero. Thus, by applying
a suitable translation in s and a suitable dilation in t, we obtain

g = ds2 + cosh2(bs) dt2, g = ds2 + sinh2(bs) dt2 or g = ds2 + e2bt dt2. (5.13)

Case A.3.ii.a. g = ds2 + cosh2(bs) dt2. From (5.8) we find sech2 bs = b2 + µ2. Thus
we have 1 � sech2 bs � b2 and µ = ±

√
sech2bs − b2. Without loss of generality, we may

assume that

λ =
sech2(bs) − 2b2√

sech2(bs) − b2
and µ =

√
sech2(bs) − b2.

Thus, by applying (5.1) and Gauss’s formula, we obtain

Lss = i
sech2(bs) − 2b2√

sech2(bs) − b2
Ls,

Lst = (i
√

sech2(bs) − b2 + b tanh(bs))Lt,

Ltt = (i
√

1 − b2 cosh2(bs) − b sinh(bs)) cosh(bs)Ls.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.14)

Solving this system gives (15) with c = 1 and z being a Legendre great circle.

Case A.3.ii.b. g = ds2 + sinh2(bs) dt2. From (5.8) we find cosech2 bs = b2 + µ2. Thus
we obtain

µ = ±
√

cosech2 bs − b2.

Without loss of generality, we may assume that

λ =
cosech2(bs) − 2b2√

cosech2(bs) − b2
and µ =

√
cosech2(bs) − b2.

Thus we obtain

Lss = i
cosech2(bs) − 2b2√

cosech2(bs) − b2
Ls,

Lst = (i
√

cosech2(bs) − b2 + b coth(bs))Lt,

Ltt = (i
√

1 − b2 sinh2(bs) − b cosh(bs)) sinh(bs)Ls.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.15)
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Solving this system yields (16) with c = 1 and z being a Legendre great circle.

Case A.3.ii.c. g = ds2 + e2bs dt2. From (5.8) we find µ2 = e−2bs − b2. Without loss of
generality, we may assume that

λ =
e−2bs − 2b2
√

e−2bs − b2
and µ =

√
e−2bs − b2.

Thus, by applying (5.1) and Gauss’s formula, we obtain

Lss = i
e−2bs − 2b2
√

e−2bs − b2
Ls,

Lst = (i
√

e−2bs − b2 + b)Lt,

Ltt = (i
√

e−2bs − b2 − b)e2bsLs.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.16)

Solving this system yields (14) with c = 1 and z being a Legendre great circle.

Case B. ϕ 	= 0 on some open subset V of U . We divide this into two cases.

Case B.1. ∇e1e1 = 0 on an open neighbourhood W of a point p ∈ V of a point. Since
∇e1e1 = 0, there exists a local coordinate system {s, u} on V such that

g = ds2 + G2(s, u) du2 (5.17)

with ∂/∂s = e1, ∂/∂u = Ge2. Since ∇e1e1 = 0, (5.2) reduces to

e1µ = (λ − 2µ)ω2
1(e2), e2λ = 0, e2µ − e1ϕ = ϕω2

1(e2). (5.18)

Differentiating (5.3) with respect to e2 and applying (5.18) give (λ−2µ)e2µ = 0. Thus
we have λ = 2µ or e2µ = 0 at each point of W . If λ = 2µ on some open subset W1 ⊂ W ,
then K = µ2 on W1, which implies that µ is constant on W1. So, we also have e2µ = 0
on W1. Consequently, e2µ = 0 holds identically on W . Therefore, (5.18) yields

e1µ = (λ − 2µ)ω2
1(e2), e2λ = e2µ = 0, e1ϕ = −ϕω2

1(e2). (5.19)

It follows from (5.19) that λ = λ(s) and µ = µ(s). We also obtain from (5.17) that

∇∂/∂u
∂

∂s
= (lnG)s

∂

∂u
, ω2

1(e2) =
Gs

G
. (5.20)

By applying (5.19), (5.17) and (5.20), we get (lnG)s = −(lnϕ)s which implies that

g = ds2 +
F 2(u)

ϕ2 du2, e1 =
∂

∂s
, e2 =

ϕ

F (u)
∂

∂u
(5.21)

for some positive function F (u). Thus, by applying (5.21) and the Gauss equation, we
have ϕϕss − 2ϕ2

s = Kϕ2. After solving this differential equation, we obtain

ϕ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A sec(bs + B) if K = b2 > 0,

A

cs + B
if K = 0,

Ae−(bs+B), A sech(bs + B) or A cosech(bs + B) if K = −b2 < 0,

(5.22)
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where b > 0, c are real numbers and A(u) 	= 0, B(u) are functions on V1. Let t(u) be an
anti-derivative of 1/A(u). Then (5.21) and (5.22) imply, for some function θ(t), that

g =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ds2 + cos2(bs + θ(t)) dt2 if K = b2 > 0;

ds2 + (cs + θ(t))2 dt2 if K = 0,

ds2 + e2(bs+θ(t)) dt2

or ds2 + cosh2(bs + θ(t)) dt2

or ds2 + sinh2(bs + θ(t)) dt2

⎫⎬
⎭ if K = −b2 < 0.

(5.23)

Case B.1.i. ϕ 	= 0 and λ = 2µ on an open subset U1 ⊂ W . In this case, both λ and
µ are constant and K = µ2 � 0 on U1 according to (5.3).

Case B.1.i.a. ϕ 	= 0 and λ = µ = 0 on a neighbourhood U1,1 of a point in U1. In this
case, we get K = 0. Thus we obtain from (5.22) and (5.23) that

g = ds2 + (cs + θ(t))2 dt2, λ = µ = 0, ϕ =
H(t)

cs + θ(t)
,

∇∂/∂s
∂

∂s
= 0, ∇∂/∂s

∂

∂t
=

c

cs + θ(t)
∂

∂t
,

∇∂/∂t
∂

∂t
= −c(cs + θ(t))

∂

∂s
+

θ′(t)
cs + θ(t)

∂

∂t
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.24)

where H(t) is nowhere zero on U1. Without loss of generality, we may assume that H(t)
is defined on an open interval I � 0.

From (5.1), (5.24) and Gauss’s formula we have

Lss = 0,

Lst =
cLt

cs + θ(t)
,

Ltt = −c(cs + θ(t))Ls +
(

iH(t) +
θ′(t)

cs + θ(t)

)
Lt.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.25)

If c = 0, then after solving (5.25) we have L = c1s+ z(t), where c1 is a vector and z(t)
a vector function satisfying z′′(t) = (iH(t) + (ln θ)′(t))z′(t). From the last equation we
obtain

z(t) = c0 + c2

∫ t

0
θ(t)eif(t) dt,

where f(t) is an anti-derivative of H(t). Hence, after applying a suitable translation, we
get

L(s, t) = c1s + c2

∫ t

0
θ(t)eif(t) dt. (5.26)

Since |Ls| = 1, |Lt|2 = θ2(t) and 〈Ls, Lt〉 = 〈Ls, iLt〉 = 0, we obtain from (5.26) that
|c1| = |c2| = 1 and 〈c1, c2〉 = 〈c1, ic2〉 = 0. Hence, we obtain (3).
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Next, let us assume that c 	= 0. Then, after solving the first equation in (5.25), we
have L = z(t)s + Q(t) for some functions z, Q. We may assume that z, Q are defined
on an open interval I � 0. Substituting this into the second equation in (5.25) yields
cQ′(t) = θ(t)z′(t). Thus L is congruent to

L(s, t) = z(t)s +
1
c

∫ t

0
θ(t)z′(t) dt. (5.27)

If θ is constant, we obtain (4) after applying a suitable translation in s.
If θ is non-constant, then (5.27) gives

Ls = z(t),

Lt =
(

s +
θ(t)
c

)
z′(t),

Ltt =
θ′(t)

c
z′(t) +

(
s +

θ(t)
c

)
z′′(t).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.28)

From (5.24) and (5.28), we obtain |z(t)|2 = 1 and |z′(t)| = c. Since L is Lagrangian,
(5.28) also implies that 〈z, iz′〉 = 0. After substituting (5.27) into the last equation
in (5.25), we find z′′(t)− iH(t)z′(t)+ c2z(t) = 0. Thus z(t) is a Legendre curve of speed c

in S3(1) ⊂ C
2. Therefore, after reparametrization of the Legendre curve by its arc length,

we obtain (7).

Case B.1.i.b. ϕ 	= 0 and λ = 2µ 	= 0 on a neighbourhood U1,2 of a point in U1. Without
loss of generality, we may assume that λ = 2µ = 2b > 0. So we have K = b2 > 0.

From (5.22) and (5.23) we obtain

g = ds ⊗ ds + cos2(bs + θ(t)) dt ⊗ dt, ϕ = H(t) sec(bs + θ(t)),

∇∂/∂s
∂

∂s
= 0, ∇∂/∂s

∂

∂t
= −b tan(bs + θ(t))

∂

∂t
,

∇∂/∂t
∂

∂t
= 1

2b sin(2bs + 2θ(t))
∂

∂s
− θ′(t) tan(bs + θ(t))

∂

∂t
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.29)

where H is nowhere zero on U1,2. Hence, (5.1), (5.29) and Gauss’s formula give

Lss = 2ibLs,

Lst = ib sec(bs + θ)ei(bs+θ)Lt,

Ltt = ib cos(bs + θ)e−i(bs+θ)Ls + (iH(t) − θ′ tan(bs + θ))Lt.

⎫⎪⎪⎬
⎪⎪⎭ (5.30)

If θ is constant, we may choose θ = 0 by applying a suitable translation in s. Hence,
we obtain from (5.29) and (5.30) that g = ds2 + cos2(bs) dt2 and

Lss = 2ibLs,

Lst = ibeibs sec(bs)Lt,

Ltt = ibe−ibs cos(bs)Ls + iH(t)Lt.

⎫⎪⎬
⎪⎭ (5.31)
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After solving the first two equations in (5.31), we know that L is congruent to L =
(e2ibs + 1)z(t) for some vector function z(t). Substituting this into the last equation
in (5.31) gives z′′(t) = iH(t)z′(t)−b2z(t). Thus z(t) is a Legendre curve in S3(1/2b) with
speed 1

2 . Hence, after reparametrization of z(t), we obtain (10).
Next, assume that θ is non-constant. Then, after solving the first equation in (5.30),

we obtain L = A(t)e2ibs + B(t). Differentiating this equation with respect to t yields

Lt = A′(t)e2ibs + B′(t). (5.32)

Substituting this into the second equation of (5.30) yields B′ = e−2iθA′. Hence, we get
Lt = A′(t)(eibs + e−2iθ(t)). Thus, after applying a suitable translation, we obtain

L = e2ibsz(t) +
∫ t

0
z′(t)e−2iθ(t) dt, (5.33)

where z(t) = A(t) + c1 for some vector c1. Hence we have

Ls = 2ibe2ibsz,

Lt = (e2ibs + e−2iθ)z′,

Ltt = −2iθ′e−2iθz′ + (e2ibs + e−2iθ)z′′.

⎫⎪⎬
⎪⎭ (5.34)

Since the immersion is Lagrangian, (5.34) gives 〈z, iz′〉 = 0. Also, by substituting (5.33)
into the last equation in (5.30) we have z′′(t) − i(H(t) + θ′(t))z′(t) + b2z(t) = 0. Thus we
find |Ls|2 = 4b2|z(t)|2 and |Lt|2 = 4 cos2(bs + θ)|z′(t)|2. Comparing these with the metric
tensor gives |z| = 1/2b and |z′| = 1

2 . Hence we obtain (11).

Case B.1.ii. ϕ 	= 0 and λ 	= 2µ on an open subset U2.

We divide this case into several cases.

Case B.1.ii.a. λ 	= 0 and µ = 0 on a neighbourhood U2,1 of a point in U2. From (5.3)
and (5.18) we have K = ω2

1 = e2λ = e1ϕ = 0. Thus there exists a coordinate system {s, t}
with e1 = ∂/∂s and e2 = ∂/∂t. Hence we get g = ds2 + dt2, λ = λ(s) and ϕ = ϕ(t).
Therefore, by (5.1) and Gauss’s formula, we obtain

Lss = iλ(s)Ls, Lst = 0, Ltt = iϕ(t)Lt. (5.35)

After solving this system, we know that L is congruent to

L(s, t) = c1

∫ s

exp
(

i
∫ x

λ(u) du

)
dx + c2

∫ t

exp
(

i
∫ y

ϕ(u) du

)
dy.

Thus, we obtain (3) after choosing suitable initial conditions.

Case B.1.ii.b. λ = µ 	= 0 on a neighbourhood U2,2 of a point in U2. From (5.3) and
(5.18) we get K = 0 and

e1(lnµ) = −ω2
1(e2), e2λ = e2µ = 0, e1ϕ = −ϕω2

1(e2). (5.36)
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Thus, λ and µ depend only on s due to (5.21). Combining the first equation in (5.36)
with (5.20) gives G = F (u)/µ(s). If t(u) is an anti-derivative of F (u), we get g =
ds2 +µ−2(s) dt2, which implies (1/µ)′′ = 0. Thus we obtain, for some constants a, b, that

g = ds2 + (as + b)2 dt2. (5.37)

If a = 0 and b 	= 0, we get ω2
1 = 0. Combining this with (5.36) implies that ϕ = ϕ(t)

and λ = µ = c for some real number c 	= 0. Without loss of generality, we may assume
c > 0. Hence, we obtain from (5.1) and Gauss’s formula that

Lss = icLs, Lst = icLt, Ltt = icLs + ib−1ϕ(t)Lt. (5.38)

Solving the first two equations of (5.38) gives L = eicsz(t). So, using 〈Ls, Lt〉 = 0, we
have 〈iz, z′〉 = 0, 〈z, z〉 = 1/c2. Thus z(t) is a Legendre curve in S3(1/c). By substituting
L = eicsz(t) into the last equation of (5.38), we find bz′′(t) − ϕ(t)iz′(t) + bc2z(t) = 0.
Hence z = z(t) is of unit speed. Consequently, we obtain (5).

Next, assume that a 	= 0. Then, after a suitable translation in s, (5.37) becomes

g = ds2 + a2s2 dt2, λ = µ = (as)−1. (5.39)

Without loss of generality, we may assume a > 0. From (5.39) we get

∇∂/∂s
∂

∂s
= 0, ∇∂/∂s

∂

∂t
=

1
s

∂

∂t
, ∇∂/∂t

∂

∂t
= −a2s

∂

∂s
. (5.40)

Using the last two equations in (5.36), we get ϕ = s−1f(t) for some function f(t).
Hence (5.1), (5.39), (5.40) and Gauss’s formula imply that

Lss =
i

as
Ls,

Lst =
a + i
as

Lt,

Ltt = (i − a)asLs + iaf(t)Lt.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.41)

Solving the first two equations in (5.41) shows that L is congruent to

L(s, t) = s1+ibz(t), b = a−1. (5.42)

It follows from (5.42) that 〈iz, z′〉 = 0, |z|2 = 1/(1 + b2) and |z′|2 = 1/b2. Hence, z(t)
is a Legendre curve in S3(1/

√
1 + b2) with speed 1/b. Hence we obtain (6).

Case B.1.ii.c. λ 	= µ and µ 	= 0 on an open subset W1 ⊂ U2. In this case (5.3) implies
that K 	= 0. Moreover, from (5.3), (5.19) and (5.20), we find that

λ = µ + µ−1K,

ω1
2(e2) = e1(ln

√
|K − µ2|) = e1(lnϕ) = −e1(lnG)

}
(5.43)

on W1, where G is defined by (5.18). Hence, we get

G
√

|K − µ2| = p(t), ϕG = f(t) (5.44)

for some real-valued functions f and p > 0.
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Case B.1.ii.c.1. K = b2 > µ2 > 0 on a neighbourhood W1,1 of a point p ∈ W1. We
may assume b > 0. From (5.19), (5.23) and (5.44) we get g = ds2 + cos2(bs + θ(t)) dt2

and
µ2(s) = b2 − p2(t) sec2(bs + θ(t)), ϕ = f(t) sec(bs + θ(t)) (5.45)

for some functions p > 0 and f with b2 > p2. Differentiating the first equation in (5.45)
with respect to t gives

(ln p(t))′ =
∂(ln cos(bs + θ(t)))

∂t
.

Hence p(t) = k(s) cos(bs + θ(t)) for some function k(s). So, by differentiating the last
equation with respect to s we find (ln k(s))′ = b tan(bs + θ(t)). Hence, θ and p are
constant. So, we may choose θ = 0 by applying a suitable translation in s. Therefore, we
have g = ds2 + cos2(bs) dt2 and

λ =
2b2 − c2 sec2(bs)√

b2 − c2 sec2(bs)
, µ =

√
b2 − c2 sec2(bs), ϕ = f(t) sec(bs),

∇∂/∂s
∂

∂s
= 0, ∇∂/∂s

∂

∂t
= −b tan(bs)

∂

∂t
,

∇∂/∂t
∂

∂t
= 1

2b sin(2bs)
∂

∂s
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.46)

where c = p is a positive number. From (5.1), (5.46) and Gauss’s formula we obtain

Lss = i
2b2 − c2 sec2(bs)√

b2 − c2 sec2(bs)
Ls,

Lst = (i
√

b2 − c2 sec2(bs) − b tan(bs))Lt,

Ltt = (b sin(bs) + i
√

b2 cos2(bs) − c2) cos(bs)Ls + ifLt.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.47)

Solving the first two equations implies that L is congruent to

L =
(
√

b2 cos2(bs) − c2 + ib sin(bs)) cos(bs)
exp{ib−1 tan−1(sin(bs)/

√
b2 cos2(bs) − c2)}

z(t) (5.48)

for some vector function z(t). Substituting this into the last equation in (5.47) yields
z′′(t) − if(f)z′(t) + (b2 − c2)z(t) = 0. On the other hand, we find from (5.48) that
|z(t)| = 1/(b2 − c2), |z′(t)|2 = 1/(b2 − c2) and 〈iz, z′〉 = 0. Hence z(t) is a unit-speed
Legendre curve in S3(1/(b2 − c2)).

Therefore, we obtain (12).

Case B.1.ii.c.2. K = b2 < µ2 on a neighbourhood W1,2 of a point p ∈ W1. We may
assume b > 0. From (5.23) and (5.44) we get g = ds2 + cos2(bs + θ(t)) dt2 and

µ2 = b2 + p2(t) sec2(bs + θ(t)), ϕ = f(t) sec(bs + θ(t)) (5.49)

for some functions p(t) and f(t) with b2 > p2 > 0. Since µ = µ(s), the first equation
in (5.49) implies that p(t) sec(bs+θ(t)) depends only on s. So, we know as in Case B.1.ii.c.1
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that both p(t) and θ(t) are constant. Thus we may choose θ = 0 by applying a suitable
translation in s. Hence, we have g = ds2 + cos2(bs) dt2 and

λ =
2b2 + c2 sec2(bs)√

b2 + c2 sec2(bs)
, µ =

√
b2 + c2 sec2(bs), ϕ = f(t) sec(bs), (5.50)

where c = p is positive. By applying (5.1), (5.50) and Gauss’s formula, we find

Lss = i
2b2 + c2 sec2(bs)√

b2 + c2 sec2(bs)
Ls,

Lst = (i
√

b2 + c2 sec2(bs) − b tan(bs))Lt,

Ltt = (b sin(bs) + i
√

b2 cos2(bs) + c2) cos(bs)Ls + ifLt.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

After solving this system as Case B.1.ii.c.1, we obtain (13).

Case B.1.ii.c.3. K = −b2 > 0 on a neighbourhood W1,3 of a point p ∈ W1. We may
assume b > 0. In view of (5.23), we divide this into three cases.

Case B.1.ii.c.3.α. g = ds2 + e2bs+2θ(t) dt2. From (5.23) and (5.44) we get

µ2 = p2(t)e−2bs−2θ(t) − b2, ϕ = f(t)e−bs−θ(t) (5.51)

for some functions p(t) and f(t). Since µ = µ(s), the first equation in (5.51) implies
that p(t) = ceθ(t) for some real number c. Thus we get µ2 = c2e−2bs − b2. Without loss
of generality, we may assume that µ =

√
c2e−2bs − b2. Hence, by (5.43), we have

λ =
c2e−2bs − 2b2
√

c2e−2bs − b2
, µ =

√
c2e−2bs − b2, ϕ = f(t)e−bs−θ(t). (5.52)

Therefore, (5.1), (5.52) and Gauss’s formula imply that

Lss = i
c2e−2bs − 2b2
√

c2e−2bs − b2
Ls,

Lst = (i
√

c2e−2bs − b2 + b)Lt,

Ltt = (i
√

c2e−2bs − b2 − b)e2bs+2θ(t)Ls + if(t)Lt.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.53)

Solving the first two equations in (5.53) shows that L is congruent to

L(s, t) = z(t)(b + i
√

c2e−2bs − b2) exp{2bs − ib−1
√

c2e−2bs − b2} (5.54)

for some vector function z(t). Substituting this into the last equation of the differential
system gives z′′(t) − if(t)z′(t) + c2e2θ(t)z(t) = 0.

On the other hand, by using (5.54), we find |z(t)| = 1/c2, |z′(t)|2 = eθ(t)/c and
〈iz(t), z′(t)〉 = 0. Hence z(t) is a Legendre curve in S3(1/c2) with speed eθ(t)/c. Therefore,
we obtain (14).
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Case B.1.ii.c.3.β. g = ds2 + cosh2(bs + θ(t)) dt2. From (5.23) and (5.44) we get

µ2(s) = p2(t) sech2(bs + θ(t)) − b2, ϕ = f(t) sech(bs + θ(t)) (5.55)

for functions p, f . The first equation in (5.55) is impossible unless p and θ are both
constant. So we have θ = 0 after applying a suitable translation in s. Hence, we obtain

λ =
c2 sech2(bs) − 2b2√

c2 sech2(bs) − b2
, µ =

√
c2 sech2(bs) − b2, ϕ = f(t) sech(bs), (5.56)

where p = c. From (5.1), (5.56) and Gauss’s formula, we find

Lss = i
c2 sech2(bs) − 2b2√

c2 sech2(bs) − b2
Ls,

Lst = (i
√

c2 sech2(bs) − b2 + b tanh(bs))Lt,

Ltt = (i
√

c2 − b2 cosh2(bs) − b sinh(bs)) cosh(bs)Ls + ifLt.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.57)

Solving the first two equations of (5.57) shows that L is congruent to

L(s, t) =
(
√

c2 − b2 cosh2(bs) − ib sinh(bs)) cosh(bs)
exp{−ib−1c tan−1(c sinh(bs)/

√
c2 − b2 cosh2(bs))}

z(t) (5.58)

for some vector function z(t). Substituting this into the last equation of (5.57) gives
z′′(t) − if(t)z′(t) + (c2 − b2)z(t) = 0.

On the other hand, by using (5.58), we find |z(t)| = 1/(c2 − b2), |z′(t)|2 = 1 and
〈iz(t), z′(t)〉 = 0. Hence z(t) is a unit-speed Legendre curve in S3(1/

√
c2 − b2). Conse-

quently, we obtain (15).

Case B.1.ii.c.3.γ. g = ds2 + sinh2(bs + θ(t)) dt2. From (5.23) and (5.44) we get

µ2 = p2(t) cosech2(bs + θ(t)) − b2, ϕ = f(t) cosech(bs + θ(t)) (5.59)

for functions p, f . As in Case B.1.ii.c.3.α, both p and θ are constant. So, we have θ = 0
after applying a suitable translation in s. So, if we denote p by c, we obtain

λ =
c2 cosech2(bs) − 2b2√

c2 cosech2(bs) − b2
, µ =

√
c2 cosech2(bs) − b2, ϕ = f(t) cosech(bs).

(5.60)
From (5.1), (5.60) and Gauss’s formula, we find

Lss = i
c2 cosech2(bs) − 2b2√

c2 cosech2(bs) − b2
Ls,

Lst = (i
√

c2 cosech2(bs) − b2 + b coth(bs))Lt,

Ltt = (i
√

c2 − b2 sinh2(bs) − b cosh(bs)) sinh(bs)Ls + ifLt.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.61)

https://doi.org/10.1017/S0013091504000203 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000203


356 B.-Y. Chen

Solving the first two equations in (5.53) shows that L is congruent to

L(s, t) =
(
√

c2 − b2 sinh2(bs) − ib cosh(bs)) sinh(bs)
exp{ib−1c tanh−1(c cosh(bs)/

√
c2 − b2 sinh2(bs))}

z(t) (5.62)

for a vector function z(t). By substituting this into the last equation of (5.61), we obtain
z′′(t) − if(t)z′(t) + (b2 + c2)z(t) = 0.

On the other hand, by applying (5.62), we find |z(t)| = 1/(b2 + c2)2, |z′(t)|2 = b2 + c2

and 〈iz(t), z′(t)〉 = 0. Hence, z(t) is a Legendre curve in S3(1/
√

b2 + c2) with constant
speed

√
b2 + c2. Therefore, we obtain (16).

Case B.2. ∇e1e1 	= 0 on an open subset V2 ⊂ U . We have ω2
1(e1) 	= 0 on V2. Since

span{e1} and span{e2} are of rank one, there exist coordinates {x, y} such that ∂/∂x,
∂/∂y are parallel to e1 and e2, respectively. Thus, the metric tensor g takes the form

g = E2 dx2 + G2 dy2 (5.63)

for some positive functions E, G. If we put ∂/∂x = Ee1, ∂/∂y = Ge2, (5.63) yields

ω1
2(e1) =

Ey

EG
, ω2

1(e2) =
Gx

EG
, Ey =

∂E

∂y
, Gx =

∂G

∂x
. (5.64)

If λ = 2µ on some neighbourhood V2,1 of a point p ∈ V2, then (5.3) gives K = µ2,
which implies that µ is constant. Thus (5.2) and ω2

1(e1) 	= 0 give ϕ = 0, which contradicts
the assumption ϕ 	= 0 for Case B. Hence we must have λ 	= 2µ. Therefore, we obtain
e2λ 	= 0 on V2 due to ω2

1(e1) 	= 0 and the second equation in (5.2). So, λ is not constant.

Case B.2.i. µ = 0 on an open subset W1 ⊂ V2. We have K = 0 from (5.3). Also, we
may assume λ, ϕ 	= 0, otherwise it reduces to Case A.1. From µ = 0 and (5.2), we find

ϕω2
1(e1) = λω1

2(e2), e2λ = λω2
1(e1), e1ϕ = ϕω1

2(e2). (5.65)

It follows from (5.64) and (5.65) that λE = η(x) and ϕG = k(y) for some functions
η(x) and k(y). Hence (5.63) becomes g = λ−2η2(x) dx2 + ϕ−2k2(y) dy2. So, if u(x) and
v(y) are anti-derivatives of η(x) and k(y), respectively, then we obtain

g = λ−2 du2 + ϕ−2dv2, (5.66)

h

(
∂

∂u
,

∂

∂u

)
= J

∂

∂u
, h

(
∂

∂u
,

∂

∂v

)
= 0, h

(
∂

∂v
,

∂

∂v

)
= J

∂

∂v
. (5.67)

From (5.66) we have

∇∂/∂u
∂

∂u
= −λu

λ

∂

∂u
+

ϕ2λv

λ3

∂

∂v
,

∇∂/∂u
∂

∂v
= −λv

λ

∂

∂u
− ϕu

ϕ

∂

∂v
,

∇∂/∂v
∂

∂v
=

λ2ϕu

ϕ3

∂

∂u
− ϕv

ϕ

∂

∂v
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.68)
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Also, from (5.65) and (5.67), we find

λω2
1(e1) = ϕλv, ϕω1

2(e2) = λϕu, ϕ3λv = λ3ϕu. (5.69)

Since M is flat, (5.67) and (5.69) imply that

(ϕλ−2λv)v + (λϕ−2ϕu)u = 0. (5.70)

Thus, if we put f = ϕλv/λ2 = λϕu/ϕ2, we obtain

ϕλ−2λv = λϕ−2ϕu = f(u − v). (5.71)

Also, from the last equation of (5.69), we have

(λ−2)v = (ϕ−2)u. (5.72)

By applying (5.67)–(5.69) and Gauss’s formula, we obtain

Luu = (i − (lnλ)u)Lu + (lnϕ)uLv,

Luv = −(lnλ)vLu − (lnϕ)uLv,

Lvv = (lnλ)vLu + (i − (lnϕ)v)Lv.

⎫⎪⎬
⎪⎭ (5.73)

Case B.2.i.a. µ = 0 and λ = ϕ. In this case, (5.72) reduces to λu = λv. Thus λ = ϕ

is a function of w = u + v. Hence, (5.70) yields (ln f)′′(w) = 0, which implies that
λ = cea(u+v) for some constants a, c. Therefore, system (5.73) reduces to

Luu = (i − a)Lu + aLv,

Luv = −aLu − aLv,

Lvv = aLu + (i − a)Lv.

⎫⎪⎬
⎪⎭ (5.74)

From (5.74) we get Luu + Luv = (i − 2a)Lu, Lvv + Luv = (i − 2a)Lv, which give

Lu + Lv = (i − 2a)L + H(v),

Lu + Lv = (i − 2a)L + F (u)

}
(5.75)

for some functions F (u), H(v). Comparing the two equations in (5.75) gives H(v) = F (u).
Thus H = F is constant. By putting H = (i−2a)c3 and substituting (5.75) into the first
equation of (5.74), we get Luu = (i − 2a)(Lu + aL + ac3). Hence we obtain

L = exp{(i−2a)u/2}(A(v) exp{
√

1 + 4a2u/2}+B(v) exp{−
√

1 + 4a2u/2})− c3 (5.76)

for some vector functions A, B. We may choose c3 = 0 by applying a suitable translation
on C

2. So, substituting (5.76) into the first equation of (5.74) gives

2A′(v) = (i − 2a + i
√

1 + 4a2)A(v),

2B′(v) = (i − 2a − i
√

1 + 4a2)B(v).
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Solving these two equations yields

L = exp{(i − 2a)(u + v)/2}(c1 cos( 1
2

√
1 + 4a2(u − v)) + c2 sin( 1

2

√
1 + 4a2(u − v))).

Hence, after choosing suitable initial conditions, we obtain

L =
√

2e(i−2a)(u+v)/2

c
√

1 + a2
(cos( 1

2

√
1 + 4a2(u − v)), sin( 1

2

√
1 + 4a2(u − v))),

where c 	= 0. Thus we obtain (8) after putting s = (u + v)/2 and t = (u − v)/2.

Case B.2.i.b. µ = 0 and λ 	= ϕ. In this case (5.65) implies that e2λ, e1ϕ, ω2
1(e2) are

non-zero. If we put ρ = 1/λ, then (5.71) gives

ρvϕ = −f(u − v). (5.77)

Hence, (5.66) becomes

g = ρ2 du ⊗ du +
ρ2

v

f2(u − v)
dv ⊗ dv, (5.78)

which implies that

∇∂/∂u
∂

∂u
=

ρu

ρ

∂

∂u
− ρf2

ρv

∂

∂v
,

∇∂/∂u
∂

∂v
=

ρv

ρ

∂

∂u
+

(
ρuv

ρv
− f ′

f

)
∂

∂v
,

∇∂/∂v
∂

∂v
=

(
ρ2

vf ′

ρ2f3 − ρvρuv

ρ2f2

)
∂

∂u
+

(
ρvv

ρv
+

f ′

f

)
∂

∂v
, f = f(u − v).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.79)

From (5.77) we obtain

ϕu =
ρuvf

ρ2
v

− f ′(u − v)
ρv

.

Substituting this into the last equation of (5.69) gives

(ρv)−2ρuvf(u − v) − (ρv)−1f ′(u − v) = ϕ2f(u − v)ρ.

Combining this with (5.77) implies that ρ satisfies the wave equation:

f(u − v)ρuv − f ′(u − v)ρv − f3(u − v)ρ = 0. (5.80)

From (5.67) and (5.78)–(5.80) we obtain

Luu =
(

i +
ρu

ρ

)
Lu − ρ

ρv
f2Lv,

Luv =
ρv

ρ
Lu +

ρ

ρv
f2Lv,

Lvv = −ρv

ρ
Lu +

(
i +

ρvv

ρv
+

f ′

f

)
Lv, f = f(u − v).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.81)
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Combining the first and the second equations in (5.81) gives

Luu + Luv =
(

i +
ρu

ρ
+

ρv

ρ

)
Lu, (5.82)

which gives Lu = G(u − v)ρei(u+v)/2. If we put G(u − v) = z(u − v)ei(u−v)/2, we find

Lu = z(u − v)ρeiu, (5.83)

On the other hand, by (5.80) and the last two equations of (5.81), we find

Luv + Lvv =
(

i +
ρuv

ρv
+

ρvv

ρv

)
Lv. (5.84)

Solving this differential equation gives Lv = H(u − v)ρvei(u+v)/2, where H is a positive
function. So, if we put H(u − v) = F (u − v)ei(u−v)/2, we obtain

Lv = F (u − v)ρveiu. (5.85)

By taking the derivative of (5.83) with respect to v and comparing it with (5.85) and
the second equation of (5.81), we find z′ = −f2F . Therefore, (5.85) becomes

Lv = −ρvz′

f2 eiu. (5.86)

Also, after taking the derivative of this equation with respect to u and comparing it with
the second equation of (5.81), we obtain

z′′ +
(

i − f ′

f

)
z′ + f2z = 0 (5.87)

by virtue of (5.79), (5.83) and (5.86). Integrating (5.83) with respect to u gives

L(u, v) =
∫ u

0
z(u − v)ρeiu du + H(v). (5.88)

Differentiating this with respect to v and comparing it with (5.86) yield

H ′(v) = −ρvz′

f2 eiu −
∫ u

0
eiu(z(u − v)ρ)v du. (5.89)

Thus L is congruent to

L(u, v) =
∫ u

0
ρz(u − v)eiu du −

∫ v

0

{
ρvz′(u − v)

f2 eiu +
∫ u

0
eiu(ρz(u − v))v du

}
dv.

Using (5.78), (5.83) and (5.86), we find |z|2 = 1, |z′|2 = f2. Thus z is a curve in
S3(1) ⊂ C

2 with f as its speed. Also, it follows from (5.87) and Lemma 3.1 that z is
a Legendre curve with curvature function −f−1. Therefore, we obtain (9).
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Case B.2.ii. µ 	= 0. We divide this case into two cases: λ = µ and λ 	= µ.

Case B.2.ii.a. µ 	= 0 and λ = µ. If θ is a solution of λ(1 − 2 cos2 θ) = ϕ sin θ cos θ and
ê1 = cos θe1 + sin θe2, ê2 = − sin θe1 + cos θe2, then (5.1) yields

h(ê1, ê1) = λ̂Jê1, h(ê1, ê1) = 0, h(ê2, ê2) = ϕ̂Jê2, (5.90)

where

λ̂ = sin2 θ(2λ cos θ + ϕ sin θ) + λ cos θ, ϕ̂ = cos2 θ(ϕ cos θ − 2λ sin θ) − λ sin θ.

So, this case reduces to Case B.1.ii.a or B.2.i according to ∇e1e1 = 0 or ∇e1e1 	= 0.

Case B.2.ii.b. µ 	= 0 and λ 	= µ. From the assumption ∇e1e1 	= 0 for Case B and the
second equation in (5.2), we get e2λ 	= 0. Since K = λµ − µ2 	= 0, we have

µejλ = (2µ − λ)ejµ, j = 1, 2, (5.91)

which implies e2µ 	= 0 by λ 	= 2µ. Combining (5.2) with (5.91) gives

e1µ = ϕω2
1(e1) + (λ − 2µ)ω2

1(e2),

e1ϕ = 4µω1
2(e1) + ϕω1

2(e2),

e2(lnµ) = ω1
2(e1).

⎫⎪⎪⎬
⎪⎪⎭ (5.92)

Since K = λµ − µ2, the first two equations in (5.92) imply that

4µe1µ + ϕe1ϕ = (4λµ − 8µ2 − ϕ2)ω2
1(e2) = (4K − 4µ2 − ϕ2)ω2

1(e2). (5.93)

Case B.2.ii.b.α. 4K = 4µ2 + ϕ2. We have 0 	= ϕ2 = 4(K − µ2), which gives K > µ2.
So, we may put ϕ = 2

√
K − µ2. Thus we obtain from K = λµ − µ2 and (5.92) that

e1µ =
K − µ2

µ
ω2

1(e2) − 2
√

K − µ2e2(lnµ). (5.94)

The last equation of (5.92) and the structure equation yield d(µ−1ω1) = 0. Thus there
exists a function u with du = µ−1ω1, ∂/∂u = µe1. Let Φ be a function satisfying

e2µ
2 =

√
K − µ2(lnΦ)u. (5.95)

By applying ∂/∂u = µe1, (5.94), (5.95) and the last equation in (5.92), it is easy to
verify that [

∂

∂u
,

Φe2√
K − µ2

]
= 0.

Therefore, there exists a function v such that ∂/∂v = Φe2/
√

K − µ2. With respect to
such a coordinate system {u, v}, we have

g = µ2 du2 +
Φ2

K − µ2 dv2,
∂Φ

∂u
=

∂µ2

∂v
, (5.96)
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which implies that

∇∂/∂u
∂

∂u
= (lnµ)u

∂

∂u
− (K − µ2)µµv

Φ2

∂

∂v
,

∇∂/∂u
∂

∂v
= (lnµ)v

∂

∂u
+

(
µµu

K − µ2 + (lnΦ)u

)
∂

∂v
,

∇∂/∂v
∂

∂v
= −Φ2µµu + (K − µ2)ΦΦu

µ2(K − µ2)2
∂

∂u
+

(
µµv

K − µ2 + (lnΦ)v

)
∂

∂v
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.97)

Using (5.96) we know that the Gauss curvature K and µ are related by

K = −
√

K − µ2

µΦ

{(
µv

√
K − µ2

Φ

)
v

+
(

2(K − µ2)µv + Φµu

(K − µ2)3/2

)
u

}
. (5.98)

Thus, by (5.1), (5.96), (5.98), K = λµ − µ2 and Gauss’s formula, we obtain

Luu = {i(K + µ2) + (lnµ)u}Lu − (K − µ2)µµv

Φ2 Lv,

Luv = (lnµ)vLu +
{

iµ2 +
µµu

K − µ2 +
2µµv

Φ

}
Lv,

Lvv =
{

iΦ
K − µ2 − Φµu + 2(K − µ2)µv

µ(K − µ2)2

}
ΦLu +

{
2iΦ +

µµv

K − µ2 +
Φv

Φ

}
Lv.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.99)

A direct computation shows that the compatibility conditions: Luuv = Luvu and
Luvv = Lvvu hold if and only if (5.96) and (5.98) hold true. Thus we obtain (17).

Case B.2.ii.b.β. 4K 	= 4µ2 +ϕ2. From (5.91) and (5.93) we obtain ω2
1(e2) = e1(lnG)

and G = 1/
√

|4K − 4µ2 − ϕ2|. So, we have [µe1, Ge2] = 0. Thus, there exist local
coordinates {u, v} with ∂/∂u = µe1, ∂/∂v = Ge2 such that the metric is given by

g = µ2 du2 +
dv2

|4K − 4µ2 − ϕ2| . (5.100)

If 4K > 4µ2 + ϕ2, then (5.100) implies that

∇∂/∂u
∂

∂u
= (lnµ)u

∂

∂u
− (4K − 4µ2 − ϕ2)µµv

∂

∂v
,

∇∂/∂u
∂

∂v
= (lnµ)v

∂

∂u
+

4µµu + ϕϕu

4K − 4µ2 − ϕ2

∂

∂v
,

∇∂/∂v
∂

∂v
= − 4µµu + ϕϕu

µ2(4K − 4µ2 − ϕ2)2
∂

∂u
+

4µµv + ϕϕv

4K − 4µ2 − ϕ2

∂

∂v
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.101)
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From (5.1), (5.3), (5.101) and Gauss’s formula, we have

Luu = {iK + iµ2 + (lnµ)u}Lu − (4K − 4µ2 − ϕ2)µµvLv,

Luv = (lnµ)vLu +
{

iµ2 +
4µµu + ϕϕu

4K − 4µ2 − ϕ2

}
Lv,

Lvv =
{

i
4K − 4µ2 − ϕ2 − 4µµu + ϕϕu

µ2(4K − 4µ2 − ϕ2)2

}
Lu

+
{

iϕ√
4K − 4µ2 − ϕ2

+
4µµv + ϕϕv

4K − 4µ2 − ϕ2

}
Lv.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.102)

By a straightforward long computation we know that the compatibility conditions
(Luu)v = (Luy)u and (Luy)v = (Lvv)u hold if and only if µ and ϕ satisfy

µv =
Kϕu + ϕµµu − µ2ϕu

µ(4K − 4µ2 − ϕ2)3/2 ,

(
Gu

µ

)
u

+
(

µv

G

)
v

= −KµG, (5.103)

where G = 1/
√

4K − 4µ2 − ϕ2. From these we obtain (18).
If 4K < 4µ2 + ϕ2, (5.100) gives

∇∂/∂u
∂

∂u
= (lnµ)u

∂

∂u
+ (4K − 4µ2 − ϕ2)µµv

∂

∂v
,

∇∂/∂u
∂

∂v
= (lnµ)v

∂

∂u
+

4µµu + ϕϕu

4K − 4µ2 − ϕ2

∂

∂v
,

∇∂/∂v
∂

∂v
=

4µµu + ϕϕu

µ2(4K − 4µ2 − ϕ2)2
∂

∂u
+

4µµv + ϕϕv

4K − 4µ2 − ϕ2

∂

∂v
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.104)

From (5.1), (5.3), and (5.104) we have

Luu = {iK + iµ2 + (lnµ)u}Lu + (4K − 4µ2 − ϕ2)µµvLv,

Luv = (lnµ)vLu +
{

iµ2 +
4µµu + ϕϕu

4K − 4µ2 − ϕ2

}
Lv,

Lvv =
{

i
4K − 4µ2 − ϕ2 +

4µµu + ϕϕu

µ2(4K − 4µ2 − ϕ2)2

}
Lu

+
{

iϕ√
ϕ2 − 4K + 4µ2

+
4µµv + ϕϕv

4K − 4µ2 − ϕ2

}
Lv.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.105)

A straightforward computation implies that the compatibility conditions: (Luu)v =
(Luy)u and (Luy)v = (Lvv)u hold if and only if µ and ϕ satisfy

µv =
µ2ϕu − Kϕu − ϕµµu

µ(4µ2 + ϕ2 − 4K)3/2 ,

(
Gu

µ

)
u

+
(

µv

G

)
v

= −KµG, (5.106)

where G = 1/
√

4µ2 + ϕ2 − 4K. From these we obtain (19). �
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6. Remarks

Remark 6.1. By a very long straightforward computation, we know that the surfaces
given in Theorem 5.1 are Lagrangian surfaces of constant curvature.

Remark 6.2. There exist Lagrangian surfaces in C
2 which do not contain any Leg-

endre curve in any hypersphere of C
2. The simplest example is the Lagrangian circular

cylinder: L(s, t) = (eis, t), s, t ∈ R. On the other hand, we see from Theorem 5.1 that 12
of the 19 families of Lagrangian surfaces of constant curvature in C

2 given in Theorem 5.1
can be constructed via Legendre curves.

Remark 6.3. For a non-zero real-valued function f of one variable, the wave equation

f(u − v)ρuv − f ′(u − v)ρv − f3(u − v)ρ = 0 (6.1)

admits infinitely many solutions. For example, every linear combination of

ρ1 = sin
(∫ u−v

0
f(t) dt

)
, ρ2 = cos

(∫ u−v

0
f(t) dt

)
(6.2)

is a solution of (6.1) (see [11, p. 738]). Consequently, the family of Lagrangian surfaces
given in (9) of Theorem 5.1 is very large.

Remark 6.4. Locally, there exist many solutions of system (4.1) (respectively, (4.5)
or (4.9)) according to the Cauchy–Kowaleski theorem (see [20]). Hence there exist many
Lagrangian surfaces of constant curvature K whose second fundamental forms are given
by (4.2) (respectively, given by (4.6) or (4.10)). Hence the families of Lagrangian surfaces
of constant curvature given in (17)–(19) of Theorem 5.1 are large.

Remark 6.5. The complete classifications of Lagrangian surfaces of constant curva-
ture in complex projective plane and in complex hyperbolic plane are obtained in [13]
and [14], respectively.
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