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Abstract
We employ the absorbing-path method in order to prove two results regarding the emergence of tight
Hamilton cycles in the so-called two-path or cherry-quasirandom 3-graphs.

Our first result asserts that for any fixed real α > 0, cherry-quasirandom 3-graphs of sufficiently large
order n having minimum 2-degree at least α(n− 2) have a tight Hamilton cycle.

Our second result concerns theminimum 1-degree sufficient for such 3-graphs to have a tight Hamilton
cycle. Roughly speaking, we prove that for every d, α > 0 satisfying d + α > 1, any sufficiently large
n-vertex such 3-graph H of density d and minimum 1-degree at least α

(n−1
2

)
has a tight Hamilton cycle.
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1. Introduction
A theorem of Dirac [11] asserts that an n-vertex (n� 3) graph whose minimum degree is at least
n/2 contains a Hamilton cycle; moreover, the degree condition imposed here is best possible.
A rich and extensive body of work now exists concerning the extent to which Dirac’s result can be
extended to uniform hypergraphs; see e.g. [4], [8], [9], [13], [14], [15], [16], [17], [19], [20], [22],
[23], [33], [34], [35], [36] and [38].a Allow us to not reproduce here the intricate development
of these results, as outstanding accounts of these already exist in the excellent surveys [24], [32]
and [44].

We confine ourselves to 3-uniform hypergraphs (3-graphs hereafter). A 3-graph C is said to
form a loose cycle if its vertices can be cyclically ordered such that each edge of C captures three
vertices appearing consecutively in the ordering, every vertex is contained in an edge, and any two
consecutiveb edges meet in precisely one vertex. We say that C forms a tight cycle if there exists a
cyclic ordering of its vertices such that every three consecutive vertices in this ordering define an
edge of C; in particular, this implies that any two consecutive edges meet in precisely two vertices.

For a 3-graph H and two of its distinct vertices u and v, define

degH(v) := |NH(v)| :=
∣∣∣∣
{
{x, y} ∈

(
V(H)
2

)
: {x, y, v} ∈ E(H)

}∣∣∣∣ = |{e ∈ E(H) : v ∈ e}|,
degH(u, v) := |NH(u, v)| := |{w ∈V(H) : {u, v,w} ∈ E(H)}| = |{e ∈ E(H) : {u, v} ⊂ e}|.

aThe study of perfect matchings in hypergraphs is intimately related to the Hamiltonicity problem. We omit references to
such results as our work here was not directly influenced by this line of research.

bOrder of the edges inherited from the ordering of the vertices.
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We refer to degH(v) as the degree of v (alternatively, 1-degree) and to degH(u, v) as the codegree of
u and v (alternatively, 2-degree). Set

δ(H) := min
v∈V(H)

degH(v) and δ2(H) := min
{u,v}∈(V(H)

2 )
degH(u, v).

Resolving a conjecture of [19], first approximately [35] and then accurately [38], the latter
result asserts that a sufficiently large n-vertex 3-graph H satisfying δ2(H)� �n/2� contains a
tight Hamilton cycle. A construction appearing in [19] demonstrates that the codegree condition
imposed here is best possible. However, finding the correct threshold for δ(H) at which a 3-graph
H admits a tight Hamilton cycle remained elusive for quite some time. The problem has come
to be known as the 5/9-conjecture [32, Conjecture 2.18] asserting that sufficiently large n-vertex
3-graphs H satisfying δ(H)� (5/9+ o(1))

(n−1
2

)
admit a tight Hamilton cycle. Constructions

appearing in [32] and [33] establish that the degree condition appearing in this conjecture is
(asymptotically) best possible. The authors of [7] established that such 3-graphs admit a tight
cycle covering all but o(n) of the vertices. Recently, in a major breakthrough [30] (preceded by the
deep result of [34] and around the same time as [7]), the 5/9-conjecture has been resolved.

An additional result relevant to our account is that of [27]. Presentation of the latter requires
a brief overview regarding quasirandom 3-graphs. Launched in [5], [41] and [42], the study of
quasirandom graphs has developed into a rich and vast theory; see e.g. [21]. While a canonical
definition of quasirandom graphs was already captured in [5], [41] and [42], for hypergraphs the
pursuit after a definition extending [5] took much longer. An elaborate account regarding the
development of this pursuit can be seen in [1], [6], [25], [26] and [43] and references therein.
Only recently with the work of [43] has this pursuit came to an end; an alternative combinatorial
approach to the functional analytic work of [43] appears in [1].

Roughly speaking, for k� 3 each set system of [k]= {1, . . . , k} forming a maximal anti-chain
gives rise to a notion of quasirandomness for k-graphs. In the case of interest to us, i.e. k= 3, each
of the maximal anti-chains

{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 2}, {2, 3}} and {{1, 2}, {2, 3}, {1, 3}}
defines a notion of quasirandomness referred to as ∗-quasirandomness with ∗ ∈ { , , , },
respectively (concrete definitions follow below); here these notions are arranged from left to right
in increasing order of strength, so to speak.

A solid understanding of -quasirandomness (i.e. the weakest notion) was attained in [6] and
[25]. More generally, we now know from [1] and [43] (and owing much to [26]) that all these
notions are well-separated and form a certain hierarchy with -quasirandomness at the ‘bottom’
as the weakest notion (so it forms the broadest class of hypergraphs). In what follows, however,
we will not be bothered with these notions of quasirandomness per se. Instead we shall consider
weaker related notions. Borrowing notation from [29] and [28], given d, ρ ∈ (0, 1], an n-vertex
3-graph H is said to be (ρ, d) -dense if

eH(X, Y , Z) := |{(x, y, z) ∈ X × Y × Z : {x, y, z} ∈ E(H)}|� d|X||Y||Z| − ρn3 (1.1)

holds for every X, Y , Z ⊆V(H). If ρ and d exist yet are not made explicit, then we say that H is
-dense. The notion of -quasirandomness comes about if one imposes on eH(X, Y , Z) the

upper bound corresponding to (1.1).
Returning to Hamiltonicity, one encounters the following remarkable result of [27] stated here

for 3-graphs only.

Theorem 1.1 ([27]). For every d, α ∈ (0, 1] there exist an n0 and a ρ > 0 such that the following
holds whenever n� n0 and even. Let H be an n-vertex (ρ, d) -dense 3-graph satisfying δ(H)�
α
(n−1

2
)
. Then H admits a loose Hamilton cycle.
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Theorem 1.1 settles the issue of emergence of loose Hamilton cycles in quasirandom 3-graphs
for any notion of quasirandomness and any type of degree (the latter owing to [32, Remark 1.4]). It
asserts that all minimum degree conditions sufficient for the emergence of loose Hamilton cycles
in quasirandom 3-graphs are degenerate (i.e. any positive α suffices).c

For tight cycles, however, a result analogous to Theorem 1.1 does not exist for -quasirandom
3-graphs. Indeed, [27, Proposition 4] asserts that for every ρ > 0 and a sufficiently large n, an
n-vertex (ρ, 1/8) -quasirandom 3-graph H exists satisfying δ(H)� (1/8− ρ)

(n−1
2

)
and having

no tight Hamilton cycle. The constant 1/8 here is not best possible, though, as the following con-
struction demonstrates. Let n ∈N be sufficiently large and let V = X∪̇Y be a set of n vertices such
that |X| = 2n/3+ 1 and |Y| = n/3− 1 (assume 3 | n). Let G∼G(n, p) be the random graph put
on V where each edge is put in G independently at random with probability p; we determine p
below. Define H to be the 3-graph whose set of vertices is V and whose set of edges consists of:

• all the sets e ∈ (V
3
)
satisfying G[e]∼=K3 and e⊆ X or e⊆ Y or |e∩ X| = 1,

• together with the sets e ∈ (V
3
)
satisfying 2= |e∩ X| := |{u, v}| and uv /∈ E(G).

An argument similar to the one used in [33, Construction 2] asserts that H has no tight Hamilton
cycle. Indeed, no tight path can connect a triple contained in X with a vertex of Y . Consequently, if
H were to admit a tight Hamilton cycle C then X must be an independent set in C and Y a vertex-
cover of C. With this together with the fact that C is 3-regular (i.e. with respect to 1-degree), we
reach n= e(C)�

∑
y∈Y degC (y)= 3|Y| < n, a contradiction. Every triple e is taken into H either

with probability p3 or 1− p. We set p3 = 1− p, so that p= 0.6823. Using binomial tail estimations,
it follows that it is highly likely that H would have edge density ≈ 0.3177, satisfy δ(H)≈ 0.245n2
and be -dense. We acknowledge the discussions [31] regarding this construction.

Replacing the degree condition seen in Theorem 1.1 with a codegree condition would be insuf-
ficient to yield a result analogous to Theorem 1.1. Indeed, in [27] it is indicated that an adaption of
the construction seen in [27, Proposition 4] yields a -dense graphH with δ2(H)� n/9 admitting
no tight Hamilton cycle.

1.1 Our results
If we were to ‘climb’ up the hierarchy of notions of quasirandomness for 3-graphs and strengthen
the quasirandomness condition satisfied by the host 3-graph, would we then encounter an ana-
logue of Theorem 1.1 for tight Hamilton cycles? Let d, ρ ∈ (0, 1]. An n-vertex 3-graph H is called
(ρ, d) -dense if

eH(�G1, �G2) := |{(x, y, z) ∈P2(�G1, �G2) : {x, y, z} ∈ E(H)}|� d|P2(�G1, �G2)| − ρn3 (1.2)

holds for every �G1, �G2 ⊆V(H)×V(H), where

P2(�G1, �G2) := {(x, y, z) ∈V(H)3 : (x, y) ∈ �G1, (y, z) ∈ �G2}.
If ρ and d exist yet are not made explicit, then we say that H is -dense (pronounced cherry-
dense).

Our first main result asserts that the minimum codegree condition sufficient to imply the
emergence of a tight Hamilton cycle in -dense 3-graphs is degenerate.

Theorem 1.2. For every d, α ∈ (0, 1], there exist an integer n0 and a real ρ > 0 such that the follow-
ing holds for all n� n0. Let H be an n-vertex (ρ, d) -dense 3-graph satisfying δ2(H)� α(n− 2).
Then H has a tight Hamilton cycle.

cFor hypergraphs with higher uniformity, the full version of Theorem 1.1 handles the emergence of the so-called 1-cycles.
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In Theorem 1.2, the parameter d plays a somewhat docile role in the sense that no strict con-
ditions other than it being fixed and positive need be imposed. For our second result, we consider

-dense 3-graphs with an imposed minimum 1-degree condition. Here a condition on d arises
(for us) as follows.

Theorem 1.3. For every d, α ∈ (0, 1] satisfying α + d > 1, there exist an integer n0 and a real ρ > 0
such that the following holds for all n� n0. Let H be an n-vertex (ρ, d) -dense 3-graph satisfying
δ(H)� α

(n−1
2

)
. Then H has a tight Hamilton cycle.

Unlike Theorem 1.2, the requirement α + d > 1 does not allow for a degenerate minimum
1-degree condition. Nevertheless, it is more flexible than other results mentioned thus far. We
conjecture (with some hesitation) that the condition α + d > 1 appearing in Theorem 1.2 can be
replaced with degenerate conditions for both α and d as follows.

Conjecture 1.4. For every d, α ∈ (0, 1] there exist an n0 and ρ > 0 such that the following holds
for all n� n0. Let H be an n-vertex (ρ, d) -dense 3-graph satisfying δ(H)� α

(n−1
2

)
. Then H has a

tight Hamilton cycle.

‘Between’ -quasirandomness and -quasirandomness, there lies -quasirandomness. For
d, ρ ∈ (0, 1) an n-vertex 3-graph H is called (ρ, d) -dense if

eH(�P, X) := |{((u, v), x) ∈ �P × X : {u, v, x} ∈ E(H)}|� d|�P||X| − ρn3

holds for every �P ⊆V(H)×V(H) and every X ⊆V(H). Unlike -quasirandom 3-graphs, for
which the Turán density of K(3)

4 (the complete 3-graph on four vertices) is zero [29], the Turán
density of K(3)−

4 (i.e. K(3)
4 with a single edge removed) in -quasirandom 3-graphs is 1/4 [28].

The absorbing configurations (see Section 4 for details) used in this account involve copies of
K(3)−
4 . Consequently results in the spirit of Theorems 1.2 and 1.3 cannot possibly be attained

for -quasirandom 3-graphs using the absorbing-path method and the absorbing configurations
used in our account. We subscribe to the point of view that the flaw is not in the method and
that for -quasirandom 3-graphs the minimum 1-degree and 2-degree conditions sufficient to
imply tight Hamiltonicity are both non-degenerate. The fact that the Turán density of K(3)−

4 in
-quasirandom 3-graphs coincides with that seen in -quasirandom 3-graphs [28] makes it

not far-fetched to suspect that the minimum degree conditions in { , }-quasirandom 3-graphs
coincide as well.

Open problems. Are the following true?

• For every d > 1/3 and ε > 0, there exist an integer n0 and a real ρ > 0 such that the follow-
ing holds whenever n� n0. Let H be an n-vertex (ρ, d) -dense 3-graph satisfying δ2(H)�
n/3+ εn. Then H has a tight Hamiltonian cycle.

• For every d > 1/2 and ε > 0, there exist an integer n0 and a real ρ > 0 such that the follow-
ing holds whenever n� n0. Let H be an n-vertex (ρ, d) -dense 3-graph satisfying δ1(H)�
n2/4+ εn. Then H has a tight Hamilton cycle.

• In the two questions above replace -denseness with -denseness.

During the review and revision of this manuscript, Araújo, Piga and Schacht [2] announced
that they have proved that for every ε > 0 there exists a ρ > 0 such that every sufficiently large
(ρ, 1/4+ ε) -dense 3-graph H satisfying δ(H)� ε

(n−1
2

)
contains a tight Hamilton cycle, and,
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moreover, that the constant 1/4 is optimal. Their result implies our Theorem 1.3 and settles some
of the questions appearing above. At the time of writing these lines the full proof of their result
was not available to us.

1.2 Our approach
We employ the so-called absorbing-path method introduced in [35] and further developed in [36]
and [37]. Roughly speaking, this method reduces the problem of finding a tight Hamilton cycle
to that of finding a tight cycle supporting two properties. First, it covers all but ζn vertices for
some carefully chosen fixed ‘small’ ζ ∈ (0, 1). Second, it contains a special path referred to as
an absorbing-path (rigorously defined below), which has the capability of being rerouted using
only those ‘missing’ ζn vertices while keeping its ends unchanged, and in this manner absorb,
so to speak, all missing vertices rendering a tight Hamilton cycle. Numerous reincarnations of
this method now exist in the literature; see e.g. [14], [27], [30] and [34]. We consequently omit a
more rigorous outline of this method and proceed directly to the statement of the so-called pillar
lemmas underlying this method; these are the so-called connecting lemma, absorbing-path lemma,
path-cover lemma and reservoir lemma.

By a k-path we mean a 3-graph P on k vertices and k− 2 edges such that there exists a labelling
of V(P), namely v1, . . . , vk, such that {vi, vi+1, vi+2} ∈ E(P) for every i ∈ [1, k− 2]. It is said that
P connects the pairs {v1, v2} and {vk−1, vk−2}, also referred to as the end-pairs or simply the ends
of P. Throughout, the term path is used to mean a tight path.

Roughly speaking, in the absorbing-path method, the role of the connecting lemma is, as its
name suggests, to connect two disjoint pairs of vertices via a short path. A trivial precondition
for such a lemma is that the given pairs that are to be connected both admit some non-trivial
codegree. The 3-graphs of Theorem 1.2 come equipped with a minimum codegree assumption
which, although degenerate, will be sufficient to establish such a lemma owing to the -denseness
of the host 3-graph. The 3-graphs of Theorem 1.3, however, do not support a minimum codegree
condition. As a result we will require two separate connecting lemmas, one for each of our main
results.

Our connecting lemma suitable for Theorem 1.2 reads as follows.

Lemma 1.1 (connecting lemma: 2-degree). For every d1.1, α1.1 ∈ (0, 1], there exist an integer
n1.1 := n1.1(d1.1, α1.1) and a real ρ1.1 := ρ1.1(d1.1, α1.1)> 0 such that the following holds for all
n� n1.1 and 0< ρ < ρ1.1.

Let H be an n-vertex (ρ, d1.1) -dense 3-graph satisfying δ2(H)� α1.1(n− 2) and let {x, y} and
{x′, y′} be two disjoint pairs of vertices. Then there exists a 10-path in H connecting {x, y} and {x′, y′}.

The premise of Theorem 1.3 allows for 3-graphs with pairs of vertices having codegree zero
or one that is too modest for our methods to work. Fortunately, regardless of any degree con-
ditions, -dense 3-graphs admit a certain statistical minimum codegree condition in the sense
that most pairs of vertices admit a meaningful codegree. This we make precise below in (2.3).
Unlike Lemma 1.1, then, the connecting lemma suitable for Theorem 1.3 appeals to this statis-
tical minimum codegree condition, and upon a judicious choice of parameters connects pairs of
vertices whose codegree is sufficiently high. It is in this lemma that we encounter the following
function g(·). Given reals x, y> 0 satisfying x+ y> 1, let

g(x, y) :=min{x, y, (x+ y− 1)/(y+ 1)}. (1.3)

The inequality α + d > 1 appearing in Theorem 1.3 traces back to the third term of this function.
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Lemma 1.2 (connecting lemma: 1-degree). For every d1.2, α1.2, η1.2 ∈ (0, 1], satisfying α1.2 +
d1.2 > 1, and η1.2 < g(α1.2, d1.2), there exist an integer n1.2 := n1.2(d1.2, α1.2, η1.2) and a real ρ1.2 :=
ρ1.2(d1.2, α1.2, η1.2)> 0 such that the following holds for all n� n1.2 and 0< ρ < ρ1.2.

Let H be an n-vertex (ρ, d1.2) -dense 3-graph satisfying δ(H)� α1.2
(n−1

2
)
and let {x, y} and

{x′, y′} be two disjoint pairs of vertices each having codegree at least (d1.2 − η1.2)n. Then there exists
a 10-path in H connecting {x, y} and {x′, y′}.

It is in fact true that for -dense 3-graphs, a connecting lemma imposing no minimum degree
conditions of any kind is possible. Such a lemma is presented in Lemma 3.2 in Section 3.3. Alas,
for our needs this lemma is insufficient and this too is explained in Section 3.3.

A path A in an n-vertex 3-graph H, is said to bem-absorbing if, for every set U ⊆V(H) \V(A)
with |U|�m, there is a path AU having the same ends as A and satisfying V(AU)=V(A)∪U.
A path is said to be a (β ,μ, κ)-absorbing-path if it is μn-absorbing, has length at most κn and
both its ends have codegree at least βn in H.

The ‘split’ between the aforementioned connecting lemmas propagates (for us) onwards
onto the absorbing-path lemmas, leading to a need to support two separate such lemmas. The
absorbing-path lemma suitable for Theorem 1.2 reads as follows.

Lemma 1.3 (absorbing-path lemma: 2-degree). For every d1.3, α1.3, β1.3 ∈ (0, 1] such
that β1.3 <min{d1.3, α1.3}, there exist an integer n1.3 := n1.3(d1.3, α1.3, β1.3), a real ρ1.3 :=
ρ1.3(d1.3, α1.3, β1.3)> 0, a real 0< κ1.3 := κ1.3(d1.3, α1.3, β1.3)� β1.3/2 and a real μ1.3 :=
μ1.3(d1.3, α1.3)> 0 such that the following holds whenever n� n1.3 and 0< ρ < ρ1.3.

If H is an n-vertex (ρ, d1.3) -dense 3-graph satisfying δ2(H)� α1.3(n− 2), then it admits a
(β1.3,μ1.3, κ1.3)-absorbing-path.

The condition β1.3 <min{d1.3, α1.3} appearing in the last lemma seems somewhat puzzling
in view that part of the premise of the lemma is that δ2(H)� α1.3(n− 2). To a certain extent,
this condition can be mitigated. We incur it here due to having certain ingredients required for
the proofs of Lemma 1.3 and its counterpart consolidated, namely Lemma 1.4 stated next. This
then mandates that β1.3 < d1.3 be imposed to render subsequent applications of (2.3) meaningful.
The condition β1.3 < α1.3 is admittedly ‘artificial’; it is kept for brevity, as seen in the proof of
Lemma 1.3.

Given two reals α, β > 0, we write β � α to indicate that these can be set such that β , while
fixed, can be chosen arbitrarily smaller than α. The aforementioned counterpart of Lemma 1.3
suitable for the setting of Theorem 1.3 reads as follows.

Lemma 1.4 (absorbing-path lemma: 1-degree). For every d1.4, α1.4, η1.4 ∈ (0, 1] satisfying
α1.4 + d1.4 > 1 and η1.4 < g(α1.4, d1.4), there exist an integer n1.4 := n1.4(d1.4, α1.4, η1.4), a real
ρ1.4 := ρ1.4(d1.4, α1.4, η1.4)> 0, a real 0< κ1.4 := κ1.4(d1.4, α1.4, η1.4)� η1.4 and a real μ1.4 :=
μ1.4(d1.4, α1.4, η1.4)> 0 such that the following holds whenever n� n1.4 and 0< ρ < ρ1.4.

If H is an n-vertex (ρ, d1.4) -dense 3-graph satisfying δ(H)� α1.4
(n−1

2
)
, then it admits a

(d1.4 − η1.4,μ1.4, κ1.4)-absorbing-path.

For the next pillar lemma, -denseness is not required. Here a weaker notion of denseness
suffices. Let d, ρ ∈ (0, 1] and let H be an n-vertex 3-graph. If

eH(X) :=
∣∣∣∣E(H)∩

(
X
3

)∣∣∣∣� d
(|X|

3

)
− ρn3 (1.4)
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holds for every X ⊆V(H), then H is said to be (ρ, d)-dense. If ρ and d are known to exist yet
are not made explicit, then we say that H is 1-set-dense.d The following lemma imposes no min-
imum degree conditions on the 3-graph. It will be used in the proofs of both Theorem 1.2 and
Theorem 1.3.

Lemma 1.5 (path-cover lemma). For every d1.5, ζ1.5 ∈ (0, 1], there exist n1.5 := n1.5(d1.5, ζ1.5),
ρ1.5 = ρ1.5(d1.5, ζ1.5)> 0 and an integer 
1.5 = 
1.5(d1.5, ζ1.5) such that the following holds for all
n� n1.5 and 0< ρ < ρ1.5.

Let H be an n-vertex (ρ, d1.5)-dense 3-graph. Then all but at most ζ1.5n vertices of H can be
covered using at most 
1.5 vertex-disjoint paths.

The fourth and last pillar lemma is the reservoir lemma. We employ the all-encompassinge
reservoir lemma of [34], which will service both Theorem 1.2 and Theorem 1.3.

Lemma 1.6 (reservoir lemma [34, Lemma 3.10]). Let U1, . . . ,Us be subsets of an n-element set V
and let L1, . . . , Lk be graphs on V, where s := s(n) and k := k(n) are both polynomials in n and such
that for sequences of constants (αi ∈ (0, 1))i∈[s] and (βj ∈ (0, 1))j∈[k], we have |Ui|� αin for every
i ∈ [s] and e(Lj)� βj

(n
2
)
for every j ∈ [k].

Then, for every constant ν1.6 ∈ (0, 1), there exists an n1.6 := n1.6(ν1.6) such that if n� n1.6, then
there exists a subset R⊆V satisfying

(R.1) ||R| − ν1.6n|� ν1.6n2/3,
(R.2) for all i ∈ [s], |Ui ∩ R|� (αi − 2n−1/3)|R| holds, and
(R.3) for all j ∈ [k], e(Lj[R])� (βj − 3n−1/3)

(|R|
2
)
holds.

Lemma 1.6 is something of an overkill as far as Theorem 1.2 is concerned; indeed, the proof of
the latter relies rather weakly only on (R.1) and (R.2). The proof of Theorem 1.3, though, requires
the full force of Lemma 1.6, so to speak. In particular, it crucially relies on the n−1/3-terms seen in
Lemma 1.6. A reservoir lemma akin to what is seen in [35] indeed suffices for Theorem 1.2. The
latter, however, is subsumed by Lemma 1.6 and thus omitted.

Constants. For most of this account, we tend to keep track of the raw values of the involved
constants. We do, however, appeal on occasion to the notation � defined above for constants.

2. Pairs with positive codegree
Let H be a 3-graph, let �G⊆V(H)×V(H) and let (u, v) ∈V(H)×V(H). We write

degH(u, v, �G) := |{z ∈V(H) : ((z, u) ∈ �G or (u, z) ∈ �G) and {z, u, v} ∈ E(H)}|

to denote the number of edges {z, u, v} ∈ E(H) for which at least one of the (ordered) pairs (z, u)
or (u, z) is present in the directed graph �G. Note that degH(u, v, �G) �= degH(v, u, �G) is possible. In
this definition, �G, although directed, is treated as an undirected graph and indeed below we shall
also write degH(u, v,G) when G is an undirected graph.

We find it more convenient to have the following lemma formulated using undirected graphs.

dIf, in addition to (1.4), H also satisfies its corresponding upper bound, then H is -quasirandom (see e.g. [6]).
eAll-encompassing in the sense that it can handle the 1-degree and 2-degree settings in one stroke.
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Lemma 2.1. Let d, α and ρ be positive reals and let H be a (ρ, d) -dense n-vertex 3-graph. Let G
be a graph on V(H) and let Y ⊆V(G) satisfy

degG(y)� k for all y ∈ Y , (2.1)
where k := k(n) is an integer. For an integer � := �(n), set

�B� := {(y, z) ∈ Y ×V(H) : degH(y, z,G)< �}.
Then

|�B�|� ρn3

dk− �
.

Proof. Let GY ⊆G be the subgraph of G induced by the edges incident to Y . Definef

�GY := {(v, y) : {v, y} ∈ E(G), v ∈V(H), y ∈ Y} ⊆V(H)× Y .
Then

d · |P2(�GY , �B�)| − ρn3 � eH(�GY , �B�)< |�B�| · �.
Recalling that

P2(�GY , �B�)= {(x, y, z) : x, z ∈V(H), y ∈ Y , (x, y) ∈ �GY , (y, z) ∈ �B�},
we may write

|P2(�GY , �B�)|�
∑
y∈Y

degGY (y)|{(y, z) : (y, z) ∈ �B�}| (2.1)� k
∑
y∈Y

|{(y, z) : (y, z) ∈ �B�}| = k|�B�|.

Then we obtain
dk|�B�| − ρn3 < |�B�| · �.

The claim now follows upon isolating |�B�| in the last inequality.

For an n-vertex (ρ, d) -dense 3-graph H and a fixed real β > 0, define

Bβ := Bβ(H) :=
{
{u, v} ∈

(
V(H)
2

)
: degH(u, v)< βn

}
(2.2)

to consist of all unordered pairs of vertices whose codegree is smaller than βn. An argument akin
to setting G to be the complete graph on V(H), Y =V(H), k= n− 1 and � = βn in Lemma 2.1
yields an upper bound on |Bβ |. To see this, consider

d|P2(V(H)×V(H), �Bβ)| − ρn3 � eH(V(H)×V(H), �Bβ)� |�Bβ | · βn,
where �Bβ := {(u, v), (v, u) : {u, v} ∈ Bβ}. Then

dn|�Bβ | − ρn3 � |�Bβ | · βn,
so that upon isolating �Bβ we arrive at

2|Bβ | = |�Bβ |� ρn3

dn− βn
= ρ

d − β
n2.

In particular, ignoring the factor of 1/2, we may write

|Bβ |� ρ

d − β
n2; (2.3)

the latter makes sense only if β < d.

fHere an edge yy′ ∈ E(G) with y, y′ ∈ Y gives rise to two pairs in �GY .
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A consequence of (2.3) is that the set of edges

E<β := E<β(H) :=
{
e ∈ E(H) : ∃{u, v} ∈

(
e
2

)
satisfying degH(u, v)< βn

}

satisfies

|E<β |� |Bβ | · n� ρ

d − β
n3.

The spanning subgraph Hβ ⊆H induced by E(H) \ E<β then consists only of edges each pair of
which has codegree at least βn in H. On its own, Hβ may admit no meaningful minimum degree
condition. It does, however, satisfy

eHβ (�G1, �G2)� eH(�G1, �G2)− |E<β |� d|P2(�G1, �G2)| − ρ

(
1+ 1

d − β

)
n3 (2.4)

for all �G1, �G2 ⊆V(H)×V(H)=V(Hβ)×V(Hβ). Consequently, upon a judicious choice of con-
stants,Hβ inherits (in the sense of (2.4)) a certain level of -denseness fromH. This feature arises
in the proof of Theorem 1.3 seen in Section 6.2.

3. Connecting lemmas
In this section we prove Lemmas 1.1 and 1.2. In terms of graphs, our approach for both of
these lemmas can be crudely described as follows. In order to connect two prescribed vertices,
a sequence of neighbourhoods, called a cascade, is cultivated, one from each vertex. This con-
tinues until these neighbourhoods expand sufficiently so as to render a certain quasirandomness
assumption non-trivial, giving rise to numerous ‘links’ between the two sequences of neighbour-
hoods. Two paths are then traced backwards from a ‘link’ to the two prescribed vertices via the
two sequences of neighbourhoods, all the while maintaining vertex-disjointness of the paths thus
traced.

3.1 Connecting lemma: 2-degree setting
In this section we prove Lemma 1.1, which is the connecting lemma suitable for Theorem 1.2. At
the centre of our proof of Lemma 1.1 is the structure of cascades; the next section is dedicated to
their definition.

3.1.1 Cascades

Let n be a sufficiently large integer and let H be an n-vertex 3-graph satisfying δ2(H)� βn for
some fixed real β ∈ (0, 1] independent of n (and such that βn� n− 2, naturally). Fix x and y to
be two vertices in H. Below we define the tuple

Cβ(x, y) := (x, y,N1(x, y),N2(x, y),N3(x, y),G1(x, y),G2(x, y),G3(x, y))

and refer to it as an {x, y}β-cascade, with cascades being a term borrowed from [35]. All members
of the above tuple depend on β as well, but we omit this from the notation. In what follows, each
of these members is defined. In broad terms, for every i ∈ [3],Ni(x, y) denotes a set of vertices that
essentially corresponds to the ith co-neighbourhood of the pair {x,y}. The parameters (Gi(x, y))i∈[3]
represent certain graphs between these co-neighbourhoods which will facilitate the tracking of
5-paths from N3(x, y) all the way (back) to {x, y}.

Let N1 :=N1(x, y) :=NH(x, y). The assumption δ2(H)� βn implies that

|N1|� βn. (3.1)
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Define G1 :=G1(x, y) to be the (bipartite) graph whose vertex set is {y} ∪N1 and whose edges are
given by the set {yz : z ∈N1}. To defineN2 :=N2(x, y) andG2 :=G2(x, y), we proceed in two steps.
For the first step, set

N′
2 :=N′

2(x, y) :=
⋃
z∈N1

NH(y, z)= {w ∈V(H) : ∃z ∈N1 such that {y, z,w} ∈ E(H)}. (3.2)

Define G′
2 :=G′

2(x, y) to be the graph whose vertex set is N1 ∪N′
2 and whose edges are given by

the set

E(G′
2) := {zz′ : z ∈N1, z′ ∈N′

2 ∩NH(y, z)} = {zz′ : z ∈N1, z′ ∈V(H) and {y, z, z′} ∈ E(H)}.
The assumption that δ2(H)� βn implies that degG′

2
(z)� βn for every z ∈N1. Then

e(G′
2)�

1
2

∑
z∈N1

degG′
2
(z)� |N1|βn/2

(3.1)
� β2n2/2. (3.3)

For the second step towards the definitions of N2 :=N2(x, y) and G2 :=G2(x, y), we discard
members of N′

2 whose degree in G′
2 into N1 is ‘too low’, as follows. Set

N(low)
2 :=N(low)

2 (x, y) := {z ∈N′
2 : degG′

2
(z)< log n}.

(The choice of log n here is completely arbitrary. Any function ω(n)� n growing slowly to∞will
suffice; this will become clear soon.) Setting N2 :=N2(x, y) :=N′

2 \N(low)
2 , we arrive at

β2n2/2
(3.3)
� e(G′

2)� ( log n) · |N(low)
2 | + |N2| · |N1|� n log n+ |N2| · n

so that, for sufficiently large n,

|N2|� β2n/4. (3.4)

Set G2 :=G2(x, y) :=G′
2[N1 ∪N2]. This concludes the definitions of N2 :=N2(x, y) and G2 :=

G2(x, y).
We turn to the definition of the set N3 :=N3(x, y) and the graph G3 :=G3(x, y). To that end,

associate an auxiliary graph Bw := Bw(x, y) with every vertex w ∈N2. In particular, for a fixed
vertex w ∈N2, let Bw be the graph whose vertex set is V(H) and whose edges are given by the set

E(Bw) := {uz : u ∈V(H), z ∈NG2 (w)⊆N1 and {z,w, u} ∈ E(H)}.
Define

N3 :=N3(x, y) := {u ∈V(H) : ∃w ∈N2 such that degBw(u)� 20}
and let G3 :=G3(x, y) be the graph whose vertex set is N2 ∪N3 and whose edge set is given by

E(G3) := {uw : u ∈N3,w ∈N2 and degBw(u)� 20}.
This completes the definition of an {x, y}β-cascade.

We conclude this section by recording a few useful traits of {x, y}β-cascades that will be called
upon in subsequent arguments. Continuing with the notation set thus far, fix w ∈N2. Then

degG2
(w) · βn δ2(H)�βn

� e(Bw)� 20 · s+ (n− s) degG2
(w),

where s denotes the number of vertices u ∈V(H) satisfying degBw(u)< 20. Then, for sufficiently
large n, we obtain

n− s� βn− 20 · s
degG2

(w)
� βn− 20 · n

log n
� βn/2.
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As degG3
(w)= n− s, it follows that

degG3
(w)� βn/2 for every w ∈N2. (3.5)

This, in particular, implies that

|N3|� βn/2 and e(G3)�
1
2

∑
w∈N2

degG3
(w)� |N2|βn/4

(3.4)
� β2n2/16. (3.6)

3.1.2 Links

In addition to {x, y} and Cβ(x, y) defined in Section 3.1.1, let {x′, y′} be a pair of vertices disjoint
from {x, y} and let Cβ(x′, y′) be an {x′, y′}β-cascade in H. A quadruple (z, u, v,w) ∈N2(x, y)×
N3(x, y)×N3(x′, y′)×N2(x′, y′) is said to be an ({x, y}, {x′, y′})-link with respect to Cβ(x, y) and
Cβ(x′, y′) if

(L.1) x, y, z, u, v,w, y′, x′ are all distinct,
(L.2) {z, u, v}, {u, v,w} ∈ E(H), and
(L.3) zu ∈ E(G3(x, y)) and vw ∈ E(G3(x′, y′)).

Lemma 3.1. If two distinct pairs of vertices, namely {x, y} and {x′, y′}, admit an ({x, y}, {x′, y′})-link,
then H admits a 10-path connecting {x, y} and {x′, y′}.

Proof. Let

(z, u, v,w) ∈N2(x, y)×N3(x, y)×N3(x′, y′)×N2(x′, y′)

be an ({x, y}, {x′, y′})-link. First we construct a 5-path connecting {x, y} and {z, u} through C(x, y).
Having zu ∈ E(G3(x, y)) means that degBz (u)� 20, which in other words means that there are at
least 20 vertices z′ ∈NG2(x,y)(z)⊆N1(x, y) such that {z′, z, u} ∈ E(H). We may then choose one
such vertex z′ such that z′ ∈N1(x, y) \ {x, y, x′, y′, z, u, v,w}. Having zz′ ∈ E(G2(x, y)) implies that
{y, z′, z} ∈ E(H). The 5-path is made complete with the fact that {x, y, z′} ∈ E(H). Let P denote this
path.

It remains to construct a 5-path through the cascade of {x′, y′} connecting {v,w} and {x′, y′} in
such a way as to not meet any vertex of P. The same argument used for constructing P can be used
here as well except for one change. This time around, we require a vertex z′′ ∈N2(x′, y′) to play the
corresponding role assumed by z′ above. The vertex z′′ must satisfy z′′ /∈ {x, y, z′, x′, y′, z, u, v,w}
(i.e. it has to avoid z′ as well). Clearly there is enough freedom to do so.

3.1.3 Proof of Lemma 1.1

Given d := d1.1, α := α1.1 as in the premise of the lemma, set

ρ1.1(d, α) := dα6

214
. (3.7)

Let 0< ρ < ρ1.1(d, β) be fixed, let H be a (ρ, d) -dense 3-graph satisfying δ2(H)� αn (we nat-
urally assume that α is such that αn� n− 2), and let {x, y} and {x′, y′} be two disjoint pairs of
vertices in V(H).

By Lemma 3.1 it suffices to show that the cascades Cα(x, y) and Cα(x′, y′) taken in H admit
an ({x, y}, {x′, y′})-link (in H). Owing to (3.6), e(G3(x, y))� α2n2/16. There exists a subgraph
F ⊆G3(x, y) satisfying δ(F)� α2n/16 (see e.g. [10, Proposition 1.2.2]). Then

|V(F)∩N3(x, y)|� α2n/16. (3.8)
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Indeed, all edges in G3(x, y) (and thus in F) are of the form N2(x, y)×N3(x, y) (though N2(x, y)∩
N3(x, y) need not be empty). Hence there is a vertex w ∈N2(x, y)∩V(F). By definition NF(w)⊆
NG3(x,y)(w)⊆N3(x, y) and (3.8) follows.

Set
�B := {(z, u) ∈ (V(F)∩N3(x, y))×V(H) : z �= u and degH(z, u, F)< dα2n/32}.

By Lemma 2.1 applied withG= F, Y :=V(F)∩N3(x, y), k= α2n/16 and� := dα2n/32, we attain

|�B|� ρn3

dα2n/16− dα2n/32
= 32ρ

dα2 · n2.

A symmetrical argument applied to Cα(x′, y′) asserts that the set
�B′ := {(z, u) ∈ (V(F′)∩N3(x′, y′))×V(H) : z �= u and degH(z, u, F

′)< dα2n/16}
satisfies |�B′|� 32ρd−1α−2n2 as well, where F′ ⊆G3(x′, y′) is the counterpart of F in this argument
(i.e. it is a subgraph of G3(x′, y′) satisfying δ(F′)� α2n/16).

The set (V(F)∩N3(x, y))× (V(F′)∩N3(x′, y′)) has size at least α4n2/27, by (3.8); removing
degenerate members (i.e.members of the form (x, x)), we retain at least α4n2/28 non-degenerate
members of that Cartesian product. The latter set of non-degenerate pairs we denote by �T. Then

|�T \ (�B∪ �B′)|� |�T| − |�B| − |�B′|� α4

28
n2 − 64ρ

dα2 n
2 (3.7)
� α4

29
n2.

Each member (u, v) ∈ �T \ (�B∪ �B′) satisfies u �= v, u ∈V(F)∩N3(x, y), v ∈V(F′)∩N3(x′, y′),
degG(u, v, F)� dα2n/32 and degG(v, u, F′)� dα2n/32. That is, there are at least dα2n/32 edges
{u, v, z} ∈ E(H) with uz ∈ E(F) (so that z ∈N2(x, y)) and at least dα2n/32 edges {u, v,w} ∈ E(H)
with vw ∈ E(F′) (so that w ∈N2(x′, y′)). Hence, for sufficiently large n, we may insist on (many
choices) w �= z and thus form the required {(x, y), (x′, y′)}-link.

This completes the proof of Lemma 1.1.

3.2 Connecting lemma: 1-degree setting
In this section we prove Lemma 1.2, which is the connecting lemma suitable for Theorem 1.3. The
definition of cascades, seen in Section 3.1.1, fits any 3-graph H satisfying δ2(H)= �(n). As such,
the construction of cascades makes no appeal to -denseness. In Lemma 1.2, which is furnished
with a minimum 1-degree condition only, cascades, as defined, are not at our disposal (at least not
verbatim). To prove Lemma 1.2, then, we put forth a definition of a structure to which we refer as
refined cascades. The latter is an adaption of cascades to the setting of Lemma 1.2.

Although we closely follow the definition of cascades when defining their refined counterparts,
these two structures are quite different from one another. One crucial manifestation of this dif-
ference can be seen from the condition α + d > 1 stated in the premise of Theorem 1.3. This
condition is, in fact, incurred through the definition of refined cascades. The construction of latter
is then the sole ‘bottleneck’ in our approach preventing us from establishing Conjecture 1.4.

Unlike the case of cascades, the construction of their refined counterparts makes no appeal to
-denseness of the host 3-graph. Consequently, the definitions of cascades and refined cascades

are not consolidated.

3.2.1 Refined cascades

Let there be given α, d and η satisfying α + d > 1 and

0< η < g(α, d)=min{α, d, (α + d − 1)/(1+ d)}. (3.9)
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The function g(·) is the one defined in (1.3). An appeal to the inequality α + d > 1 is made in the
numerator of the third term appearing on the right-hand side of (3.9). Set an auxiliary constant

0< ζ := ζ (α, d, η)< η + ηd − η2, (3.10)

and set

0< ρ <min{η/4, ηζ (d − η)/4}. (3.11)

Let H be a (ρ, d) -dense 3-graph satisfying δ(H)� α
(n−1

2
)
. Setting β = d − η in (2.3) yields

|Bd−η|� ρ

d − (d − η)
n2 = ρ

η
n2. (3.12)

Let {x, y} ∈ (V(H)
2

)
satisfying degH(x, y)� (d − η)n be fixed; by (3.12) coupled with the condition

ρ < η/4 stipulated in (3.11), there are �(n2) such pairs in H.
In what follows, we define the tuple

Rα,d,η(x, y) := (x, y,N1(x, y),N2(x, y),N3(x, y), G1(x, y), G2(x, y), G3(x, y))
and refer to it as an {x, y}α,d,η-refined-cascade. All members of this tuple depend on α, d and η as
well, but we omit this from the notation. The membersNi and Gi, i ∈ [3], assume roles analogous
to those assumed by Ni and Gi, i ∈ [3], in the definition of cascades in Section 3.1.1. We proceed
with the definition of each of the members of the above tuple.

Define

N1 :=N1(x, y) :=NH(x, y)∩ {z ∈V(H) : degH(z, y)� ηn}. (3.13)

Treating Bη (see (2.2) for a definition) as a graph, we write

Bη :=
{
{u, v} ∈

(
V(H)
2

)
: degH(u, v)� ηn

}

to denote the graph complementing Bη over V(H). The set {z ∈V(H) : degH(z, y)� ηn}, appear-
ing in (3.13), is then the neighbourhood of y in Bη. One is now reminded of the following
remarkable fact established in [34, Claim 3.1], which in our setting (and owing to η < α as imposed
in (3.9)) reads as follows.

Claim 1. [34, Claim 3.1]We have

δ(Bη)�
α − η

1− η
(n− 1).

By definition of {x, y}, |NH(x, y)|� (d − η)n; this, together with Claim 1, implies that if
α − η

1− η
+ d − η > 1,

then |N1| = �(n). Rewriting this inequality as

α + d − 1> η + ηd − η2, (3.14)

we note that the inequality η < (a+ d − 1)/(1+ d) imposed in (3.9) implies that (3.14) is satisfied.
Moreover, it is here at (3.14) that the condition α + d > 1, imposed in Theorem 1.3, stands out. It
follows that

|N1|
(3.10)
� ζn. (3.15)

Define G1 := G1(x, y) to be the (bipartite) graph whose vertex set is given by {y} ∪N1 and whose
edge set is given by {yz : z ∈N1}.
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We proceed to definingN2(x, y) and G2(x, y). Set
N ′

2 :=N ′
2(x, y) :=

⋃
z∈N1

NH(y, z)= {w ∈V(H) : ∃z ∈N1 such that {y, z,w} ∈ E(H)},

and define G′
2 := G′

2(x, y) to be the graph whose vertex set is N1 ∪N ′
2 and whose edge set is given

by

E(G′
2) := {zz′ : z ∈N1, z′ ∈V(H), {y, z, z′} ∈ E(H)}.

By definition of N1 (see (3.13)), degH(y, z)� ηn for every z ∈N1 so that degG′
2
(z)� ηn holds for

every z ∈N1. Then

e(G′
2)�

1
2

∑
z∈N1

degG′
2
(z)� |N1|ηn/2

(3.15)
� ζηn2/2. (3.16)

All but at most (ρ/(d − η))n2 of the edges of G′
2 lie in Bη, by (2.3) (with β = η in that equation).

Consequently, there exists a subgraph G′′
2 ⊆ G′

2 satisfying

e(G′′
2 )

(3.16)
�

(
ηζ

2
− ρ

d − η

)
n2

(3.11)
� ηζ

4
n2,

having the property that E(G′′
2 )∩ Bη = ∅. Then, by [10, Proposition 1.2.2], there exists a subgraph

G2 ⊆ G′′
2 satisfying δ(G2)� (ηζ/4)n, and this completes the definition of G2. We conclude this

part of the definition by setting N2 :=V(G2)∩N ′
2. The property δ(G2)� (ηζ/4)n, together with

the fact that all edges of G2 are of the formN1 ×N2, implies that

|N2|� ζηn/4. (3.17)

Next we defineN3(x, y) and G3(x, y). For w ∈N2, let Xw be the graph on V(H) whose edge set
is given by

E(Xw) := {uz : u ∈V(H), z ∈NG2 (w)⊆N1 and {z,w, u} ∈ E(H)}.
Define

N3 :=N3(x, y) := {u ∈V(H) : ∃w ∈N2 such that degXw(u)� 20},
and let G3 := G3(x, y) be the graph whose vertex set isN2 ∪N3 and whose edge set is given by

E(G3) := {uw : u ∈N3,w ∈N2, and degXw(u)� 20}.
Then we obtain

degG2
(w)ηn� e(Xw)� 20 · r + (n− r) degG2

(w)= 20 · r + degG3
(w) degG2

(w),

where r denotes the number of vertices u ∈V(H) satisfying degXw(u)< 20; the first inequality is
owing to E(G2)∩ Bη = ∅, by definition of G2, and the last equality is owing to degG3

(w)= n− r,
by definition of r. We may then write that

degG3
(w)� ηn− 20 · r

degG2 (w)
δ(G2)�ζηn/4

� ηn− 20 · r
(ζη/4)n

r�n
� η

2
n,

where the last inequality is assuming n is sufficiently large. Consequently,

|N3|� η

2
n and e(G3)�

1
2

∑
w∈N2

degG3 (w)� |N2|η4n
(3.17)
� ζη2

16
n2. (3.18)

This concludes the definition of refined cascades and properties thereof.
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3.2.2 Proof of Lemma 1.2

With the definition of refined cascades complete, our proof of Lemma 1.2 follows closely that
shown for Lemma 1.1. Indeed, the machinery of links defined for cascades carries over to refined
cascades essentially verbatim.

Proof of Lemma 1.2. Given d := d1.2, α := α1.2 and η := η1.2 as in the premise of Lemma 1.2, set
an auxiliary constant ζ satisfying (3.10), and put

ρ1.2(d, α, η) :=min{η/4, ηζ (d− η)/4, dζ 4η6/216}. (3.19)

Let 0< ρ < ρ1.2(d, α, η) be fixed and let H be a (ρ, d) -dense 3-graph satisfying δ(H)� α
(n−1

2
)
.

Let {x, y} and {x′, y′} be two disjoint pairs of vertices in V(H), each having codegree at least
(d − η)n (existence of such pairs is established in (3.12) and the explanation thereafter).

By Lemma 3.1 it suffices to show that the refined cascadesRα,d,η(x, y) andRα,d,η(x′, y′) admit
an ({x, y}, {x′, y′})-link. By (3.18) and [10, Proposition 1.2.2], there exists a subgraph F ⊆ G3
satisfying δ(F)� (ζη2/16)n. Then

|V(F)∩N3(x, y)|� ζη2

16
n. (3.20)

Set
�B := {(z, u) ∈ (V(F)∩N3(x, y))×V(H) : z �= u and degH(z, u, F)< dζη2n/32},

and note that

|�B|� ρn3

dζη2n/16− dζη2/32
= 32ρ

dζη2
n2,

by Lemma 2.1. A symmetrical argument applied toRα,η(x′, y′) asserts that the set
�B′ := {(z, u) ∈ (V(F′)∩N3(x′, y′))×V(H) : z �= u and degH(z, u, F

′)< dζη2n/32}
satisfies |�B′|� 32ρd−1ζ−1η−2n2 as well, where F′ ⊆ G3(x′, y′) is the counterpart of F.

The set (V(F)∩N3(x, y))× (V(F′)∩N3(x′, y′)) has size at least ζ 2η4n2/28, by (3.20); removing
degeneratemembers (i.e.members of the form (x, x)), we retain at least ζ 2η4n2/29 non-degenerate
members of that Cartesian product. The latter set of non-degenerate pairs we denote by �T. Then,
for sufficiently large n, we have

|�T \ (�B∪ �B′)|� ζ 2η4

29
n2 − 64ρ

dζη2
n2

(3.19)
� ζ 2η4

210
n2,

and the lemma follows.

3.3 A connecting lemmawith nominimum degree conditions
In Section 1.2 wementioned that for -dense graphs, a connecting lemma imposing nominimum
degree conditions is possible and that such a lemma is insufficient for our needs. In this section
we make this precise.

Given an n-vertex 3-graph H and a real β > 0, define the sequence H =:H0 ⊇H1 ⊇H2 · · ·
of spanning subgraphs of H as follows. At step i, if every pair {u, v} of vertices of Hi satisfies
either degHi(u, v)� βn or degHi(u, v)= 0, then stop. Otherwise Hi admits a pair of vertices {u, v}
satisfying 0< degHi(u, v)< βn, in which case remove all edges ofHi containing the pair {u, v} and
denote the resulting (spanning) subgraph of H by Hi+1.

As overall there are
(n
2
)
pairs of vertices to consider, then throughout the above process a total

of at most βn3 of the edges ofH are removed. Consequently, if β andH are such that e(H)> βn3,
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then the above process terminates in a non-empty spanning subgraph of H, denoted H(β). The
latter has the property that either degH(β) (u, v)� βn or degH(β) (u, v)= 0, whenever {u, v} is a pair
of vertices of H. Put another way, any pair of vertices {u, v} captured by an edge of H(β) satisfies
degH(β) (u, v)� βn. More concisely, one may write

δ∗
2 (H

(β))

:=min
{
degH(β) (u, v) : {u, v} ∈

(
V(H(β))

2

)
and ∃e ∈ E(H(β)) such that {u, v} ⊆ e

}
� βn.

Pairs of vertices captured by the edges of H(β) are termed β-relevant. Such pairs of vertices, taken
in H(β), can be connected in H using the following lemma.

Lemma 3.2. For every d, β ∈ (0, 1] such that β < d, there exist an integer n0 > 0 and a real ρ0 > 0
such that the following holds for all n� n0 and 0< ρ < ρ0.

Let H be an n-vertex (ρ, d) -dense 3-graph and let {x, y} and {x′, y′} be two disjoint β-relevant
pairs of vertices. Then there exists a 10-path in H connecting {x, y} and {x′, y′}.

The proof of Lemma 3.2 is that of Lemma 1.1 essentially verbatim. Let the two β-relevant pairs
{x, y} and {x′, y′} per Lemma 3.2 be given. First, construct the cascades Cβ(x, y) and Cβ(x′, y′) in
H(β) (instead of H), while throughout the construction of these replace every appeal to δ2(H(β))
(whichmay be zero) with an appeal to δ∗

2 (H(β)). Indeed, the construction of cascades only requires
a sufficiently large minimum codegree for the pairs already captured through the edges of the
cascades, and in this manner we progress from one level of the cascade to the next. Second, with
these cascades constructed, note that these exist in H, and thus an ({x, y}, {x′, y′})-link can be
found in H using the very same argument seen in the proof of Lemma 1.1 for that stage.

Unfortunately we were unable to employ Lemma 3.2 in our account. Indeed, in subsequent
arguments the connecting lemmas are used repeatedly to connect prescribed pairs of vertices
which, although they admit a relatively large codegree, are essentially arbitrary. We were unable
to determine whether these pairs are also β-relevant (for an appropriate β). For indeed, a pair
is β-relevant if it manages to survive the clean-up procedure, so to speak, giving rise to H(β).
Arbitrary pairs of vertices admitting high codegree in H may of course not survive this process.

We do, however, perceive Lemma 3.2 as being relevant to the pursuit of Conjecture 1.4 and
consequently mention it here.

4. Absorbing-path lemmas
In this section we prove Lemmas 1.3 and 1.4. At the core of these proofs stands the notion of a
β-absorber, which is a variant of what is often referred to as the natural absorber as far as tight
cycles in 3-graphs are concerned.

Definition 4.1. Let H be a 3-graph. For β > 0 and v ∈V(H), a quadruple (x, y, z,w) ∈V(H)4 is
said to be a (β , v)-absorber if

(A.1) {x, y, z}, {y, z,w}, {v, x, y}, {v, y, z}, {v, z,w} ∈ E(H),
(A.2) moreover degH(x, y), degH(z,w)� βn.

By β-absorber we mean a (β , v)-absorber for some v ∈V(H).
Our proofs of both absorbing-path lemmas are modelled after the same conceptual three-step

argument shown in [35]. First, a counting lemma for (β , v)-absorbers with the vertex v prescribed
is established; this can be seen in Lemma 4.1. Second, the aforementioned counting lemma is
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employed in a hypergeometric experiment to establish the existence of a ‘small’ set F of vertex-
disjoint β-absorbers that can absorb any set of vertices that is not too ‘large’; this can be seen
in Lemma 4.2. Third, using the connecting lemmas, namely Lemmas 1.1 and 1.2, we ‘string’ the
members of F into a single path yielding the required absorbing-path.

Lemmas 4.1 and 4.2, capturing the first two steps in the approach outlined above, are capable
of handling both settings considered in Theorems 1.2 and 1.3. This is due to [32, Remark 1.4]
asserting that if an n-vertex 3-graph H admits δ2(H)= �(n), then δ(H)= �(n2).

The third step in the above plan, however, we treat separately across the two aforementioned
settings. While the overall scheme of the third step is the same between the two settings, it is here
that invocations to the two connecting lemmas are made. The inherent differences between these
two lemmas compels (us to have) two separate treatments. We prove Lemma 1.3 in Section 4.3
and Lemma 1.4 in Section 4.4.

4.1 A counting lemma for β-absorbers
Let H be a 3-graph and let v ∈V(H). We write Lv := Lv(H) to denote the link graph of v, that is,
the graph whose vertex set isV(H) \ {v} and in which two (distinct) vertices, namely x and y, form
an edge whenever {x, y, v} ∈ E(H). Put

Lβ ,v := {xy ∈ Lv : degH(x, y)� βn}.

Lemma 4.1. For every d4.1, α4.1, β4.1 ∈ (0, 1] such that β4.1 < d4.1, there exist an integer n4.1 :=
n4.1(d4.1, α4.1, β4.1), a real ρ4.1 = ρ4.1(d4.1, α4.1, β4.1)> 0 and a real c4.1 := c4.1(d4.1, α4.1)> 0 such
that the following holds for any integer n� n4.1 and 0< ρ < ρ4.1.

Let H be an n-vertex (ρ, d4.1) -dense 3-graph satisfying δ(H)� α4.1
(n−1

2
)
and let v ∈V(H).

Then there are at least c4.1n4 (β , v)-absorbers in H.

Proof. Given α := α4.1, β := β4.1 and d := d4.1, set

ρ4.1 :=min{α(d − β)/8, dα10/236}, (4.1)

let 0< ρ < ρ4.1 be fixed and let n be sufficiently large. LetH be an n-vertex (ρ, d) -dense 3-graph
as in the premise and fix v ∈V(H).

Having degH(v)� α
(n−1

2
)
asserts that e(Lv)� α

(n−1
2

)
. Then, for sufficiently large n,

e(Lβ ,v)� e(Lv)− |Bβ | (2.3)� α

(
n− 1
2

)
− ρ

d − β
n2 � α

4
n2 − ρ

d − β
n2

(4.1)
� αn2/8,

where Bβ is as in (2.2). By [10, Proposition 1.2.2], Lβ ,v admits a subgraph with minimum degree
at least αn/8, implying in turn that


 := |V(Lβ ,v)|� αn/8. (4.2)

Sidorenko’s conjecture [12, 39] is true for the 2-graph P4 [3], where by P4 we mean the path
consisting of three edges and four vertices. Then, for sufficiently large n, there are at least

(n− 1)4
(
2e(Lβ ,v)

n2

)3
� n4

2
·
(
2α
8

)3
= α3

27
n4

homomorphisms of P4 into Lβ ,v. Consequently (and again assuming n is sufficiently large), there
is a collection P of at least α3n4/28 labelled copies of P4 in Lβ ,v.
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For an ordered pair (u,w) ∈V(Lβ ,v)×V(Lβ ,v), let P4(u,w) denote the number of members of
P with the form (x, u,w, y). Set K := α3
2/210. Owing to (4.2),

K � α5

216
n2. (4.3)

Put
�X := {(u,w) ∈V(Lβ ,v)×V(Lβ ,v) : P4(u,w)<K}

and let
�Y :=V(Lβ ,v)×V(Lβ ,v) \ �X.

Then
α3

28

4 � α3

28
n4 � |P| =

∑
(u,w)∈V(Lβ ,v)2

P4(u,w)� | �X| ·K + (
2 − |�X|)
2.

Isolating | �X|, one arrives at

| �X|� (1− α3/28)
4


2 −K
= 1− α3/28

1− α3/210

2 �

(
1− α3

210

)

2.

As a result, we attain

| �Y|� α3

210

2

(4.2)
� α5

216
n2. (4.4)

In preparation for two applications of Lemma 2.1, we define three graphs, namely G1, G2 and
G3, edges of which collectively capture the members of P . Lemma 2.1 is then applied to G1 and
G3 (along with additional parameters defined below); the resulting estimates attained from these
two applications of the lemma are then used to analyse G2.

Set G2 := (V(Lβ ,v), Y), where Y denotes the set of unordered pairs underlying �Y . For (u,w) ∈
�Y , set

�A(u,w) := {(a, u) : (a, u,w, b) ∈P for some a, b ∈V(Lβ ,v)}
and set

�B(u,w) := {(w, b) : (a, u,w, b) ∈P for some a, b ∈V(Lβ ,v)}.
Define

G1 :=
(
V(Lβ ,v),

⋃
(u,w)∈�Y

A(u,w)

)
and G3 :=

(
V(Lβ ,v),

⋃
(u,w)∈�Y

B(u,w)
)
,

where A(u,w) and B(u,w) are the sets of unordered pairs underlying �A(u,w) and �B(u,w), respectively.
The graphs G1,G2,G3 are not necessarily edge-disjoint.

Define the sets of vertices

U := {u ∈V(Lβ ,v) : (a, u,w, b) ∈P for some a,w, b ∈V(Lβ ,v) and (u,w) ∈ �Y},
W := {w ∈V(Lβ ,v) : (a, u,w, b) ∈P for some a, u, b ∈V(Lβ ,v) and (u,w) ∈ �Y}.

Observe that U ⊆V(G1) and thatW ⊆V(G3).
For (u,w) ∈ �Y , observe that |�A(u,w)|, |�B(u,w)|� α5n/216. For if one of these sets, say �A(u,w),

violates this inequality, then

P4(u,w)� |�A(u,w)| degLβ ,v (w)<
α5

216
n · n (4.3)

� K,

https://doi.org/10.1017/S0963548320000486 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000486


430 E. Aigner-Horev and G. Levy

in contradiction to (u,w) ∈ �Y . Consequently, degG1
(u), degG3

(w)� α5n/216 for every u ∈U and
every w ∈W, respectively.

Set
�BU := {(u,w) ∈U ×W : degH(u,w,G1)< dα5n/217},
�BW := {(u,w) ∈U ×W : degH(w, u,G3)< dα5n/217}.

Lemma 2.1, applied to G1,U, �BU and to G3,W, �BW , asserts that

|�BU |, |�BW |� 217ρ
dα5 n

2. (4.5)

Owing to (4.4), e(G2)� α5n2/217 holds. This fact, together with the estimates seen in (4.5),
implies that G2 admits at least

e(G2)− |�BU | − |�BW | (4.4)� α5

217
n2 − 218ρ

dα5 n
2 (4.1)
� α5

218
n2

unordered pairs {u,w} ∈ E(G2)⊆ E(Lβ ,v) with u ∈U and w ∈W such that

degH(u,w,G1), degH(w, u,G3)� dα5n/217.
Call these pairs in E(G2) good.g

Let (u,w) ∈U ×W be good. At leasth degH(u,w,G1)− 1 neighbours a of u inG1 satisfy a �=w.
Each such neighbour a of u gives rise to a triple (a, u,w) with the property that au ∈ E(Lβ ,v) so that
degH(a, u)� βn. The triple (a, u,w) extends to at leasti degH(w, u,G3)− 2 quadruples (a, u,w, b)
satisfying b /∈ {a, u} and wb ∈ E(Lβ ,v) so that degH(w, b)� βn holds. Any quadruple thus formed
defines a (β , v)-absorber.

It follows that for sufficiently large n, a single good pair (u,w) gives rise to at least(
dα5

217
n− 1

)(
dα5

217
n− 2

)
� d2α10

235
n2

(β , v)- absorbers. Ranging over all good pairs (u,w), we attain at least

α5

218
n2 · d

2α10

235
n2 = d2α15

253
n4

(β , v)-absorbers overall, concluding the proof of the lemma.

4.2 A ‘small’ set of β-absorbers
Let H be a 3-graph. For v ∈V(H) and β > 0, letAβ ,v denote the set of (β , v)-absorbers in H.

Lemma 4.2. For every d4.2, α4.2, β4.2, φ4.2 ∈ (0, 1] such that β4.2 < d4.2, there exist an
integer n4.2 := n4.2(d4.2, α4.2, β4.2, φ4.2), and reals ρ4.2 := ρ4.2(d4.2, α4.2, β4.2)> 0 and η4.2 :=
η4.2(d4.2, α4.2, φ4.2)> 0 such that the following holds whenever n� n4.2 and ρ < ρ4.2.

Let H be an n-vertex (ρ, d4.2) -dense 3-graph satisfying δ(H)� α4.2
(n−1

2
)
. Then there exists a

set F of vertex-disjoint β-absorbers such that

(F.1) |F |� φ4.2n,
(F.2) for every v ∈V(H), |Aβ4.2,v ∩F |� η4.2n.

gAs good pairs arise from edges of a simple graph these are non-degenerate.
hStrictly speaking, degH(u,w,G1)− 1 can be replaced with degH(u,w,G1) as {a, u,w} ∈ E(H).
iStrictly speaking, degH(w, u,G3)− 2 can be replaced with degH(w, u,G3)− 1 as {u,w, b} ∈ E(H).
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Proof. Given
d := d4.2, α := α4.2, β := β4.2 and φ := φ4.2

as in the premise, set ρ4.2 := ρ4.1(d, α, β). In addition, define the auxiliary constants

c := c4.1(d, α) and γ :=min
{

c
4 · 7 ,

φ

2

}
. (4.6)

Finally, set η4.2 := cγ /4.
Fix 0< ρ < ρ4.2. Let H be a (ρ, d) -dense 3-graph as in the premise. Then |Aβ ,v|� cn4 for

every v ∈V(H), by Lemma 4.1. LetF ′ be a set of quadruples where each quadruple inV(H)4 is put
in F ′ independently at random with probability γ n−3. Then E[|F ′|]= γ n. Chernoff ’s inequality
[18, equation (2.9)] then yields that

|F ′|� 2γ n� φn (4.7)

with probability 1− o(1). Furthermore, for every vertex v,

E[|Aβ ,v ∩F ′|]� cn4γ n−3 = cγ n.
Chernoff ’s inequality [18, equation (2.9)] and the union bound yield that

|Aβ ,v ∩F ′|� cγ n/2 for every v ∈V(H) (4.8)

with probability 1− o(1).
Let I := I(F ′) denote the number of pairs of members of F ′ meeting one another. For

sufficiently large n, the total number of pairs of intersecting quadruples taken in V(H) is at most(
4
1

)
n4 · n3 +

(
4
2

)
(2!)n4 · n2 +

(
4
3

)
(3!)n4 · n� 6n7.

Then

E[|I|]� 6n7 · (γ n−3)2 � 6γ 2n.
Markov’s inequality now implies that

|I| < 7γ 2n (4.9)

with positive probability.
It follows that an F ′ satisfying (4.7), (4.8) and (4.9) exists. Fix one such F ′. Define F to be the

set of quadruples attained from F ′ by first removing all quadruples that do not β-absorb any v,
and second, from each intersecting pair of quadruples, removing one of the members of that pair.
Property (F.1) trivially holds for F . To see that (F.2) holds for F , note that, for every v ∈V(H),

|Aβ ,v ∩F |� cγ n/2− 7γ 2n
(4.6)
� cγ n/4= η4.2n

whenever n is sufficiently large.

4.3 Proof of Lemma 1.3: 2-degree setting
With Lemmas 4.1 and 4.2 established, we are ready to prove Lemma 1.3. All that remains is to
‘string’ the members of F (from Lemma 4.2) into a single path and prove the absorption capabil-
ities of the resulting path. Given a quadruple (x, y, z,w), we refer to (x, y) and (z,w) as the front
and rear end-pair of the quadruple respectively.

Proof of Lemma 1.3. Let d := d1.3, α := α1.3, β := β1.3 <min{α, d} be given. Set
κ := κ1.3 := β/2 and μ := μ1.3 := η4.2(d, α, β/20). (4.10)
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To be clear, the definition of μ appeals to that of η4.2. The latter requires a value for φ4.2 be set;
here we take φ4.2 = β/20. Set

ρ1.3 :=min{ρ4.2(d, α, β , β/20), ρ1.1(d, β − κ) · (1− κ)3/2}. (4.11)
Let 0< ρ < ρ1.3 be fixed, let n be a sufficiently large integer and letH be an n-vertex (ρ, d) -dense
3-graph with δ2(H)� α(n− 2).

Let F denote the set of β-absorbers, the existence of which in H is assured by Lemma 4.2
applied with α4.2 = α, d4.2 = d, β4.2 = β , φ4.2 = β/20, and owing to ρ < ρ4.2(d, α, β , β/20), by
(4.11). Fix an arbitrary ordering of the members of F , namely F1, F2, . . . , Fr , where r := |F |�
βn/20, by (F.1). In what follows, we prove that a path A of the form

F1 ◦ P1 ◦ · · · ◦ Fr−1 ◦ Pr−1 ◦ Fr (4.12)
exists in H, where each Pi is a 10-path connecting the rear end-pair of Fi with the front end-pair
of Fi+1; we use ◦ to denote path concatenations along these pairs. If such a path A were to exist,
then it would form a (β ,μ, κ)-absorbing-path. To see this, first observe that

|V(A)| = 4r + 6(r − 1)� 10r� βn/2 (4.10)= κn. (4.13)
Then observe that (F.2), together with a standard greedy argument (see e.g. [35, Claim 2.6]), asserts
that such a path A would form a μn-absorbing-path. Finally observe that the ends of such a path
A would have codegree at least βn for, indeed, β < α, and δ2(H)� α(n− 2) (here we utilize the
fact that n is sufficiently large).

It remains to establish the existence of the aforementioned path. This we do inductively as
follows. Put A1 := F1. Suppose that the (partial) path

Ai := F1 ◦ P1 ◦ · · · ◦ Fi−1 ◦ Pi−1 ◦ Fi (4.14)
has been defined for some i ∈ [r − 1]. We define Ai+1 as follows. Set

Vi := (V(H) \ (V(Ai)∪V(F)))∪ {a, b, c, d}, (4.15)
where (a, b) is the rear end-pair of Fi and (c, d) is the front end-pair of Fi+1. The next two claims
verify that Lemma 1.1 can be applied to H[Vi] in order to connect (a, b) with (c, d) via H[Vi].

Claim 2. Let i ∈ [r]. Then H[Vi] is (ρ′, d) -dense for some ρ′ < ρ1.1(d, β/2).

Proof. As |V(Ai)∪V(F)|� κn, it follows that |Vi|� (1− κ)n for every i ∈ [r]. Fix �G1, �G2 ⊆Vi ×
Vi, and note that

eH[Vi](�G1, �G2) � d|P2(�G1, �G2)| − ρn3

(4.11)
� d|P2(�G1, �G2)| − ρ1.1(d, β − κ)

(1− κ)3

2
n3

� d|P2(�G1, �G2)| − ρ1.1(d, β − κ)
2

|Vi|3. (4.16)

Owing to κ = β/2, the claim follows.

Claim 3. Let i ∈ [r]. Then δ2(H[Vi])� βn/2.

Proof. Owing to β < α, δ2(H)� α(n− 2), and n being sufficiently large, we may write

δ2(H[Vi])� α(n− 2)− κn= (α − κ)n− 2α
α>β

� (β − κ)n (4.10)= βn/2.
Lemma 1.1, applied toH[Vi] with α1.1 = β/2 and d1.1 = d, asserts that any two pairs of vertices

in H[Vi] can be connected via a 10-path in H[Vi]. This in particular holds for the pairs (a, b) and
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(c, d). The path Pi+1, as defined above, exists and consequently Ai+1 as well. This completes the
proof of the existence of A and thus concludes the proof of the lemma.

4.4 Proof of Lemma 1.4: 1-degree setting
Given α := α1.4, d := d1.4 and η := η1.4 as in the premise of the lemma, choose two constants
0< ζ � κ such that

κ �min
{
α, d, η,

α + d − 1
2(d + 1)+ 1

}
, ζ + κ � g(α − κ , d), (4.17)

where g(·) is as defined in (1.3). The first constraint being our prerogative, we explain the validity
of the second. Owing to ζ � κ , it suffices to argue that there exists a choice of κ satisfying

2κ � g(α − κ , d) (1.3)= min
{
α − κ , d,

α − κ + d − 1
d + 1

}
.

The first term in the minimization entails having to require κ � α. The second term imposes
κ � d. The third, and final, term requires

κ � α + d − 1
2(d + 1)+ 1

.

We remark that the condition κ � η plays no role in the proof. It is, however, mandated in
order to accommodate a subsequent application of Lemma 1.4 in the proof of Theorem 1.3 in
Section 6.2.

With ζ and κ fixed, define
κ1.4 := κ and μ := μ1.4 := η4.2(d, α, κ/10).

To be clear, the definition of μ entails setting φ4.2 := κ/10. Set

ρ1.4 :=min{ρ4.2(α, d, d − ζ , κ/10), 2−1(1− κ)3ρ1.2(d, α − κ , ζ + 2κ)}. (4.18)

Let 0< ρ < ρ1.4 be fixed and let H be a (ρ, d) -dense 3-graph satisfying δ(H)� α1.4
(n−1

2
)

be given. Let F be a set of (d − ζ )-absorbers, the existence of which is assured by Lemma 4.2
applied with α4.2 = α, d4.2 = d, β4.2 = d − ζ and φ4.2 = κ/10, and also owing to ρ < ρ4.2(α, d, d −
ζ , κ/10) per (4.18). As in the proof of Lemma 1.3, we seek to establish the existence of a path A
of the form (4.14). If such a path A were to exist, then it would form a (β − κ ,μ, κ)-absorbing-
path. Indeed, owing to r := |F |� κn/10 its length would be at most κn, by (4.13); it would be
μn-absorbing, by [35, Claim 2.6]; its ends would have codegree at least (d − η)n as these arise
from (d − ζ )-absorbers in F and ζ � η.

It remains to establish the existence of A. Let Ai and Vi be as defined in (4.14) and (4.15),
respectively. It suffices to prove that the pairs (a, b) and (c, d) (per the definition of Vi) can be
connected via a 10-path passing through H[Vi]. This we accomplish using Lemma 1.2. Hence it
remains to prove that for every i ∈ [r],H[Vi] adheres to the premise of that lemma. The following
claims verify this.

Starting with the -denseness of H[Vi], note that (4.18), the observation that |Vi|� (1− κ)n,
and an argument identical to that seen in (4.16) establish the following.

Claim 4. Let i ∈ [r]. Then H[Vi] is (ρ′, d) -dense for some ρ′ < ρ1.2(d, α − κ , ζ + 2κ).

Claim 5. Let i ∈ [r]. Then

δ(H[Vi])� (α − κ)
(|Vi| − 1

2

)
.
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Proof. Start by observing that

δ(H[Vi])� δ(H)− |V(Ai)∪V(F)| · n,
where the last term on the right-hand side accounts for all pairs involving vertices from V(Ai)∪
V(F). Owing to (4.13) and relying on n being sufficiently large, we may write

δ(H[Vi])� α

(
n− 1
2

)
− κn2

� α
n2

2
− κn2 − α

n
2

= (α − κ/2)
n2

2
− α

n
2

� (α − κ)
n2

2
(4.19)

� (α − κ)
(|Vi| − 1

2

)
.

Having set κ � α + d − 1 in (4.17), this implies that (α − κ)+ d > 1 holds. This, coupled with
the condition ζ + κ � g(α − κ , d), also set in (4.17), implies that any two disjoint pairs of vertices
having codegree at least (d − ζ − κ)n can be connected in H[Vi] via a 10-path, by Lemma 1.2. In
H[Vi], both pairs (a, b) and (c, d) have codegree at least (d − ζ − κ)n and are thus connectable in
this fashion. The existence of A is established. This concludes the proof of the lemma.

5. The path-cover lemma
In this section we prove our path-cover lemma, namely Lemma 1.5. Our proof of this lemma
employs the weak regularity lemma stated below in Lemma 5.1. In Section 5.2 we provide an
alternative proof of Lemma 1.5 for graphs equipped with the notion of -denseness; the latter
notion is a stronger notion than that of 1-set-denseness assumed in Lemma 1.5. If -denseness is
assumed, then the regularity lemma is no longer needed, giving rise to a much shorter proof.

5.1 Path covers in 1-set-dense 3-graphs
A 3-graphH is said to be t-partite if there is a vertex partition V(H)=V1∪̇V2∪̇ · · · ∪̇Vt such that
each edge e ∈ E(H) satisfies |e∩Vi|� 1 whenever i ∈ [t]. A t-partite H is said to be equitable if
its t-partition satisfies |V1|� |V2|� · · ·� |Vt|� |V1| + 1. We also refer to the partition itself as
equitable. An n-vertex 3-partite 3-graph H with an underlying partition V(H)= X∪̇Y∪̇Z is said
to be ε-regular if

eH(X′, Y ′, Z′)= eH(X, Y , Z)
|X||Y||Z| |X′||Y ′||Z′| ± εn3 (5.1)

for every X′ ⊆ X, Y ′ ⊆ Y and Z′ ⊆ Z. If only the lower bound seen at (5.1) is upheld byH, then we
refer to such an H as ε-lower-regular. If in addition eH(X, Y , Z)/|X||Y||Z|� d, then H is called
(ε, d)-regular or (ε, d)-lower-regular, respectively. The following result is a commonly known
generalization of the main result of [40].

Lemma 5.1 (weak-regularity lemma for 3-graphs [40]). For every ε5.1 > 0 and integer t5.1, there
exist integers n5.1 and T5.1 such that the following holds whenever n� n5.1.
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Let H be an n-vertex 3-graph. Then there exists an integer t satisfying t5.1 � t� T5.1 and an
equitable partition V(H)=V1∪̇V2∪̇ · · · ∪̇Vt such that, for all but at most εt3 triples i, j, k ∈ [t], the
sets Vi,Vj,Vk induce an ε5.1-regular 3-partite 3-graph denoted H[Vi,Vj,Vk].

Given a 3-graph H, regularized per Lemma 5.1, and a real d > 0, define Rd := Rd(H) to denote
the 3-graph whose vertices are the clusters (i.e. sets) (Vi)i∈[t] and whose edges are the triples
{Vi,Vj,Vk}, i, j, k ∈ [t], such that H[Vi,Vj,Vk] is (ε, d)-regular. It will be convenient to identify
V(Rd) with [t] := {1, . . . , t}. Given X ⊆V(Rd) define ∪X := ⋃

i∈X Vi. An edge e ∈ E(H) is said to
be crossing with respect to X if there are three clusters Vi,Vj,Vk captured by X such that

1= |e∩Vi| = |e∩Vj| = |e∩Vk|.

Lemma 5.2 (path-packing lemma [36, Claim 4.2]). For all 0< ε < d < 1, every (ε, d)-lower-
regular 3-partite equitable 3-graph H on n vertices, with n a sufficiently large integer, contains a
family P of vertex disjoint-paths such that for each P ∈P we have

|V(P)|� ε(d − ε)n/3 and
∑
P∈P

|V(P)|� (1− 2ε)n.

The following is a triviality whose proof is included for completeness.

Lemma 5.3. For every d5.3 > 0 and ζ5.3 > 0, there exist an integer n5.3 := n5.3(d5.3, ζ5.3)> 0 and a
real ρ5.3(d5.3, ζ5.3)> 0 such that the following holds whenever n� n5.3 and 0< ρ < ρ5.3.

Let H be an n-vertex (ρ, d5.3)-dense 3-graph. Then H admits a matching covering all but at most
max{2, ζ5.3n} vertices.

Proof. Given d := d5.3 and ζ := ζ5.3, set ρ5.3 := d · ζ 3/27. Let 0< ρ < ρ5.3, let n be sufficiently
large and letH be an n-vertex 3-graph as in the premise. LetM be a maximummatching inH. Let
X :=V(H) \V(M) denote the set of vertices not covered by the members of M. If |X|� 2, then
the claim follows. Assume then that |X|� 3. In this case eH(X)= 0 by the maximality ofM. Then

d
(|X|

3

)
− ρn3 � eH(X)� 0.

Consequently
d
27

|X|3 � ρn3.

Assuming that |X| > ζn, we arrive at

ζn< |X|� (27 · ρd−1)1/3n,
contradicting ρ < ρ5.3 chosen at the outset. Consequently, in this case |X|� ζnmust hold.

We are now ready to prove our path-cover lemma, namely Lemma 1.5.

Proof of Lemma 1.5. Given d := d1.5 and ζ := ζ1.5 let ρ′ := ρ5.3(d/2, ζ/12) and set

treg :=max{8/ρ′, 8/ζ }, d′ := ρ′/4, εreg :=min{d′/2, ζ/24}. (5.2)

In addition, set

ρ1.5 := ρ′/4 and 
1.5 := T5.1(εreg, treg)
εreg(d′ − εreg)

. (5.3)

Let n be sufficiently large, let ρ < ρ1.5 and let H be an n-vertex (ρ, d)-dense 3-graph.
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Let Rd′ := Rd′(H) denote the reduced graph ofH obtained after regularizingH using the weak-
regularity lemma, namely Lemma 5.1, applied with ε5.1 = εreg and t5.1 = treg. Let t := |V(Rd′)| and
identify V(Rd′) with [t].

Claim 6. Rd′ is (ρ′, d/2)-dense.

Proof. FixX ⊆V(Rd′) and letCX denote the number of edges ofH which are crossing with respect
to X and that lie in (εreg, d′)-regular triples H[Vi,Vj,Vk], where the sets Vi,Vj,Vk are taken from
the underlying regularity partition. Then

eRd′ (X)� CX/2(n/t)3.

The factor 2 appearing here is incurred in order to cope with the the fact that cluster sizes are in
the set {n/t, n/t + 1}; we use the fact that for sufficiently large n, 2(n/t)3 � (n/t + 1)3 holds.

Observe that

CX � eH(∪ X)− |X| · 2(n/t)3 − |X|2 · 2(n/t)3 − εregt3 · 2(n/t)3 − |X|3d′ · 2(n/t)3.
Indeed, the second and third terms on the right-hand side arise from the removal of all edges
that have at least two of their vertices in the same cluster captured by X from E(H[∪ X]). The
fourth term on the right-hand side arises from the removal of all (crossing) edges found in εreg-
irregular triples of clusters. Finally, the last term on the right-hand side arises from the removal of
all (crossing) edges found in triples of clusters whose edge density is at most d′.

As |X|� t, we arrive at

eRd′ (X)�
eH(∪ X)
2(n/t)3

− t − t2 − εregt3 − d′t3.

As H is (ρ, d)-dense, we have

eH(∪ X)� d
(∑

i∈X |Vi|
3

)
− ρn3 � d

(|X|
3

)
(n/t)3 − ρn3.

Indeed, the term
(|X|
3
)
(n/t)3 accounts only for edges crossing with respect to X, while

(∑
i∈X |Vi|
3

)
accounts also for triples inside clusters captured by X. By (5.2) we have t + t2 � 2t2 � ρ′t3/4, and
by (5.3) we have ρ � ρ′/4. We may now write

eRd′ (X)�
d
2

(|X|
3

)
− (ρ + ρ′/4+ εreg + d′)t3 � d

2

(|X|
3

)
− ρ′t3,

and the claim follows.

In view of Claim 6 and the choice of ρ′, it follows by Lemma 5.3 that Rd′ admits a matchingM
missing at most max{2, ζ t/12} vertices of Rd′ . For each edge (Vi,Vj,Vk) ofM, apply Lemma 5.2 to
H[Vi,Vj,Vk] to obtain a system of vertex-disjoint paths as described in Lemma 5.2. Let P denote
the system of paths thus generated inH over all edges ofM. In eachH[Vi,Vj,Vk] corresponding to
an edge (Vi,Vj,Vk) ofM, at most 3/(εreg(d′ − εreg)) paths are packed. As |M|� T5.1(εreg, treg)/3,
at most 
1.5 paths are thus packed.

It remains to argue that the members of P cover all but at most ζn vertices of H. In
each H[Vi,Vj,Vk] corresponding to an edge (Vi,Vj,Vk) of M, at most 2εreg · 6n/t vertices of
H[Vj,Vj,Vk] are missed. As |M|� t/3, at most 12εregn vertices of H are missed this way. From
the clusters not covered by M, at most max{2, ζ t/12} · 2n/t vertices of H are missed. Overall,
at most (12εreg +max{4/t, ζ/2})n vertices of H are missed. Owing to (5.2), 12εreg � ζ/2 and
t� treg � 8/ζ (so that 4/t� ζ/2); consequently 12εreg +max{12/t, ζ/2}� ζ as required.
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5.2 Path-covers in 3-set-dense 3-graphs
In this section we provide a significantly shorter proof for Lemma 1.5, under the strengthened
assumption that the host 3-graph is -dense and not merely 1-set-dense. The main ingredient,
so to speak, of the argument for constructing path-covers in -dense graphs is as follows.

Lemma 5.4. ([36, Claim 4.1]). Let c> 0. Then every 3-partite 3-graph H having at most m vertices
in each partition set and satisfying e(H)� cm3 contains a path on at least cm vertices.

Proof of Lemma 1.5 for -dense 3-graphs. Given d := d1.5 and ζ := ζ1.5, set ρ1.5 := dζ 3/2 · 33,
and set 
1.5 := �1/ρ1.5�. Let 0< ρ < ρ1.5 be fixed, let n be sufficiently large and letH be a (ρ, d) -
dense n-vertex 3-graph.

We define a sequence of subgraphs H0 :=H ⊇H1 ⊇H2 · · · as follows. Let Hi, for some
i� 0, be given. If ni := |V(Hi)| < ζn, then set Hi+1 to be the empty graph. Otherwise note that
eHi(V1,V2,V3)= eH(V1,V2,V3) whenever V1,V2,V3 ⊆V(Hi). Choose an arbitrary equiparti-
tion V(Hi)=U1∪̇U2∪̇U3 such that |U1|� |U2|� |U3|� |U1| + 1. Then |Ui| ∈ {ni/3, ni/3+ 1},
for every i ∈ [3]. The 3-partite subgraph of Hi induced by the edges of Hi crossing U1, U2 and U3
has eHi(U1,U2,U3) edges. For the latter quantity we observe that

eHi(U1,U2,U3)= eH(U1,U2,U3)� d|U1||U2||U3| − ρn3 �
(
dζ 3

33
− ρ

)
n3 � dζ 3

2 · 33 n
3.

As |Uj|� 2n/3 holds for every j ∈ [3], it follows by Lemma 5.4 thatHi contains a path Pi of length
at least (dζ 3/34)n. Set Hi+1 :=Hi −V(Pi).

In the above sequence, all graphs Hi with i> 
1.5 are empty. Hence at most 
1.5 paths are
defined throughout the above process; these paths form the required path-cover of H.

6. Proofs of the main results
Let H be a 3-graph, let x, y ∈V(H) and let H′ ⊆H with {x, y} �⊆V(H′) possible. Define

degH′(x, y) := |NH(x, y)∩V(H′)|.

6.1 Proof of Theorem 1.2: 2-degree setting
Given d > 0 and α > 0, set

0< β <min{d, α}, κ := κ1.3(d, α, β)� β/2, μ := μ1.3(d, α, β), ν � μ, ζ := μ − 2ν. (6.1)

The inequality κ � β/2 is supported by Lemma 1.3. Set

0< ρ <min{ρ1.3(d, α, β), 2−1(1− κ − ν)3 · ρ1.5(d, ζ ), ρ1.1(d, β/8) · (ν(1− κ)/4)3}. (6.2)

Let n be sufficiently large and let H be an n-vertex (ρ, d) -dense 3-graph satisfying δ2(H)�
α(n− 2). As ρ < ρ1.3(d, α, β),H admits a (β ,μ, κ)-absorbing-pathA, by Lemma 1.3. DefineH′ :=
H −V(A) (i.e. H′ is attained from H by removing the vertices of A and all edges incident to V(A)
from H).

We prepare for an application of Lemma 1.6. For each pair of vertices {x, y} ∈ (V(H)
2

)
, set

U{x,y} :=NH(x, y)∩V(H′). Then

degH′(x, y)= |U{x,y}|� α(n− 2)− |V(A)|� α(n− 2)− κn

� (α − κ)n− 2α
α>β

� (β − κ)n
(6.1)
� βn/2
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for every {x, y} ∈ (V(H)
2

)
. Lemma 1.6, applied with ν1.6 = ν, then asserts that there exists a set R⊆

V(H′) satisfying

|NH(x, y)∩ R|� (β/2− 2n−1/3)|R|� β|R|/4 (6.3)

for every {x, y} ∈ (V(H)
2

)
. Consequently, δ2(H[R])� β|R|/4. Moreover, the set R also satisfies

|R| = νn′ ± ν(n′)2/3, where n′ := |V(H′)|� (1− κ)n. We may then write
ν(1− κ)

2
n� |R|� 2νn. (6.4)

Set H′′ :=H′ − R. Then

n′′ := |V(H′′)|� n− |V(A)| − |R| (6.4)� n− κn− 2νn= (1− κ − 2ν)n. (6.5)

Claim 7. H′′ is (ξ1, d) -dense for some ξ1 < ρ1.5(d, ζ ).

Proof. Fix �G1, �G2 ⊆V(H′′)×V(H′′) and note that as H′′ is an induced subgraph of H, then

eH′′(�G1, �G2) � d|P2(�G1, �G2)| − ρn3

(6.2)
� d|P2(�G1, �G2)| − 2−1 · ρ1.5(d, ζ )(1− κ − 2ν)3n3

(6.5)
� d|P2(�G1, �G2)| − 2−1 · ρ1.5(d, ζ )(n′′)3.

As -denseness implies 1-set-denseness, it follows that H′′ is (ξ1, d)-dense for some ξ1 <

ρ1.5(d, ζ ). Lemma 1.5 then asserts that H′′ admits a collection P ′ := {P1, . . . , Ph−1}, h− 1�

1.5(d, ζ ), of vertex-disjoint paths covering all but at most ζn′′ � ζn vertices of H′′ and thus of
H as well. Write Ph :=A and set P :=P ′ ∪ {Ph}.

In what follows we use the set R in order to concatenate the members of P into a (tight) cycle.
This entails h applications of the connecting lemma suited to this setting, namely Lemma 1.1. We
proceed in two steps. First, a path of the form

L := P1 ◦K1 ◦ P2 ◦K2 ◦ · · · ◦Kh−1 ◦ Ph (6.6)

is constructed, where each Ki is a 10-path disjoint of all other 10-paths involved in the construc-
tion. Second, the remaining ‘free’ end-pair of Ph is connected using an additional 10-path with the
remaining ‘free’ end-pair of P1. The resulting cycle we denote by C. We now make this precise.

The construction of L is done inductively. Set L1 := P1. Assuming

Li := P1 ◦K2 · · · ◦Ki−1 ◦ Pi (6.7)

has been constructed for some i ∈ [h− 1], we define Li+1 as follows. Let {a, b} be the free end-pair
of Pi and let {c, d} be one of the end-pairs of Pi+1. Set

Ri := (R \V(Li))∪ {a, b, c, d}. (6.8)

Observing that |V(Li)∩ R|� 10h, we may write that

|Ri|� |R| − 10h
(6.4)
� ν(1− κ)n/2− 10h� ν(1− κ)n/4 (6.9)

for sufficiently large n. Owing to ρ < ρ1.1(d, β/8) · (ν(1− κ)/4)3, by (6.2), an argument identi-
cal to that seen in Claim 7 establishes that H[Ri] is (ξ2, d) -dense for some ξ2 < ρ1.1(d, β/4).
Moreover,

δ2(H[Ri])
(6.3)
� β|R|/4− 10h� β|R|/8� β|Ri|/8
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whenever n is sufficiently large. The path Ki connecting {a, b} and {c, d} in H[Ri] then exists,
by Lemma 1.1 applied with d1.1 = d and α1.1 = β/8. This completes the construction of L.
Completing L into the aforementioned cycle C is done using the exact same argument provided
for Ki.

With respect to the original 3-graph H, the cycle C covers all vertices of the latter but (a subset
of) those found in V(H′′) \V(P) and those vertices of R not used throughout the construction
of C. The number of uncovered vertices is then at most

|V(H′′) \V(P)| + |R|� ζn+ 2νn (6.1)= (μ − 2ν)n+ 2νn= μn.
The path A, present in C, can then absorb all uncovered vertices, rendering a tight Hamilton cycle
in H. This completes the proof of Theorem 1.2.

6.2 Proof of Theorem 1.3: 1-degree setting
Given α > 0 and d > 0 satisfying α + d > 1, set

η �min
{
g(α, d), a+ d − 1,

α + d − 1
3(d + 1)+ 2

}
.

Recalling the definition of g(·) from (1.3), note that we have just imposed η � α, d as well. With η

set, define

κ := κ1.4(d, α, η)� η, μ := μ1.4(d, α, η), ν � μ, ζ := μ − 2ν,

where the inequality κ � η is supported by Lemma 1.4. As κ � η � α + d − 1, we may insist on
α − κ + d − 1> 0. Fix an auxiliary constant 0< γ � η such that

α − κ − γ + d − 1> 0. (6.10)

Define an additional auxiliary constant 0< γ ′ � η such that

η + κ + γ ′ � g(α − κ − γ , d) (1.3)= min
{
α − κ − γ , d,

α − κ − γ + d − 1
d + 1

}
. (6.11)

To see that (6.11) is possible, we iterate over each of the constraints involved in it. For the first one,
note that the requirement η + κ + γ ′ � α − κ − γ can be rewritten to read η + 2κ + γ + γ ′ � α.
Owing to being able to choose κ , γ , γ ′ � η, this amounts to requiring η � α; the latter is already
imposed on η. In a similar manner, the second constraint reading η + κ + γ ′ � d amounts to
requiring η � d, which is also already imposed on η. Finally, for the third constraint appearing in
(6.11), appeal again to the ability to choose κ , γ , γ ′ � η, so that the third constraint amounts to
requiring

η � α + d − 1
3(d + 1)+ 2

,

which is also already imposed on η.
We conclude our selection of constants by setting

0< ρ <min
{
η/4, ρ1.4(d, α, η), 2−1η(1− κ − 2ν)3 · ρ1.5(d, ζ ),

ρ1.2(d, α − κ − γ , η + κ + γ ′) · (ν(1− κ)/4)3
}
. (6.12)

Let n be sufficiently large and let H be an n-vertex (ρ, d) -dense 3-graph satisfying δ(H)�
α
(n−1

2
)
. As ρ < ρ1.4(d, α, η), H admits a (d − η,μ, κ)-absorbing-path A, by Lemma 1.4. Define

H′ :=H −V(A).
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We prepare for an invocation of Lemma 1.6. LetDd−η(H) denote the set of pairs {x, y} ∈ (V(H)
2

)
satisfying degH(x, y)� (d − η)n. Owing to η � d and ρ < η/4, by (6.12), the set Dd−η(H) has
order of magnitude �(n2), by (2.3). For each pair {x, y} ∈Dd−η(H), set

U{x,y} :=NH(x, y)∩V(H′).

For each vertex x ∈V(H), let Lx := Lx(H) denote the link graphj of x in H. Set Lx,H′ to be the
subgraph of Lx induced by V(H′). For any pair {x, y} ∈Dd−η(H), we may write

degH′(x, y)= |U{x,y}|� degH(x, y)− |V(A)|� (d − η − κ)n.
For a vertex x ∈V(H), we may write

degH′(x)= e(Lx,H′)
� e(Lx)− |V(A)| · n
� α

(
n− 1
2

)
− κn2

� (α − κ)
n2

2
(as seen in (4.19))

� (α − κ)
(
n′ − 1
2

)
,

where n′ := |V(H′)|.
Lemma 1.6, applied with ν1.6 = ν, then asserts that there exists a set R⊆V(H′) of size |R| =

νn′ ± ν(n′)2/3, and thus satisfying (6.4), such that

|NH(x, y)∩ R|� (d − η − κ − 2n−1/3)|R|, (6.13)
whenever {x, y} ∈Dd−η(H), and such that, for every x ∈V(H),

e(Lx,H′[R])� (α − κ − 3n−1/3)
(|R|

2

)
.

In particular,

δ(H[R])� (α − κ − 3n−1/3)
(|R|

2

)
. (6.14)

Define H′′ :=H′ − R. Then n′′ := |V(H′′)| satisfies (6.5). This estimate, coupled with

ρ
(6.12)
< 2−1η(1− κ − 2ν)3 · ρ1.5(d, ζ ),

and put through the argument seen in Claim 7, implies that
H′′ is (ξ1, d) -dense for some ξ1 < 2−1η · ρ1.5(d, ζ ). (6.15)

Recall the definition put forth in Section 2 of the spanning subgraphH′′
d−η

⊆H′′. In the follow-
ing claim we essentially appeal to (2.4) asserting that H′′

d−η
is -dense. Here, however, we require

much less.

Claim 8. H′′
d−η

is (ξ2, d)-dense, for some ξ2 < ρ1.5(d, ζ ).

Proof. Fix X ⊆V(H′′
d−η

). Then

eH′′
d−η

(X)� eH′′(X)− |Bd−η(H′′)| · n′′.

jSee Section 4.1 for a definition.
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Writing η = d − (d − η) and appealing to both (2.3) and (6.15), we may write

eH′′
d−η

(X) � d
(|X|

3

)
− ρ1.5(d, ζ )η

2
(n′′)3 − ρ1.5(d, ζ ) · (d − (d − η))

2 · (d − (d − η))
(n′′)3

η�1
� d

(|X|
3

)
− ρ1.5(d, ζ )(n′′)3.

As H′′
d−η

spans H′′, |V(H′′
d−η

)| = n′′ holds, and the claim follows.

Lemma 1.5 then asserts that H′′
d−η

admits a collection P ′ := {P1, . . . , Ph−1}, h− 1� 
1.5(d, ζ ),
of vertex-disjoint paths covering all but at most ζn′′ � ζn vertices of H′′ (recall that H′′

d−η
spans

H′′) and thus of H as well. Write Ph :=A and set P :=P ′ ∪ {Ph}. By definition of A and H′′
d−η

,

{x, y} ∈Dd−η(H) whenever {x, y} is an end-pair of some path P ∈P . (6.16)

As in the proof of Theorem 1.2, we seek to construct a path L of the form (6.6) and then close
the latter into a (tight) cycle C. With the approach for this construction here conceptually iden-
tical to that seen in the proof of Theorem 1.2, we focus on the differences. More specifically, we
are to show that h applications of the connecting lemma relevant to the setting at hand, namely
Lemma 1.2, can be carried out to construct the cycleC. To that end, for i ∈ [h− 1], define Li and Ri
as in (6.7) and (6.8), respectively. The following series of claims verifies that H[Ri] adheres to the
premise of Lemma 1.2 so that the pairs {a, b} and {c, d} (per the definition of Ri) can be connected
through H[Ri].

Claim 9. δ(H[Ri])� (α − κ − γ )
(|R|
2
)
.

Proof. Observe that

δ(H[Ri])
(6.14)
� δ(H[R])− 10h · n� (α − κ − 3n−1/3)

(|R|
2

)
− 10h · n,

where the term 10h · n accounts for all pairs involving a vertex in V(Li)∩ R. As 10h · n=O(n)
(recall that h− 1� 
1.5(d, ζ )) and |R| = �(n), by (6.4), the claim follows.

Next we consider the codegree of the pairs {a, b} and {c, d}, per the definition of Ri.

Claim 10. degH[Ri] (a, b), degH[Ri] (a, b)� (d − η − κ − γ ′)|R|

Proof. By (6.16), the pairs {a, b}, {c, d} lie in Dd−η(H). Consequently (6.13) holds for both these
pairs. Then

degH[Ri] (a, b)� (d − η − κ − 2n−1/3)|R| − 10h.

As 10h=O(1) and |R| = �(n), by (6.4), the claim follows for {a, b}. A similar argument holds for
{c, d}.

Next we address the -denseness of H[Ri].

Claim 11. H[Ri] is (ξ3, d) -dense, for some ξ3 < ρ1.2(d, α − κ − γ , η + κ + γ ′).

https://doi.org/10.1017/S0963548320000486 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000486


442 E. Aigner-Horev and G. Levy

Proof. The set Ri satisfies (6.9). Then, owing to

ρ < ρ1.2(d, α − κ − γ , η + κ + γ ′) · (ν(1− κ)/4)3,
an argument identical to that seen in Claim 7 establishes the claim.

Owing to (6.10) and (6.11), α − κ − γ + d − 1> 0 and η + κ + γ ′ < g(α − κ − γ , d) hold,
respectively. These inequalities together with Claims 9, 10 and 11 collectively assert that H[Ri]
and the pairs {a, b} and {c, d} satisfy the premise of Lemma 1.2 with α1.2 = α − κ − γ , d1.2 = d
and η1.2 = η + κ + γ ′. The pairs {a, b} and {c, d} can then indeed be connected through H[Ri] as
alleged.

This completes the definition of the cycle C containing the absorbing-path A. To prove that C
can be extended to absorb all possibly uncovered vertices, use the argument seen for this in the
proof of Theorem 1.2. This concludes our proof of Theorem 1.3.
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