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The motion of finite-length cylindrical rods moving near a planar rigid surface is
a scenario common across many engineering and natural settings. We study the
low-Reynolds-number flow around finite rods that are allowed to rotate or translate
in directions perpendicular or parallel to the plane. We develop a three-dimensional
lubrication theory to characterize the pressure and hydrodynamic resistances of the
cylinders through a special consideration of the cylinder’s end effects. In addition, we
use three-dimensional numerical simulations to solve these Stokes flows for cylinders
of varying lengths and with varying gap sizes between the cylinder and plane, and the
numerical results support the developed analytical descriptions. We also use visualizations
of the flow to provide qualitative insights and rationalize the effect of the ends on the
dynamics of the cylinders. The numerical simulations and theoretical predictions show
good agreement in the long (isolated ends) and short (disk-like) limits.
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1. Introduction

Low-Reynolds-number motion of objects near surfaces is found across a wide range of
engineering, microfluidic and biomedical applications. In particular, when surfaces are in
close proximity, considerable research has focused on the study of the fluid and structure
interactions that occur within the lubrication layer (Hamrock, Schmid & Jacobson 2004).
The dynamics can be quite varied, and include hydrodynamic forces and velocities
for spherical particles moving near planar walls (Goldman, Cox & Brenner 1967a,b),
spheroidal particles in shear flows near a solid wall, as studied using a variant of the
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boundary integral equation method (Gavze & Shapiro 1997), and particle sedimentation
near a plane wall accounting for weak non-Newtonian and inertial effects (Becker,
McKinley & Stone 1996). Dynamics frequently involve cylindrical geometries, such as
in the determination of the drag forces on a microcantilever oscillating near a wall (Clarke
et al. 2005), the design and optimization of viscous micropumps (Sen, Wajerski & Gad-el
Hak 1996; Day & Stone 2000; Choi et al. 2010), motion of air bearings, including
effects of fluid compressibility (Witelski 1998), and the circular swimming motion of
Escherichia coli bacteria near a solid boundary (Lauga et al. 2006) and the motor torque
of such bacteria (Das & Lauga 2018), among many others. In almost all, if not all, such
cases, the cylinder is modelled as infinite. The present paper focuses on the dynamics of
three-dimensional (3-D) finite cylindrical rods translating and rotating near a rigid planar
wall.

The classic solution for the rotation of a cylinder in a viscously dominated flow
was calculated by Jeffery (1922) using bipolar coordinates to solve the two-dimensional
(2-D) Stokes flow problem. Jeffrey & Onishi (1981) extended this work to consider
the 2-D flows associated with rotation and translation of an infinite cylinder both
parallel and perpendicular to a nearby plane wall, which they solved analytically using
a stream function formulation of the Stokes equations, along with the bipolar coordinate
representation. Variations on this problem have been studied, including theoretical
prediction of the drag force on a zero-thickness disk translating towards a plane wall
(Davis 1993) and the consequences of slip conditions due to superhydrophobic surfaces
(Kaynan & Yariv 2017; Schnitzer & Yariv 2019). Also, Crowdy (2011) rederived the results
of Jeffrey & Onishi (1981) without approximation and developed an explicit nonlinear
dynamical system for treadmilling swimmers. The effect of non-zero Reynolds number
for the motion of a cylinder rolling along a wall, both with and without a gap, has also
been reported (Merlen & Frankiewicz 2011). More recently, studies have expanded on
the theories of Jeffrey & Onishi (1981) to include additional coupled physics, such as the
effects of soft interfaces on the fluid dynamics in the lubrication layer and the forces that
originate due to non-conforming contacts (Skotheim & Mahadevan 2004, 2005; Salez &
Mahadevan 2015; Rallabandi et al. 2017; Saintyves et al. 2020).

One, perhaps surprising, result from the original analysis of Jeffrey & Onishi (1981) is
that the hydrodynamic force on an infinite cylinder moving near a wall is independent of
its rotation rate and, by symmetry, the hydrodynamic torque on the cylinder is independent
of its translational velocity. A consequence of this fact is that there is no coupling
between rotation and translation for an infinite cylinder translating near a planar wall
in the absence of an externally applied torque. However, finite objects such as a sphere
moving near a planar wall will, in fact, respond by both rotating and translating when
either experiencing an external force, to remain torque free, or an external torque to remain
force free. For the case of a finite-length cylinder then, these facts suggest that external
forces or torques, for the cases of lateral translation and rotation, respectively, lead to a
coupling between translation and rotation and originate due to end effects. In a recent
experimental study of a finite-length cylinder sliding down a soft incline while free to
rotate, the 2-D solution for an infinite cylinder, derived by Rallabandi et al. (2017) using
the Lorentz reciprocal theorem, showed quantitative discrepancies with the experimental
results (Saintyves et al. 2020). This discrepancy led to the development of a new theory
that considers elastohydrodynamic torque as well as the viscous friction induced by the
ends of the cylinders. Saintyves et al. (2020) experimentally and theoretically showed that
the cylinder’s end-effects play a non-negligible role in the case of motion of a finite-length
cylinder and motivate this work.
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Finally, several other important works have explored various aspects of particle motion
near boundaries using slender-body theory and other asymptotic methods, some of which
examined similar configurations to that of the present study. For example, Russel et al.
(1977) used slender-body theory to model the glancing and reversing tumbling of inclined
rods settling close to a plane wall. A more recent work by Barta & Liron (1988) built on
this work using a singularity method in two regimes, where the body–wall distance was
the same order as either the body length or the body width. Youngren & Acrivos (1975)
presented a general numerical approach to calculate the Stokes flow past general shaped
bodies such as cylinders which can take into account the end effects. They applied this
method to a cylinder translating parallel to its axis. Katz, Blake & Paveri-Fontana (1975)
also considered the translational motion of rigid slender bodies near a boundary in the
limit where the radius of the body is much less than the separation to the wall, which in
turn is small compared with the radius of the body. The slender body motion has also been
considered near a flat fluid–fluid interface in contrast to a solid plane wall (Yang & Leal
1983). De Mestre & Russel (1975) used slender-body theory to calculate the total drag on
rotating and translating rods near a plane wall for body–wall separations which are large
relative to the rod radius. Two of the classic theoretical works on slender-body theory are
by Batchelor (1970) and Cox (1970), who used the slender body theory to calculate the
Stokes flow past slender bodies of arbitrary cross-section.

Another closely related work to the present study is that of De Mestre (1973), which
calculated the drag on a cylinder travelling parallel to a plane wall using slender-body
theory. The distinction from the present work is that those results are valid for cases where
the distance to the wall is large relative to the cylinder length. One of the relatively fewer
experimental studies is by Ui, Hussey & Roger (1984), who measured the drag on cylinders
travelling along their axis within a cylindrical container to quantify the wall effects.
Mitchell & Spagnolie (2015) used the method of images to model the sedimentation
of prolate and oblate spheroids near an inclined wall and suggested the possibility of
incorporating lubrication effects along the lines of those introduced in this paper. Lisicki,
Cichocki & Wajnryb (2016) derived an explicit relation for the correction to the bulk
diffusion tensor of an axially symmetric colloidal particle due to a nearby plane wall.
Finally, Koens & Montenegro-Johnson (2021) determined the drag per unit length on a
slender rod translating parallel to a wall which is valid for all separation distances. This
was achieved through asymptotic matching to the results of both De Mestre & Russel
(1975) and Jeffrey & Onishi (1981).

Here, we build on the work of Saintyves et al. (2020) and generalize their theory to
consider rotation and translation, both parallel and perpendicular to a nearby solid planar
boundary, of a finite-length cylinder (see figure 1). We use 3-D numerical simulations
of the Navier–Stokes equations to calculate the viscous and pressure forces and torques
exerted by the fluid on a cylinder for a range of cylinder lengths and cylinder-plane gap
heights. We identify conditions where the end effects dominate and drive a qualitative
deviation from the case of a 2-D infinite cylinder. In particular, in § 2, we develop theory
based on the lubrication approximation within the gap region to calculate the resistance
matrices for the cylinder motion in order to describe the relationships between the
translational and angular velocities and the forces and torques, and we develop analytical
expressions for the resistance components. Next, in § 3, we present the numerical methods
used for the 3-D simulations, and we introduce representative results and flow behaviours.
Then, we present a comparison between the theory and the numerical simulations in
§ 4, and show that the numerical results collapse to the theoretical predictions in the
long- and short-cylinder limits. Finally, in § 5, we provide discussion and conclusions.
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Figure 1. The geometrical configuration and coordinate system for a finite-length cylinder moving near a plane
wall. We consider the parallel translation (U /= 0), rotation (Ω /= 0) and perpendicular translation (V /= 0) of a
finite-length cylinder near a solid plane wall. The cylinder radius and length are a and L, respectively, and the
minimum gap height between the cylinder and the wall is h0.

Further validation of the numerical methods including the results of convergence tests can
be found in the Appendix (A).

2. Theory

The classic solution for the low-Reynolds-number motion of an infinite circular cylinder
near a plane wall is given by Jeffrey & Onishi (1981). This work introduced solutions for
three cases: translation parallel to the plane; translation perpendicular to the plane; and
rotation about the cylinder’s axis. In each case the axis of the cylinder is oriented parallel
to the plane. A key result of this work is that a force-free infinite cylinder rotating next
to a plane wall does not translate, and a torque-free infinite cylinder translating next to
a plane wall does not rotate. Here, we define the dimensionless gap height between the
cylinder and the plane wall as ε = h0/a, where h0 is the minimum gap height and a is the
cylinder radius. The shear viscosity of the fluid is μ, and the translational velocities parallel
and perpendicular to the wall and rotational velocity of the cylinder are U, V and Ω ,
respectively (see figure 1). Jeffrey & Onishi (1981) showed that the dimensionless torque
per unit length (non-dimensionalized by μΩa2) resisting motion of an infinite-length
cylinder rotating next to a plane wall is given by

τ = −4π
(1 + ε)√
2ε + ε2

. (2.1)

Furthermore, they also showed that an infinite cylinder translating at speed U parallel to
a plane wall experiences zero hydrodynamic torque and a total drag force per unit length
(non-dimensionalized by μU) that is given by

f‖=−4π log(1 + ε +
√

2ε + ε2)−1. (2.2)

In these cases, the cylinder either rotates due to the external torque per unit length but
does not translate, or it translates due to the external force per unit length but does not
rotate. Finally, Jeffrey & Onishi (1981) showed that the vertical force per unit length
(non-dimensionalized by μV) on an infinite cylinder translating at speed V perpendicular
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to a plane wall is given by

f⊥=−4π

[
log(1 + ε +

√
2ε + ε2) −

√
2ε + ε2

1 + ε

]−1

. (2.3)

Below, we will also need the relation of force and velocity experienced by a disk of radius
a and zero thickness translating edgewise. Ray (1936) determined an analytical solution
for the resistance force experienced by such a disk, and Davis (1993) generalized and
expanded this result and presented the theoretical force as

F⊥=32
3 FD, (2.4)

where F⊥ is non-dimensionalized by μVa, and FD is a higher-order dimensionless force
coefficient that has been derived by Davis (1993),

F−1
D = 1 − 2

π(1 + ε)
+ 1

3π(1 + ε)3 − 3
4π2(1 + ε)4 + 7

144π(1 + ε)5 + O
(

1
(1 + ε)6

)
.

(2.5)

The above-mentioned works focus solely on the cases of infinite- or zero-length cylinders.
Here, we focus our attention on the case of finite-length cylinders, as the importance of this
geometric feature for cylinder motion near a wall was recently highlighted by Saintyves
et al. (2020). Here, we generalize the work of Saintyves et al. (2020) and develop an
analytical description for the motion of finite-length cylinders moving near solid planar
walls (ε � 1) via a lubrication theory including the effects of the ends of the cylinder. In
this way, translation and rotation are coupled.

2.1. Lubrication theory for a finite-length cylinder: wall-parallel translation and rotation
Here, we use lubrication theory to analyse the forces and torques on a finite-length cylinder
rotating or translating close to a rigid wall, including end effects (see figure 1). The length
of the cylinder is denoted by L. The minimum separation distance between the cylinder
and the wall is assumed small relative to the cylinder radius and the cylinder length, so
h0/a = ε � 1 and h0/L � 1, so that lubrication theory is applicable. The characteristic
length scale along the gap, perpendicular to the axis of the cylinder (x), is � = √

2ah0, and
the axial ( y) length scale is L. The ratio of these two quantities is L = L/� = L/(a

√
2ε),

which may be either large or small depending on the relative magnitudes of L/a and ε.
Observe that L characterizes the aspect ratio of the lubricated region, and differs from the
aspect ratio L/a of the cylinder.

With these definitions, the gap between the cylinder and the fluid is approximated by
the parabolic function h(x) ∼ h0(1 + x2/�2), which is valid inside the lubricated region
where x = O(�). Then, the dimensional pressure p(x, y) under a translating and rotating
cylinder is governed by the Reynolds equation

∇ · (h3∇p) + 6μ(U + aΩ)
∂h
∂x

= 12μV, (2.6)

where ∇ = ex∂x + ey∂y is the gradient in the xy plane. As is standard in lubrication theory,
the pressure is nearly constant across the gap and is much greater than the pressure outside
the gap, and so p(x, y) must vanish outside the lubrication region. Along x, the outer edge
of the gap is at x = O(a) � �, so p decays smoothly as x/� → ±∞. Along y the gap
width h(x) diverges abruptly past the two end faces at y = ±L/2 and so the pressure must
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vanish at these planes. Note that, in fact, there is a finite region outside of the edge of the
gap where the pressure adjusts to the outer condition. We will later show that this region
shrinks with the gap height, and so in the lubrication limit this leads to the boundary
conditions

p(x → ±∞, y) = p(x, y = ±L/2) = 0. (2.7)

Note that this condition is analogous to other geometries with sharply sloped faces such as
slider blocks (Leal 2007).

In principle, a solution of (2.6) subject to (2.7) can be used to infer both tangential and
normal stresses, whose integrals over the cylinder surface lead to the hydrodynamic force
and torque on the cylinder. Rather than evaluate these surface integrals, we will develop an
alternative formulation using the Lorentz reciprocal theorem. We will see that this reduces
the computation of forces and torques to a single line integral that offers computational
and analytical advantages.

We introduce as an auxiliary problem the 2-D flow due to a infinite cylinder that
translates and rotates with a combination of velocity Û and angular velocity Ω̂ , associated
with the velocity field û(x) and stress σ̂ (x). This 2-D flow is well known (Jeffrey & Onishi
1981): its pressure p̂(x) is independent of y and satisfies (2.6), but with the boundary
conditions (2.7) at y = ±L/2 relaxed. We apply the reciprocal theorem (Happel & Brenner
1965; Masoud & Stone 2019) in the fluid volume Vlub under the finite-length cylinder,
bounded by the curved cylinder surface Sc, the wall Sw and the two bounding faces at the
ends Sends defined by ( y = ±L/2, 0 ≤ z ≤ h(x)). The geometry of the fluid volume being
considered in both the main and auxiliary (model) problem is shown in figure 2. Using n to
denote the normal to these surfaces into Vlub, and u(x) and σ (x) to represent the velocity
and stress, respectively, around the finite (3-D) cylinder, we obtain∫

Sc+Sends+Sw

n · σ · û dS =
∫

Sc+Sends+Sw

n · σ̂ · u dS. (2.8)

The above expression simplifies to

F · Û + T · Ω̂ − F̂ · U − T̂ · Ω =
∫

Sends

(n · σ̂ · u − n · σ · û) dS

�
∫

Sends

−p̂uyn · ey dS, (2.9)

where the approximation is valid in the lubrication limit; note that n = ∓ey at the ends at
y = ±L/2. We then substitute uy = (1/2μ)(∂p/∂y)z(z − h), consistent with lubrication,
into (2.9). We write dS = dx dz and evaluate the z part of the surface integrals on Sends
(with limits between 0 and h(x)), and utilize symmetry about y = 0 to obtain

F · Û + T · Ω̂ − F̂ · U − T̂ · Ω � 1
6μ

∫ x∞

−x∞
h3p̂

∂p
∂y

∣∣∣∣
y=−L/2

dx. (2.10)

As previously noted, the quantity x∞ = O(a) represents the outer ‘edge’ of the lubricated
film. Later, we will simply define x∞ = a and consider the limit a/� → ∞. Observe that
the present approach still involves solving (2.6), (2.7) for p(x, y), but now the forces and
torques can be determined by evaluating a line integral in (2.10) rather than a surface
integral.
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Main problem: finite cylinder Model problem: infinite cylinder

p = 0 p = 0

Sc

Sw

Sends

lub

∂p̂
∂y = 0

∂p̂
∂y = 0

(b)(a)

(c) (d )

Figure 2. The geometry of the fluid volume being considered for the application of the reciprocal theorem. In
the main problem, we consider the fluid volume directly under a finite-length cylinder, which is indicated by
the grey shaded volume bounded by the areas Sc, Sw and Sends. As an auxiliary (model) problem, we consider
the same volume, but under an infinite cylinder. Thus, for the two cases, the fluid geometry being considered
is identical, but the boundary conditions on the pressure are different, as shown. In the main problem, p = 0 at
the ends of the volume, and in the model problem ∂ p̂/∂y = 0 at the ends.

In the analysis below, it will be useful to define the dimensionless coordinates

X = x
�
, Y = y

�
, H(X) = h(x)

h0
= 1 + X2, (2.11a–c)

so that the two ends of the cylinder are at Y = ±L/2. The pressure in the auxiliary problem
involving translation and rotation is then

p̂ = μ(Û + aΩ̂)�

h2
0

2X
H2 − μV̂�2

h3
0

3
H2 . (2.12)

The corresponding force and torque are

F̂ = −2πμÛ�L
h0

ex − 3πμV̂�3L

2h3
0

ez, T̂ = −2πμaΩ̂�L
h0

ey, (2.13a,b)

which scale with the length of the cylinder L. We note that these forces and torques are the
leading terms of the 2-D results of Jeffrey & Onishi (1981) for small ε and are equivalent to
(2.1)–(2.3) in this limit. The linearity of the flows in the main problem (3-D cylinder) and
the auxiliary problem (2-D cylinder) lets us analyse rotation and the two components of
translation separately. A linear superposition of these results will yield the hydrodynamic
force and torque on a cylinder undergoing combined rotation and translation.

2.1.1. Rotation and wall-parallel translation
The case of a finite-length cylinder translating parallel to a wall and that of a rotating
cylinder will turn out to be closely related, so we consider them together. Due to
symmetry, the force is along x so we can set V̂ = 0 in the auxiliary problem without
consequence. A cylinder that translates parallel to a wall without rotation has a pressure
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p(x, y) = (μU�/h2
0)P‖(X, Y), where P‖(X, Y) satisfies the rescaled form of (2.6),

∇ · (H3∇P‖) + 6
dH
dX

= 0, with P‖(±∞, Y) = P‖(X, ±L/2) = 0. (2.14)

To isolate the force and the torque on this cylinder, we use (2.10) and set Ω̂ = 0 and Û = 0,
respectively. Utilizing the results in (2.12) and (2.13a,b), then from (2.10) we obtain the
force and torque on a translating finite-length cylinder as

F‖ = −2πμU�L
h0

+ 2μU�2

3h0

∫ X∞

0
XH

∂P‖
∂Y

∣∣∣∣
Y=−L/2

dX (2.15a)

T‖ = 2μUa�2

3h0

∫ X∞

0
XH

∂P‖
∂Y

∣∣∣∣
Y=−L/2

dX, (2.15b)

where the terms involving the integrals are due to the cylinder’s ends. A cylinder that
rotates without translating has a pressure prot(x, y) = (μaΩ�/h2

0)P‖(X, Y) where P‖(X, Y)

is the solution to (2.14); note that it is identical to p‖(x, y) with the substitution U → aΩ

due to the structure of (2.6). As before, we isolate the force and torque on the purely
rotating finite-length cylinder by setting Ω̂ = 0 and Û = 0, respectively, and use the results
in (2.12) and (2.13a,b) in (2.10) to obtain

Frot = 2μΩa�2

3h0

∫ X∞

0
XH

∂P‖
∂Y

∣∣∣∣
Y=−L/2

dX (2.16a)

Trot = −2πμΩa2�L
h0

+ 2μΩa2�2

3h0

∫ X∞

0
XH

∂P‖
∂Y

∣∣∣∣
Y=−L/2

dX. (2.16b)

Since � = √
2ah0, the prefactors of the end-correction terms in (2.15) and (2.16) are

independent of the dimensionless gap ε. This suggests a logarithmic divergence of the
integral, which is a common feature of lubrication problems involving curved surfaces
(Claeys & Brady 1989). To evaluate the integrals, we consider the limit X∞ = O(a/�) � 1.
For long cylinders (L � a), the integrals are expected to scale as log ε as suggested by
Saintyves et al. (2020). We will see that the dependence is more complex for a finite aspect
ratio L/a. To obtain insight into this dependence, we require a precise X∞ beyond orders
of magnitude and define X∞ ≡ a/� = (2ε)−1/2 as the outer edge of the lubrication region.
The arbitrary choice of prefactor in this definition will be absorbed into the contribution
of the flow ‘outside’ the lubricated layer and will be later addressed by comparison with
direct numerical simulations.

Including the contribution of the flow outside the lubrication layer, the force and torque
on a cylinder undergoing a combination of wall-parallel translation and rotation can be
written compactly in terms of a resistance matrix[

F
T

]
=

[
RFU RFΩ

RTU RTΩ

] [
U
Ω

]
, with (2.17a)

RFΩ = RTU = μa2(I + cFΩ), (2.17b)

RFU = −2
√

2πμL√
ε

+ μa(I + cFU), (2.17c)

RTΩ = −2
√

2πμa2L√
ε

+ μa3(I + cTΩ), (2.17d)
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where

I(ε, L/a) =
∫ 1/

√
2ε

0

4XH
3

∂P‖
∂Y

∣∣∣∣
Y=−L/2

dX, (2.18)

which depends on both ε and L/a (equivalently X∞ and L). The constants cFΩ , cFU

and cTΩ are contributions from the flow outside the lubrication region and depend only
on L/a in the limit ε → 0. The cross-coupling terms RFΩ = RTU are identical due to
the symmetry of Stokes flows (Hinch 1972) and are absent for infinite cylinders without
end effects (Jeffery 1922). The other two resistance coefficients RFU and RTΩ involve
corrections relative to their infinite-cylinder limits due to end effects. All of the end-effect
resistance terms depend on the single integral I, which requires the solution to (2.14). Note
that (2.17) does not require that the end effects are small corrections, and are therefore
applicable to arbitrary L/a.

We solve the problem (2.14) by replacing the right-hand side with ∂p/∂t and use
numerical integration until we achieve a steady solution for different values of L. We
then evaluate (2.18) for different X∞ = (2ε)−1/2, ensuring that the solution domain
is much wider than X∞. This procedure produces numerical estimates for I within
lubrication theory that depend on both ε and L/a. Below, we analyse the solutions of (2.14)
asymptotically in the limit of small ε, assuming finite L/a, and estimate the integral I. We
separately analyse two limits L � 1 and L � 1 and then construct an approximation valid
for all L.

2.1.2. Rods and thick disks: L � 1
The limit L � 1, which is equivalent to L � a(2ε)1/2, corresponds both to rods and thick
disks. We first consider L → ∞, where the 3-D flow due to one end is isolated from that of
the other, and focus on the flow around the end at Y = −L/2. Observing that the solution
depends on X only through H(X), we change the independent variable from X to H. Next,
we note that the only length scale in the limit L → ∞ is �, which motivates the similarity
variable η = (Y + L/2)/

√
H, which behaves as (Y + L/2)/X for large X.

We seek a solution of the form P‖ = 2X/H2(1 − q(H, η)) and recall that 2X/H2

corresponds to the 2-D limit (see (2.12)), so −2X/H2q(H, η) is the contribution from
end effects. Substituting this ansatz into (2.6), q(H, η) is found to satisfy

4(H − 1)

(
H

∂2q
∂H2 − η

∂

∂H
∂q
∂η

)
+

(
1 + η2 − η2

H

)
∂2q
∂η2

+ 2(H + 2)
∂q
∂H

+
(

2 − 5
H

)
η

∂q
∂η

− 6q = 0 (2.19a)

with q(H, 0) = 1, q(H, ∞) = 0, (2.19b)

which is an exact transformation of (2.6) and (2.7).
Rather than solve (2.19) exactly, we develop an approximation valid for large H

(equivalently, large X). The structure of the equation and the boundary conditions suggest
a power series

q(H, η) = q0(η) + H−1q1(η) + · · · . (2.20)

Inserting this expansion into (2.19) we find at leading order,

(1 + η2)q′′
0 + 2ηq′

0 − 6q0 = 0; with q0(0) = 1, q0(∞) = 0, (2.21)
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which admits the solution

q0(η) = (3η2 + 1)(π − 2 arctan η) − 6η

π
. (2.22)

The pressure due to the end at Y = −L/2 is therefore approximately

P‖(X, Y) � 2X
H2

(
1 − q0

(
Y + L/2√

H

))
, (2.23)

valid for large H (or large X).
To construct a solution accounting for both ends for finite L � 1, it is necessary to

evaluate the pressure produced by (2.23) at the opposite end Y = L/2. This can then
be corrected to accommodate the zero pressure condition, for example by a series of
successive reflections. Relative to the 2-D pressure 2X/H2, this pressure perturbation is
q0(L/

√
H), which behaves as

q0
(L/

√
H(X)

) ∼

⎧⎪⎨
⎪⎩

8(1 + X2)3/2

15πL3 , X � L,

1 + O(L/X), X � L,

(2.24a)

(2.24b)

valid for L � 1. Observe that while the similarity solution produces a small O(L−3) error
at the opposite end for X � L, the error is O(1) for X � L. Thus, the similarity solution
is not uniformly convergent to the exact solution for L � 1 but is rather part of an ‘inner’
solution valid for X � L.

From (2.24) we expect that an ‘outer’ solution different to (2.23) must dominate for
X � L � 1. We identify this outer solution by approximating H ∼ X2 for large X > 0 and
seek separable solutions of (2.14) to find

p(X � L) ∼ 3
2X5

(
L2 − 4Y2

)
+

∑
n=1,3,5,...

cnϕn(x) cos (nπY/L) , (2.25a)

where ϕn(X) = e−nπX/L

X5

(
3 + 3nπY/L + (nπX/L)2

)
. (2.25b)

The coefficients cn are obtained by matching to the inner solution. For long cylinders
L � 1, the ‘inner solution’ throughout most of the domain apart from regions close to each
end is the 2-D pressure 2X/H2, which decays as X−3. Thus, the dominant X−5 behaviour
of the first term of the outer solution (2.25) must be suppressed for small X/L to match
with the inner solution. Projecting the first term in (2.25a) onto a basis of cos(nπY/L),
this matching condition yields the coefficients cn = −16L2 sin(nπ/2)/(nπ)3.

We now have two approximations for the pressure: (2.23) for 1 � X � L and (2.25)
for X � L, which are smoothly matched around X = O(L). The integrand of (2.18) is
therefore

4
3

XH
∂P‖
∂Y

∣∣∣∣
Y=−L/2

∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

64X2

3π(1 + X2)3/2 , X � L,

8L
X2 −

∑
n=1,3,5,...

64L
3n2π2 X3ϕn(X), X � L.

(2.26a)

(2.26b)

With this formulation, (2.26b) matches smoothly onto (2.26a) as shown in figure 3. We
note that (2.26a) is formally only valid for 1 � X � L since (2.22) only approximately
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Motion of finite-length rods near solid boundaries
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L = 10
8L

64
3πX

X L/a

I

(4
/3

)X
H

(∂
p/

∂
y)

| Y=
–
L/

2

X2
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ε = 0.01

ε = 0.02

ε = 0.05

ε = 0.1

(b)(a)

Figure 3. (a) Kernel 4
3 XH(∂P‖/∂Y)|Y=−L/2 of I (2.18) for L = 10, showing the numerical solution of the

lubrication problem (solid black curve), the approximate inner solution (2.26a) (dot–dashed red curve) and the
outer solution (dashed green curve). Asymptotes of the inner and outer solutions are indicated showing smooth
matching between the two at X = O(L). (b) The integral I(ε, L/a) for different combinations of ε and L/a
showing numerical results (symbols) and the analytic approximation (2.29).

solves (2.19), although it provides a good approximation to numerical solutions even for
X = O(1), as seen in figure 3. Comparing the leading terms of the two estimates in (2.26)
confirms the crossover at X = O(L) that we anticipated earlier.

Integrating the asymptotic solution (2.26) between 0 < X < X∞ (recall that X∞ =
(2ε)−1/2) yields the resistances defined in (2.17). Due to the slow X−1 decay of the inner
integrand (2.26a), the integral depends on the relative magnitudes of X∞ and L. For long
rods with a � L (or X∞ � L) only the inner solution is relevant to the integral, so I scales
as log(ε−1), as shown in Saintyves et al. (2020). Conversely, for thin disks with a � L (or
X∞ � L � 1), the inner part of the solution is cut off by the crossover at X = O(L),
giving rise to a result that behaves as log(L). For intermediate a/L we integrate (2.26)
using standard asymptotic techniques, adding its inner and outer parts and subtracting off
the common part 8L/X2. This result will be presented shortly after a brief discussion of
the disk limit.

2.1.3. Disks: L � 1
For very thin disks (L � � or L � 1), pressure gradients along Y are more important than
those along X. Then (2.6) reduces to H3∂2

YP‖ ≈ −6∂XH, with the boundary conditions
(2.7), which yields

P‖(X, Y) = − 6X
(1 + X2)3 (Y2 − (L/2)2) (L � 1). (2.27)

Now, the relevant integral in (2.17) is

I =
∫ 1/

√
2ε

0

4
3

X(1 + X2)
∂P‖
∂Y

∣∣∣∣
Y=−L/2

dx = 2πL − 8L
a

(L � 1), (2.28)

up to corrections of O(ε).
Synthesizing the results for large and small L, we construct a uniform approximation

for all L in terms of a rapidly converging series

I(ε, L/a) � 64
3π

sinh−1
(

L

a
√

2ε

)
− 8L

a
+

∑
n=1,3,5,...

64 e−nπa/L
(

1
3nπ

+ L
an2π2

)
,

(2.29)
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which is valid for ε � 1, and we recall that L = L/(a
√

2ε). This approximation is
obtained from the asymptotic integration of (2.26) at large L, with the modification
log(2L) → log(L + √

1 + L2) = sinh−1 L to accommodate the linear dependence (2.28)
for small L. Comparing (2.29) with the numerical solution of the Reynolds equation shows
excellent agreement for ε � 0.02 (or X∞ � 5) for all L/a as shown in figure 3(b). In the
limit of long and short cylinders, the approximation of this integral representing the end
effects converges to

I ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

32
3π

log
8L2

a2ε
, a � L,

32
3π

(
log

π2

2ε
− 3

)
, a � L.

(2.30a)

(2.30b)

Observe that the integral behaves as I ∼ 32/(3π) log(1/ε) up to additive constants
involving L/a. This logarithmic dependence on ε was identified in Saintyves et al. (2020).
While the present theory also quantifies the role of L/a, the resistances (2.17) involve
further additive constants (cFΩ, cFU, cTΩ) due to the flow outside the lubrication layer
that may also depend on L/a. Later, we will show that (2.29) captures much of the L/a
dependence of the full numerical simulations for small ε.

2.2. Lubrication theory for motion normal to the wall
When the cylinder translates normal to the wall, there is no torque by symmetry and
the hydrodynamic force opposes motion. Now, the pressure in the lubrication region
is p(x, y) = (μV�2/h3

0)P⊥(X, Y), where P⊥(X, Y) satisfies the rescaled version of (2.6)
given by

∇ · (H3∇P⊥) = 12, with P⊥(±∞, Y) = P⊥(X, ±L/2) = 0. (2.31)

Utilizing the reciprocal formulation (2.10) with the 2-D results (2.12) and (2.13a,b), we
find the wall-normal force on the finite-length cylinder to be

F⊥ = −3
√

2πμVL
ε3/2

(
1 − J (L)

6πL
)

, whereJ (L) =
∫ ∞

0
4H

dP⊥
dY

∣∣∣∣
Y=−L/2

dX, (2.32)

where the first term is the 2-D result (Jeffrey & Onishi 1981) and the second is due to end
effects. Here, we have pre-emptively taken the limit X∞ → ∞ since the integrals will turn
out to converge rapidly. Observe that J depends solely on L = L/

√
2aε for small ε, in

contrast to I, which depended separately on ε and L/a.
For disks with L � 1, we approximate ∂2

YP⊥ � ∂2
XP⊥ as before and find

P⊥(X) � − 6
(1 + X2)3 (Y2 − (L/2)2) =⇒ J � 6πL (L � 1). (2.33)

For large L, the same type of solution structure holds as before: an inner (isolated-ends)
solution dominates for X � L and gives way at x � O(L) to a more rapidly decaying outer
solution. This time, we find the inner solution itself decays more rapidly than before, such
that 4H∂P⊥/∂Y|Y=−L/2 ∼ 9πX−3 for 1 � X � L. This means that the inner solution
dominates the integral J for large L and converges to a finite constant, and the outer
solution contributes an amount O(L−2), which is negligible.
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L ( = L/(a�2ε))

J

Figure 4. Numerical results for J (L) from (2.32) predicted by lubrication theory for the problem of motion
normal to the wall, showing the analytical result J ∼ 6πL for small L. The horizontal dashed line at J =
24.25 is the asymptote at large L inferred from the numerical results.

For arbitrary L we calculate J (L) from a numerical solution of (2.31). The result is
shown in figure 4, which demonstrates the predicted asymptotic behaviour J ∼ 6πL at
small L. From the numerics, we infer J (L → ∞) ≈ 24.25. Later, we will compare the
lubrication result (2.32) for the hydrodynamic force for wall-normal translation, as well as
the ones for rotation and wall-parallel translation, with direct numerical simulations of the
3-D flow. These simulations are described in the next section.

3. Simulations

Three-dimensional numerical OpenFOAM simulations were used to solve the
zero-Reynolds-number flow fields around finite-length cylindrical rods rotating and
translating parallel or perpendicular to a nearby planar boundary. In this section, we
describe the numerical methods used and give representative results to illustrate the fluid
dynamics in such systems. The computational domain and the mesh design are described
in Appendix A.1, and the numerical method and boundary conditions applied are
described in Appendix A.2. Simulations were performed for a range of ε = h0/a and L/a
for different translation and rotation cases. A visual representation of the computational
results is presented in § 3.1, and a detailed comparison between the theoretical and
numerical results is given in § 4.

Note that in typical related experimental systems, the most common scenario would be
the case of an object under the action of an external force such as gravity or an external
torque such as an applied magnetic torque. In the case of an external force, the object
will naturally translate and rotate such that the object is torque free. Likewise, in the case
of an external torque, the object will translate and rotate such that it is force free. In the
numerical simulations in this work, we directly impose the motion of the finite-length
cylinders, either rotation-free translation or translation-free rotation, and then measure
the resultant forces and torques. Thus, we occasionally reference, for example, the torque
due to translation or the force due to rotation, though we recognize that in most common
scenarios the cylinder will be torque free or force free, depending on the situation.
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3.1. Simulation results
In order to motivate and give some physical insights into the fluid dynamics of the present
system, we first present results of the numerical simulations that are representative of the
flow behaviours that we characterize. First, in figure 5, we give a streamline visualization
of the flow patterns seen in each of the three cases: rotation next to the wall (figure 5a);
translation parallel to the wall (figure 5b); and translation normal to the wall (figure 5c).
Here, the cylinder has an aspect ratio of L/a = 10.0. Streamlines were generated inside
the gap, and the figure is visualized from below the cylinder (the perspective is looking
through the plane wall at the streamlines inside the gap). As can be seen, the streamlines
near the cylinder ends are significantly distorted out of plane, leading to the force and
torque deviations from the infinite cylinder calculations. For example, fluid near the ends
preferentially tries to go around the cylinder rather than through the gap due to the
large pressures there. This effectively reduces the total width of the lubrication layer that
resembles the 2-D limit. These 3-D effects in the gap account for the majority of the
hydrodynamic torque and force on the parallel translation and rotation cases, respectively,
as well as the deviation of the hydrodynamic force on the normal translation case from
the2-D result. Thus, the theoretical analysis of the lubrication layer can allow us to predict
the rotation speed of a freely translating cylinder near a planar boundary, for example.
Note that the flat end surfaces themselves also contribute an additional component to
the deviation of the forces and torques on such cylinders, but for small ε the dominant
contribution comes from the lubrication layer.

Next, we show representative velocity and pressure profiles within the gap for each of
the three cases. Figure 6 shows the dimensionless velocity and pressure profiles located
on the plane midway between the wall and the nearest edge of the cylinder, looking
from below the cylinder, for the case of translation parallel to the plane wall. Results
are presented for a range of dimensionless gap heights ε = h0/a. Here, the pressure has
been non-dimensionalized by μ�U/h2

0. As the gap height decreases, the lubrication layer
becomes narrower, since the characteristic width of this layer is � = √

2ah0. One of the
key things to learn from this visualization is the distribution of uy near the cylinder ends.
Due to the large pressures needed to drive the flow through the lubrication layer, near
the ends we see that the flow preferentially is directed around the cylinder, as opposed to
through the gap. As mentioned, this leads to an effective shortening of the 2-D portion
of the lubrication layer as the region near the ends becomes 3-D, and these 3-D regions
are largely responsible for the deviations from the 2-D infinite cylinder predictions as
described in the lubrication theory developed in § 2.

Figure 7 shows similar results for the case of a rotating cylinder, and figure 8 shows the
results for the case of a cylinder translating normal to the plane wall. Qualitatively, the
results for the rotation case are quite similar to the case of translation parallel to the wall
except for the velocity component in the x-direction. In the rotation case, the maximum ux
is aligned with the cylinder axis in the figure view, whereas the maximum ux is located at
an offset from the cylinder axis for the case of translation parallel to the wall. The case of
wall-normal translation shows slightly different behaviour in figure 8. Here, the ux and uy
profiles generally show the expected behaviour, which is that the fluid is pulled into the
lubrication layer along the length of the cylinder and at the ends (note that the figure uses
V > 0, i.e. translation away from the plane wall). Furthermore, the uz panel shows that
the direction of flow directly under the cylinder is in the direction of the cylinder motion,
as expected. Finally the p panel shows that a strong pressure is developed throughout the
entire lubrication layer attempting to restrict the motion of the cylinder.
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(a) (b) (c)
ε = 0.04

ε = 0.1

ε = 0.2

ε = 0.4

ε = 1

1.0 0.9 0.8 0.7 0.6

ǀuǀ/(aΩ) ǀuǀ/U ǀuǀ/V

0.5 0.4 0.31.0 0.9 0.8 0.7 0.6 0.46 1.00 0.50 0.20 0.10 0.05 0.02 0.01

Figure 5. Numerically computed streamlines for the flow driven by a finite-length cylinder (a) rotating, (b)
translating parallel to and (c) translating perpendicular, and away from, a nearby plane wall. Here, the cylinder
has L/a = 10, and the view is from below the cylinder (i.e. looking through the plane wall at streamlines
within in the gap). The arrows represent the direction of the streamlines. Far from the ends of the cylinder,
we see the approximate 2-D solution expected for an infinite cylinder. Near the end of the cylinder, there is
a visible distortion of the streamlines as the flow in the lubrication layer deviates from the 2-D solution and
becomes fully 3-D. This deviation of the flow from the 2-D result in the outer extent of the lubrication region
results in the end effects experienced by finite-length cylinders. As ε decreases, the extent of this deviation
region decreases. Note, for the translation parallel to the wall case, the reference frame when generating the
streamlines has been shifted so that the cylinder is stationary.
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Figure 6. Dimensionless velocities and pressures inside the gap for the case of a finite-length cylinder (aspect
ratio L/a = 10) translating parallel to the wall. Results are plotted on a slice parallel to the plane boundary
through the midpoint of the gap for different dimensionless gap heights ε = h0/a. The upper panel (a)
illustrates the perspective that is used to generate these panels and those of the following two figures as well,
while (b–e) show the non-dimensional velocity and pressure components.
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Figure 7. Dimensionless velocities and pressures inside the gap for the case of a finite-length cylinder (aspect
ratio L/a = 10) rotating near a plane wall. Results are plotted on a slice parallel to the plane boundary through
the midpoint of the gap for different dimensionless gap heights ε = h0/a.

Figures 5, 6, 7 and 8 are presented to give a visual representation of the flow dynamics
in the three considered cases of cylinder motion. Each result clearly illustrates the strong
influence of the end effects on the system, either through significant distortions of the
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Figure 8. Dimensionless velocities and pressures inside the gap for the case of a finite-length cylinder (aspect
ratio L/a = 10) translating normal to a plane wall. Results are plotted on a slice parallel to the plane boundary
through the midpoint of the gap for different dimensionless gap heights ε = h0/L.

streamline motions away from parallel, or through the depiction of the leakage from the
lubrication layer at the ends. Together, these distortions can lead to significant deviations of
the fluid dynamics (as well as the resultant forces and torques on the cylinder) from the 2-D
infinite cylinder cases. In the following section, the results of the numerical simulations
are compared quantitatively with the theoretical predictions given in § 2.

4. Comparison between theory and simulations

In this section, we compare the results of our 3-D numerical simulations (§ 3) with the
lubrication theory of § 2 as well as with results from the literature. First, we present the
calculated forces and torques from our 3-D numerical simulations and compare these
with theoretical predictions for both the infinite (L/a → ∞) 2-D cylinder case and the
infinitesimally thin disk case (L/a → 0). These results are presented in figure 9 for the
non-dimensional force per unit length on a cylinder translating parallel to a nearby plane
wall (figure 9a). The non-dimensional torque per unit length on a rotating cylinder near
a plane wall is shown in figure 9(b). The non-dimensional force per unit length on a
cylinder translating perpendicularly towards a plane wall is shown in figure 9(c), and the
non-dimensional force on short cylinders translating perpendicularly towards a plane wall
is shown in figure 9(d). Several key results can be seen from these plots. First, in both the
translation and rotation cases, the forces and torques increase as the gap height decreases
due to the increasing importance of the lubrication layer. As the gap height increases, the
results approach those of a cylinder suspended in an infinite bath of fluid, independent of
h0 and dependent only on L and a. For the case of a cylinder translating perpendicularly
towards a plane wall, the forces diverge as ε → 0, and as ε → ∞ the forces approach
the same limits as in the case for translation parallel to the wall as the effects of the wall
diminish.

For both long cylinders and thin disks, our numerical simulations confirm the theoretical
predictions of Jeffrey & Onishi (1981) given by (2.1), (2.2) and (2.3) as well as the
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Figure 9. Numerical results for the forces and torques generated by the three cases of cylinder motion: parallel
translation; rotation; and normal translation. For long cylinders, the results collapse to the predictions of Jeffrey
& Onishi (1981), and for short cylinder lengths the normal translation results approach the theoretical result for
flat disks given by Davis (1993). (a) Non-dimensional force per unit length on a cylinder translating tangentially
to a nearby plane wall. (b) Non-dimensional torque per unit length on a rotating cylinder near a plane wall.
(c) Non-dimensional force per unit length on a cylinder translating perpendicularly towards a plane wall.
(d) Non-dimensional force on a disk translating perpendicularly towards a plane wall.

prediction of Davis (1993) given by (2.4). As can be seen, as L → ∞ the numerical results
collapse to the 2-D predictions of Jeffrey & Onishi (1981). Here, the theoretical prediction
curves on figures 9(a), 9(b) and 9(c) correspond with (2.2), (2.1) and (2.3), respectively.
The 2-D theoretical predictions begin to work well for L/a of the order of 10, though the
deviations increase at larger gap heights. Finally, for very short cylinders, the numerical
simulations support the theoretical predictions of Davis (1993), who analysed the motion
of an infinitesimally thin disk settling edgewise towards a plane boundary. In figure 9(d),
the theoretical prediction corresponds to (2.4). Note that the 2-D infinite cylinder theory
developed by Jeffrey & Onishi (1981) demonstrated that the hydrodynamic torque on an
infinite cylinder is zero when translating parallel to a nearby wall, and the hydrodynamic
force is zero on an infinite cylinder rotating next to the wall. The coupling of rotation
and translation in the finite-length cylinder cases arises from the end effects, just as the
deviations from the 2-D theories in figures 9(a), 9(b) and 9(c) likewise arise from the end
effects. Finally, note that for small gaps, the lubrication layer dominates, and the force and
torque values per unit length approach the theories in figures 9(a) and 9(b) even for the
smaller cylinder lengths.
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In § 2, we developed a 3-D theory that incorporates the effects of the ends on the
forces and torques experienced by the cylinder. As part of this process we obtained
a simplified equation for the fluid pressure in the lubrication layer. From this model,
the pressure is calculated numerically by solving a time-dependent version of (2.14),
in which the right-hand side is replaced by ∂p/∂t, leading to a diffusion-like equation.
Numerical integration of this equation leads to a converged solution of the original
lubrication equation given by (2.14). The fluid pressure calculated from a numerical
solution to lubrication theory is compared with the results from the full 3-D numerical
Navier–Stokes simulations for the case of a cylinder translating parallel to the plane wall,
shown in figure 10. Note that these results correspond to one quarter of the domain
and are antisymmetric about x = 0 and symmetric about y = 0. The results in figure
10(a,c,e,g,i) labelled ‘CFD Results’ are taken from the 3-D numerical simulations (§ 3)
and correspond to the dimensionless pressures on the planar boundary wall. Since the
pressure is approximately constant across the width of the lubrication layer when ε � 1,
this effectively represents the pressure in the gap. Here, the red dashed lines represent the
extent of the cylinder. Figure 10(b,d, f ,h,j) corresponds to the numerical solution of the 2-D
partial differential equation developed for the lubrication theory above. As can be seen, the
agreement between the results of the 3-D simulations and the lubrication theory is very
close for small ε. Note that one key difference between the two sets of results is that the
lubrication theory assumes the pressure has compact support within the lubrication region,
which is seen by the fact that the pressure is identically zero for Y values beyond the end of
the cylinder, whereas in the 3-D simulation results, the pressure adjusts to the outer flow
through a region beyond the end of the cylinder that is seen to grow as ε increases.

Next, in order to show a more quantitative comparison between the lubrication theory
and the 3-D simulation results, we plot the pressure values in the gap along the length
of the cylinder for a range of gap heights and positions inside the gap, as displayed in
figure 11. The pressure along the length of the cylinder at a fixed position in the gap of
x/

√
2ah0 = 0.5 is shown in figure 11(a) for a cylinder translating parallel to the plane

wall for a variety of gap heights. Here, the dashed lines indicate the predictions of the
lubrication theory, and the solid lines indicate the predictions of the 3-D CFD results.
As mentioned, the results of lubrication theory show the assumption of compact support
within the lubrication layer, with P → 0 at y = yend, whereas the CFD results show that
the pressure goes through an adjustment region outside of the gap. However, for smaller
gap sizes, this adjustment region shrinks and the results approach the predictions of the
lubrication theory. Figure 11(b) shows a similar comparison, except varying the position
inside the gap and holding ε = 0.04 constant. These results again show a reasonable
agreement between the CFD results and the lubrication predictions, which improves for
smaller ε. The results show the non-monotonic behaviour of the pressure with position
inside the gap, with the pressure curves first increasing and then decreasing with increasing
x/

√
2ah0.

Next, we compare the numerically computed forces and torques due to the end effects
with the theoretical predictions developed in § 2. First, we show a comparison between the
dimensionless torque on a cylinder translating parallel to a nearby plane wall calculated
from the 3-D numerical simulations with the theoretical results described above. These
results are shown in figure 12. Here, the filled data points correspond to the results of
the 3-D numerical simulations, and the coloured curves correspond to the theoretical
predictions given by (2.17). In figure 12(a), the solid coloured lines use values for the
integral I that are approximated by (2.29). Recall that this approximate I is strictly valid
in the limit ε � 1, and there is an O(1) correction term given by cFΩ to be added to
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Figure 10. Non-dimensional pressure in the gap for a cylinder translating parallel to a plane wall with
L/a = 10. Red dashed lines indicate the cylinder’s boundary. Panels (a,c,e,g,i) correspond to the results from
the computational fluid dynamics (CFD) simulations, and (b,d, f,h,j) correspond to the predictions of the
lubrication theory. Results for (a,b), (c,d), (e, f ), (g,h) and (i,j) are for increasing gap heights of ε = 0.02,
0.04, 0.1, 0.2 and 0.4, respectively.
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Figure 11. (a) Non-dimensional pressure inside the lubrication layer plotted along the gap at a position of
x/

√
2ah0 = 0.5 for a cylinder translating parallel to the plane wall. Dashed lines represent the predictions

of the lubrication theory and solid lines represent the results of the 3-D numerical simulations. Whereas the
lubrication theory assumes the pressure has compact support inside the lubrication layer, the CFD results show
an adjustment region just beyond the edge of the cylinder. As the gap height decreases, this adjustment region
shrinks and the CFD results approach the prediction of lubrication theory. (b) Non-dimensional pressure in the
gap at different locations x/

√
2ah0 for a cylinder translating parallel to the plane wall with ε = 0.04. Dashed

lines show the predictions of lubrication theory, and solid lines show the CFD results.

8

6

4

2

8

6

4
0 2 4

–1

0

1

2

0

0 2 4 6 8 10 10–2 10–1

L/a

S
h
if

t

h0/a
100 101

T/
(μ

a2
U

)

(b)(a)
ε = 0.02
ε = 0.04
ε = 0.1
ε = 0.2

0.1
0.2
0.4
1
2
4

L/a

L
Figure 12. Dimensionless torque (in units of μa2U) for a cylinder translating parallel to a plane wall. Data
points correspond to the 3-D numerical simulation results, and the solid lines correspond to the theoretical
predictions given by (2.17). In (a), the integral I has been approximated via (2.29) to calculate the theoretical
torque. In the limit of ε → 0, these data can be used to calculate the contributions due to the flow outside the
lubrication layer given by cFΩ(L/a). In (b), the dimensionless torque values are again presented, but now as a
function of h0/a. Here, the integral I has been calculated exactly, and the corresponding predictions are given
by the solid lines. Dashed lines indicate the prediction using the analytic approximations for I as in (a). Here,
the shift cFΩ(L/a) has been calculated explicitly and applied to the theoretical results.

the theoretical result, which is a function of L/a in this limit. To illustrate this point
further, figure 12(b) shows the non-dimensional torque data versus ε = h0/a with the
ε-independent cFΩ shift term estimated as the difference between the simulation and
lubrication predictions at the smallest simulated ε and added to the theoretical result,
which better illustrates the agreement between the theory and simulations. These results
confirm that the lubrication theory developed in § 2 can successfully predict and account
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Figure 13. Non-dimensional force per unit length on a cylinder translating normal to a planar boundary. The
black data points correspond to the numerical data for the lubrication theory developed in (2.32). The black
dashed line represents the limit as ε → 0 for the 2-D theory of Jeffrey & Onishi (1981) given by (2.3). The
coloured data points represent the results of full 3-D numerical simulations. As can be seen, the perpendicular
force for the finite-length cylinders approaches the predictions of the lubrication theory as ε → 0.

for the finite-length effects of cylinders moving near planar boundaries. Specifically, the
results show good agreement for small ε. In particular, for all the cases we have compared,
the relative error of the lubrication theory is less than approximately 20 % for ε < 0.1,
with smaller errors for larger L/a, as expected. For L/a = 4, the relative errors are less
than 10 % for ε even up to 0.5. As ε increases, the lubrication theory breaks down, as the
torque on a finite-length cylinder translating parallel to a plane wall decays to zero as the
gap height increases.

Finally, we also compare the results of the 3-D numerical simulations with the
theoretical lubrication results for the case of a finite-length cylinder translating normal to a
plane wall. The dimensionless force per unit length F⊥/L (in units of μa2V/h0) is shown
for this case in figure 13 as a function of L. Here, the solid black data points correspond to
the results from the lubrication theory given by (2.32) with the integral J (L) calculated
numerically. The coloured data points correspond to the results of the 3-D simulations
and collapse towards the results of the lubrication theory for small ε. The dashed black
line corresponds to the asymptotic limit of F⊥/L for L � 1 and ε � 1, corresponding
to the 2-D predictions. As can be seen in the comparisons presented in figures 10, 11,
12 and 13, the lubrication theory developed in § 2 successfully models the pressures and
forces generated within the gap, and the results agree well with the numerical simulations,
especially for small ε.

5. Discussion and conclusions

In this paper, we have developed a lubrication theory to predict the dynamics of 3-D finite
cylindrical rods that are translating both parallel and perpendicular, as well as rotating,
near a rigid plane wall at zero Reynolds number. A 3-D theory was developed based
on lubrication theory to characterize the pressure and velocity profiles as well as the
hydrodynamic resistances that take into consideration the finite-length end effects. The
hydrodynamic resistances calculated in (2.17) relate the forces and torques on the cylinder
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with the translational and angular velocities. Analytical results for the hydrodynamic
resistances were developed for each of the three types of motion investigated in this study
for cases of both rods and thick disks (L � 1) as well as thin disks (L � 1). These results
involve the calculation of the integrals I and J , which can be calculated explicitly via
numerics, or approximated in certain regimes as described in § 2. These results are valid
up to an O(1) constant that represents the contribution of the flow outside the lubrication
region. We used 3-D numerical simulations to calculate the viscous and pressure forces
and torques experienced by such finite-length cylinders for a range of cylinder lengths L/a
and gap heights h0/a, and we used these results to validate the lubrication theory and
explicitly calculate the O(1) shift term cFΩ .

Using the numerical simulations, we have shown that end effects play a non-negligible
role in the cylinder motion. The flow visualizations show that the impact of end effects
creates significant distortions of the streamlines relative to the 2-D case, and ‘leakage’
from the gap at the cylinder’s ends effectively causes the region of the lubrication layer
near the ends to acquire fully 3-D features. The end effects contribute to the hydrodynamic
torque and force on the cylinders, resulting in deviations from the classic predictions for
the 2-D infinite cylinder cases. For example, in the 2-D limit, the hydrodynamic force on
a rotating cylinder and the hydrodynamic torque on a cylinder translating parallel to the
boundary are both identically zero. Thus, any force or torque in these two scenarios for
finite-length cylinders must arise from the end effects. The lubrication theory we have
presented and validated shows how these end effects result in additional hydrodynamic
force and torque contributions for the finite-length cylinders. We have also confirmed that
our numerical simulations are consistent with prior predictions found in the literature
for the 2-D infinite cylinder case considered by Jeffrey & Onishi (1981) and for the
infinitesimally thin disk case investigated by Davis (1993). We also compared the pressure
predictions in the gap developed by the lubrication theory with results of the 3-D numerical
simulations and found good agreement.

One curious result that we briefly comment on here is the flow adjustment region outside
of the gap. Recall that this region is neglected in our lubrication theory, in which the
pressure vanishes at the two ends of the cylinder beyond which the ‘gap’ is no longer
well defined. The pressure adjustment from the inner (lubrication) to outer flow appears
to follow a universal curve for small ε when the non-dimensional pressure P is scaled
by ε1/2, and the axial coordinate ( y − yend) is scaled by h0, as shown in figure 14. Note
that this result is for the case of a finite-length cylinder translating parallel to the plane
boundary, calculated at the fixed position X = 0.5. This universal behaviour indicates that
the pressure adjustment occurs over a region of O(h0); the pressure scaling follows from
matching with the lubrication solution. For now, we leave this universal adjustment region
as an observation to potentially motivate future work and suggest that additional theory
may leverage this result to better understand the flow outside the ends of the lubrication
region and offer even more accurate corrections to the calculated forces and torques.

In conclusion, we have developed a lubrication theory that successfully accounts for
the finite length effects of cylinders moving near planar boundaries, and we have used
fully 3-D numerical simulations to validate these results and explicitly calculate the
contributions of the flow outside the lubrication region. Together, these results reveal the
role of the end effects in determining the torque and force contributions on the cylinders.
Our proposed theory provides analytical expressions for the various configurations,
which will be valuable for understanding the dynamics of suspended objects moving
near solid boundaries. Building on these results, future work may consider extensions
of these theories to finite Reynolds numbers or the dynamics of differently shaped
particles.
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Figure 14. Non-dimensional pressure in the lubrication layer for a finite-length cylinder translating parallel
to a planar boundary at the fixed location X = 0.5. These results are extracted from the fully 3-D numerical
simulations and highlight the universal collapse of the adjustment region beyond the end of the cylinder. Here,
we have rescaled the pressure P by ε1/2 and the axial position y − yend by h0. As can be seen, with this scaling,
the pressure relaxation outside the gap follows a universal curve for small gap heights.
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Appendix A. Numerical details

A.1. Computational domain and mesh design
The geometry of the system was shown previously in figure 1. The computational domain
for the fluid simulations consists of the volume filling the space of a large bounding
box around the finite-length cylinder near a plane wall (the lower face of the bounding
box). Computational meshes were generated in OpenFOAM using the snappyHexMesh
preprocessing utility, which takes as inputs a regular block mesh generated via the
blockMesh utility and an STL file of the cylinder to be cut out of the domain. Progressive
levels of local refinement were achieved via snappyHexMesh in order to gradually reduce
the grid refinement away from the cylinder in all directions. The addLayers option was
also used to introduce several thin surface cells on the body of the cylinder in order to
improve the computation of the stresses on the surface.

Several slices taken from a sample simulation domain illustrating the mesh design are
shown in figure 15. Figure 15(a) shows a slice taken through the centre of the cylinder,
normal to its axis, and figure 15(b) shows a closer view of this slice. Figure 15(c) shows
a slice through the cylinder along its axis, and figure 15(d) shows a close-up of this slice
centred around the cylinder. In this example, the cylinder length is equal to two cylinder
diameters, and the gap height is equal to 0.1 cylinder diameters. The minimum distance
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z

z

x

y

(b)(a)

(c) (d )

Figure 15. Translation of a cylinder along a plane wall. The simulation domain visualized from
(a) cross-section of the cylinder along z-axis, (c) cross-section of the cylinder along y-axis. Panel (b) is the
close-up of (a), and (d) is the close-up of (c).

between each face of the bounding box and the cylinder is 200 cylinder diameters in each
direction (except for the bottom wall). Extra local refinement was also introduced at the
sharp edge on the cylinder faces as seen in figure 15(d). Simulations were performed for
L/a = 0.04, 0.1, 0.2, 0.4, 1.0, 2.0, 4.0, 10.0 and 20.0, and for ε = 0.02, 0.04, 0.1, 0.2,
0.4, 1.0, 2.0 and 4.0. The total number of grid cells in the simulation domain ranged from
approximately 4.0 × 106 for the L/a = 0.04 cases up to approximately 4.1 × 107 for the
L/a = 20.0 cases.

A.2. Numerical methods
The incompressible, steady Navier–Stokes equations were solved using a finite-volume
solver adapted from the simpleFoam solver of the OpenFOAM library (Weller et al. 1998).
This solver uses the ‘semi-implicit method for pressure-linked equations’ (SIMPLE)
algorithm (Ferziger, Perić & Street 2002), which can be used to solve steady-state
problems without fully resolving the pressure–velocity coupling. Spatial derivatives are
second-order accurate, and relaxation factors of 0.3 and 0.7 were used for the pressure and
velocity, respectively. The average value of |∇ · u| < 10−15 ensures that mass conservation
errors in the simulations are negligible. The SIMPLE algorithm is iterated until the
pressure and velocity for each case satisfy tolerances of 10−8. For each case, the no-slip
condition is imposed on the velocity at the lower solid boundary as well as on the cylinder.
For the translating cylinder case, a velocity boundary condition of u = ex was imposed
on the surface of the cylinder. For the rotating cylinder case, a rotating wall boundary
condition of ω = 1 rad s−1 was imposed on the cylinder. We also impose the consistent
pressure boundary condition (Gresho & Sani 1987) derived from the outward-surface
normal direction n of the Navier–Stokes equations with Re = 0, i.e.

n · ∇p = n · ∇2u (A1)
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Figure 16. Numerical simulation results of non-dimensional force on a rotating finite-length cylinder versus
non-dimensional torque on a translating finite-length cylinder.

(see also Ault et al. (2017)). To improve the stability of the solver, we fixed p = 0 at one of
the far-removed bounding box walls, which has only a negligible effect on the calculated
forces and torques on the cylinder.

After performing several test simulations at various small Reynolds numbers (where
Re = ρUa/μ, and ρ and μ are the fluid density and viscosity, respectively), we determined
that simply modifying the simpleFoam solver to neglect the convective term of the
Navier–Stokes equations gave significantly faster convergence towards the Stokes flow
solution, so we used this methodology for all subsequent runs.

A.3. Convergence tests
Here we briefly discuss the convergence tests that were used to validate the 3-D
Navier–Stokes simulations. First, figure 16 shows the symmetry of the computed mobility
matrix for each case, demonstrating that the calculated torque due to cylinder translation is
approximately equal to the force due to rotation for each case, as expected. For each case of
cylinder length and gap height, multiple simulations were performed with varying levels
of refinement, and the calculated forces and torques for each case were compared across
the different levels of refinement to ensure precision. Additional refinement was used until
the relative per cent error between forces and torques was less than 5 %, and any case with
relative errors between the highest two refinements greater than 5 % was not included in
the presented results.
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FERZIGER, J.H., PERIĆ, M. & STREET, R.L. 2002 Computational Methods for Fluid Dynamics. Springer.
GAVZE, E. & SHAPIRO, M. 1997 Particles in a shear flow near a solid wall: effect of nonsphericity on forces

and velocities. Intl J. Multiphase Flow 23 (1), 155–182.
GOLDMAN, A.J., COX, R.G. & BRENNER, H. 1967a Slow viscous motion of a sphere parallel to a plane

wall—I. Motion through a quiescent fluid. Chem. Engng Sci. 22 (4), 637–651.
GOLDMAN, A.J., COX, R.G. & BRENNER, H. 1967b Slow viscous motion of a sphere parallel to a plane

wall—II. Couette flow. Chem. Engng Sci. 22, 653–660.
GRESHO, P.M. & SANI, R.L. 1987 On pressure boundary conditions for the incompressible Navier–Stokes

equations. Intl J. Numer. Meth. Fluids 7 (10), 1111–1145.
HAMROCK, B.J., SCHMID, B.J. & JACOBSON, B.O. 2004 Fundamentals of Fluid Film Lubrication. CRC

Press.
HAPPEL, J. & BRENNER, H. 1965 Low Reynolds Number Hydrodynamics: With Special Applications to

Particulate Media, vol. 1. Prentice-Hall.
HINCH, E.J. 1972 Note on the symmetries of certain material tensors for a particle in stokes flow. J. Fluid

Mech. 54 (3), 423–425.
JEFFERY, G.B. 1922 The rotation of two circular cylinders in a viscous fluid. Proc. R. Soc. Lond. A 101 (709),

169–174.
JEFFREY, D.J. & ONISHI, Y. 1981 The slow motion of a cylinder next to a plane wall. Q. J. Mech. Appl. Maths

34 (2), 129–137.
KATZ, D.F., BLAKE, J.R. & PAVERI-FONTANA, S.L. 1975 On the movement of slender bodies near plane

boundaries at low Reynolds number. J. Fluid Mech. 72 (3), 529–540.
KAYNAN, U. & YARIV, E. 2017 Stokes resistance of a cylinder near a slippery wall. Phys. Rev. Fluids 2 (10),

104103.
KOENS, L. & MONTENEGRO-JOHNSON, T.D. 2021 Local drag of a slender rod parallel to a plane wall in a

viscous fluid. Phys. Rev. Fluids 6 (6), 064101.
LAUGA, E., DILUZIO, W.R., WHITESIDES, G.M. & STONE, H.A. 2006 Swimming in circles: motion of

bacteria near solid boundaries. Biophys. J. 90 (2), 400–412.
LEAL, L.G 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes.

Cambridge University Press.
LISICKI, M., CICHOCKI, B. & WAJNRYB, E. 2016 Near-wall diffusion tensor of an axisymmetric colloidal

particle. J. Chem. Phys. 145 (3), 034904.
MASOUD, H. & STONE, H.A. 2019 The reciprocal theorem in fluid dynamics and transport phenomena.

J. Fluid Mech. 879, P1.
MERLEN, A. & FRANKIEWICZ, C. 2011 Cylinder rolling on a wall at low Reynolds numbers. J. Fluid Mech.

685, 461–494.
MITCHELL, W.H. & SPAGNOLIE, S.E. 2015 Sedimentation of spheroidal bodies near walls in viscous fluids:

glancing, reversing, tumbling and sliding. J. Fluid Mech. 772, 600–629.

938 A30-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.177


J. Teng, B. Rallabandi, H.A. Stone and J.T. Ault

RALLABANDI, B., SAINTYVES, B., JULES, T., SALEZ, T., SCHÖNECKER, C., MAHADEVAN, L. & STONE,
H.A. 2017 Rotation of an immersed cylinder sliding near a thin elastic coating. Phys. Rev. Fluids 2 (7),
074102.

RAY, M. 1936 Application of bessel functions to the solution of problem of motion of a circular disk in viscous
liquid. Phil. Mag. 21 (141), 546–564.

RUSSEL, W.B., HINCH, E.J., LEAL, L.G. & TIEFFENBRUCK, G. 1977 Rods falling near a vertical wall.
J. Fluid Mech. 83 (2), 273–287.

SAINTYVES, B., RALLABANDI, B., JULES, T., AULT, J.T., SALEZ, T., SCHÖNECKER, C., STONE, H.A.
& MAHADEVAN, L. 2020 Rotation of a submerged finite cylinder moving down a soft incline. Soft Matt.
16 (16), 4000–4007.

SALEZ, T. & MAHADEVAN, L. 2015 Elastohydrodynamics of a sliding, spinning and sedimenting cylinder
near a soft wall. J. Fluid Mech. 779, 181–196.

SCHNITZER, O. & YARIV, E. 2019 Stokes resistance of a solid cylinder near a superhydrophobic surface. Part
1. Grooves perpendicular to cylinder axis. J. Fluid Mech. 868, 212–243.

SEN, M., WAJERSKI, D., GAD-EL HAK, M. 1996 A novel pump for mems applications. J. Fluids Engng
118 (3), 624–627.

SKOTHEIM, J.M. & MAHADEVAN, L. 2004 Soft lubrication. Phys. Rev. Lett. 92 (24), 245509.
SKOTHEIM, J.M. & MAHADEVAN, L. 2005 Soft lubrication: the elastohydrodynamics of nonconforming and

conforming contacts. Phys. Fluids 17 (9), 092101.
UI, T.J., HUSSEY, R.G. & ROGER, R.P. 1984 Stokes drag on a cylinder in axial motion. Phys. Fluids 27 (4),

787–795.
WELLER, H.G., TABOR, G., JASAK, H. & FUREBY, C. 1998 A tensorial approach to computational

continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620–631.
WITELSKI, T.P. 1998 Dynamics of air bearing sliders. Phys. Fluids 10, 698–708.
YANG, S.-M. & LEAL, L.G. 1983 Particle motion in Stokes flow near a plane fluid-fluid interface. Part 1.

Slender body in a quiescent fluid. J. Fluid Mech. 136, 393–421.
YOUNGREN, G.K. & ACRIVOS, A. 1975 Stokes flow past a particle of arbitrary shape: a numerical method of

solution. J. Fluid Mech. 69 (2), 377–403.

938 A30-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.177

	1 Introduction
	2 Theory
	2.1 Lubrication theory for a finite-length cylinder: wall-parallel translation and rotation
	2.1.1 Rotation and wall-parallel translation
	2.1.2 Rods and thick disks: L 1
	2.1.3 Disks: L 1

	2.2 Lubrication theory for motion normal to the wall

	3 Simulations
	3.1 Simulation results

	4 Comparison between theory and simulations
	5 Discussion and conclusions
	Appendix A. Numerical details
	A.1 Computational domain and mesh design
	A.2 Numerical methods
	A.3 Convergence tests

	References

