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A DIFFUSION EQUATION WITH LOCALIZED
CHEMICAL REACTIONS*
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In some chemical reaction-diffusion processes, the reaction takes place only at some local sites, due to the
presence of a catalyst. In this paper we study the well-posedness of a model problem of this type. Sufficient
conditions are found to ensure global existence and finite time blowup. The blowup rate and the blowup set
are also investigated in the case of special nonlinearity.
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1. Introduction

Let Q be a bounded domain in RN with smooth boundary S = 8Q. Let F be a
C2-hypersurface in fi. Consider the following problem:

, (x,t)eQT = ax(0,T}; (1.1)

u(x,t)=0, (x,t)eST = dnx[0,T]; (1.2)

u(x,0) = uQ(x), xefi, (1.3)

where SF is a functional from C(H)->R1 defined by

J Fg(x)dx = $g(x)ds,g(x) e C(fi), (1.4)
n r

where ds represents the surface area element in E
The problem describes chemical reaction-diffusion processes in which, due to the

effects of catalyst, the reaction takes place only at some local sites. This causes the
chemical concentration to be continuous, but the gradient of the concentration to have
a jump at these local sites. The magnitude of the jump typically depends on the
concentration. Similar phenomena are also frequently observed in biological systems, for
instance on chemically active membranes. The reader is referred to [4] and [13] for
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102 JOHN M. CHADAM AND HONG-MING YIN

more physical motivation. The original model equation to describe the above phenome-
non was given (cf [4]) by

ut = Au+f(u)S(x), in QT=Qx(0, T], (1.5)

where Q contains the origin and S(x) is the Dirac-delta (generalized) function.
The steady-state structures of solutions in one-space dimension as well as for radially

symmetrical regions in higher space dimension were studied in [4] and [13]. However,
the model equation (1.5) is not well-defined in a general domain of higher space
dimension. To see this, we let G(x,y;t, T) be the Green's function with a homogeneous
Dirichlet condition on the lateral boundary. Then we have the following representation
for the solution of (1.6):

u(x, t) = | G(x, y; t, 0)uo(y)dy + } G(x, 0; t, z)f(u(0, z))dz. (1.6)
n o

It is known that
G(x, y; t, z) = Z(x, y; t, z) -g(x, y; t, z),

where Z(x, y; t, z) is the fundamental solution of the heat equation and g(x, y; t, z) is the
solution of the heat equation with the boundary value Z(x, y; t, z).

In a neighbourhood of x = 0, g(x, 0; t, x) is a smooth function but G(x, 0; t, z) has the
singularity (t—z)~NI2. Hence, for any t>0, by (1.6), u(x,t) is not defined at x = 0 if N>1 .
Consequently, the generalized function <5(x) cannot act on the function f(u(x,t)). It
follows that u(x,t) cannot satisfy the equation (1.1) in any sense unless the space
dimension is equal to 1. In order to model the described phenomenon in several space
dimensions, we are motivated by the fact, for x e R,

where H(x) is the Heaviside function. In several space dimensions if F = dA, where A is
a subdomain of Q, the natural generalization of the reaction term would be to replace
Six) by

dn(x)

where Vn(x) denotes the inward normal derivative at the boundary xedA and XA(X) is t n e

characteristic function. Then for any continuous function g(x) we have (assume
An dii = empty):

J \(x)XA(x)g(x)dx = - J XA(x){g(x)iti(x))xtdx
a a

= J g(x)ds,
HA
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A DIFFUSION EQUATION 103

where we have extended the normal vector {n(x)} to a vector field defined in the whole
domain SI. Thus the functional (1.4) is the natural extension for T an arbitrary
C2-hypersurface in Q.

The solution of the problem (1.1 HI-4) is defined as follows:

Definition. A continuous function u(x, t) defined on QT is said to be a weak solution
of (1.1H1-4), if u(x,t) satisfies

J J \uxS,t + u^-]dxdt-\\f{u(x,t))xlj(x,t)dsdt + \uQ(x)xl>(xmx=Q
Or or a

for any test function \j/(x,t)eC2-l{QT) with ^(x,t) = 0 on ST and il/(x,T)=0.

It is easy to see (cf. [10]), by choosing ^i(x,t) properly, that a solution of (1.1)—(1.4) is
equivalent to a solution of the following problem if u(x, t) is suitably smooth:

U,-Au=0, in QT\T; (1.7)

u(x,t)=0, (x,t)eST; (1.8)

u(x,0) = uo(x), xett; (1.9)

and on the interface r>=T x [0, T]

u-{x,t) = u+(x,t), (1.10)

du~(x,t) du+(x,t)
dn(x) dn(x) • = /(«(*, 0), (1-11)

where n(x) is the normal direction at xeF (pointing in either direction, but fixed once
this direction is chosen) and

du±{x,t)_ [u(x + zn(x),t)-u(x,t)~j
dn(x) ^0± z

This is a reformulation of the problem (1.1H1-4) in a more traditional way. In the
sequel we shall study the problem in the form of (1.7H1H)- Once we obtain a solution
of (1.7H1-H). we then obtain a solution of (1.1H1-4). On the other hand, in deriving
energy estimates, we sometimes do use the equation (1.1) for simplicity (see Remark 1
below).

In the present paper we shall study the global solvability and finite time blowup for
the problem (1.1)—(1.4). Comparing the reaction-diffusion equation

ut-Au = u", (p>l), (1.12)
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104 JOHN M. CHADAM AND HONG-MING YIN

with ours, the equation (1.1) illustrates some interesting differences. For example, it is
known that in one space dimension for a regular reaction-diffusion equation, the
blowup set may be a single or several points depending on the sign of the derivative of
initial data. However, for the solution of (1.1)—(1.4). we show that for f(u) = up the
blowup set consists of a single point regardless of the sign of derivative of the initial
value. Moreover, we show that the blowup rate (lower bound) is

ii(x,0~C(T-t)"1 / t 2 ( '"1 ) ) (1.13)

as t tends to the blowup time T. This growth rate is the same as that for the heat
equation with a nonlinear boundary condition (cf. [6] for N=l, also see [17] for N> 1):

M ^ . (1.14)
dn(x)

This is not surprising if one thinks of the equivalent problem (1.7)—(1.11). Therefore, our
problem (1.1)—(1.4) is more or less similar to the heat equation with a nonlinear
boundary condition. The global solvability is based on various a priori energy estimates.
The blowup property in finite time is derived by using Levine's convexity method ([11]).
By exploiting the maximum principle, we establish that the blowup occurs only at the
interface for the case of one space dimension.

The plan of the paper is as follows. The following section deals with local and global
existence. The finite time blowup is shown in Section 3. Section 4 is devoted to the
study of the blowup rate and the blowup set.

2. Local and global solvability

Throughout this paper, C denotes a generic constant whose dependency will be
specified at the end of the proof. The following conditions on the data are assumed
throughout the paper:

H(A): uo(x)eCa(d)nC2+"(n\r) with uo(x)=O on dd. The function f(u) is
differentiate in [0, oo). There is no intersection point in which the normal of
the hypersurace F and the normal of the boundary of the domain Q lies in
the same direction.

The local existence is quite standard. There are many ways to prove it. Here we
sketch the proof via the Schauder fixed point theorem. Let

K = {v(x, t): v{x, t) e C(fl), \\v(x, t)\\0 g Ko},

where Ko will be determined later. If we replace the function f(u(x, t)) by f(v(x, ij) in
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(1.11) and solve (1.7)—(1.11) for u, it is a linear diffraction problem which has a unique
solution (cf. [10, Section 13, Chapter 3])

u(x, t; v) e C°(QT) n C2*•• l +l«2)(QT\rT),

where ae(0,1) is a constant depending on the known data. Moreover, it is differentiable
up to the interface FT since F is C2-hypersurface. Then we can define a mapping

Since the embedding operator from u(x, t; v) e C(QT) into C(QT) is compact, it follows
that the mapping M is compact. The continuity of M can be shown using the same
method as that of Theorem 2.5 (see below). To apply the Schauder fixed point theorem,
we only need to show that M maps K into itself. This can be done, provided that T is
small. Indeed, by applying the maximum principle, one obtains

where C(K0) depends on K0,u0, the upper bound of T,Q,F.
We may assume that F separates the domain SI into two regions (otherwise extend it).

If one modifies equation (1.7) in one of the regions as follows:

u, - V[V« + f(v(x, m = - Wv(x, t)),

then this new equation with the heat equation in the other region becomes a diffraction
problem (see Section 13 of Chapter 3 in [10]). It follows by Theorem 10.1 in Chapter 3
of [10] that

where C(K0) and ae(0,1) depend on KO, the upper bound of T as well as other known
data. It follows that

if we choose Ko= 1 + ||uo||o
 a n ^ restrict T^C(K0)~

2la. This implies that the mapping M
is from K into K.

Finally, the Schauder fixed point theorem gives the existence of a solution of (1.7)-
(1.11). Uniqueness is also easy to prove (cf. Theorem 2.3 below). Thus, we have:

Theorem 2.1. Under the condition H(A), the problem (1.1)—(1.4) admits a unique
solution for some T>0.

To obtain a global solution, we need to derive an a priori bound of u(x, t). This can
be achieved by energy estimates.
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106 J O H N M. CHADAM AND H O N G - M I N G YIN

Theorem 2.2. Under the assumption H(A), if there exists a constant Co such that

f(u)u±C0\u
2 +1],

then the problem (1.1)—(1.4) admits a global solution.

Proof. In what follows, if F is only a hypersurface which does not separate Cl into
two regions, we can always extend F in such a way that the extended curve does divide
Q into two regions. Moreover, we require that the extended curve is also Lipschitz
continuous so that we can apply the divergence theorem. On the extended part, the
solution as well as its derivatives is continuous. Consequently, there is no contribution
on this paprt during the performance of integration by parts. In the sequel we will
always use this fact without explanation.

Let m^2 be even. We multiply the equation (1.7) by um+1 and integrate over Qt.
After performing integration by parts and using (1.10)—(1.11), we have

l— {um+2(x,t)dx+(m+l)$ [umu2
xdxdt

+2

m+zn or
(x)dx + \ J f{u)um+1dsdt

JuS (x)<ix + Cj \
m+2n or

1 J i um+2dsdt, (2.1)

where at the final step we have used Holder's and Young's inequalities in the form:

I ft \m/(m + 2)ft \2/(m+2)

J lumdsdt^[ J \um+2dsdt) (\\dsdt)
or \o r / \o r /

$um+2dsdt + C(m + 2).
r

Now we need the following trace-type interpolation inequality (cf. [12, p. 265]): for

\u2dx^e\uldx + - \u2dx.
r n £ n
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A DIFFUSION EQUATION 107

Applying the above inequality for v(x,t) = iF+2li2)(x,t) to the final term in (2.1), we have

-1— $um+2(x,t)dx+(m+l){ [iTuldxdt
m + 2 n Qt

^ JuS(x)dx+(
m + 2o on

It follows by taking e = m + l/(2(m + 2)2C) that

- L - Ju
m + 2 a

^—^— $ulS+2(x)dx+{m
m+2n

- J $um+2«2)dxdt.
£ o n

J tfu2
xdxdt

Qt

jum+2/{2)dxdt,
on

where the constant C is independent of m. By using the well-known Alikakos iteration
technique (see [6, Lemma 3.2, pp. 1730-1732], for details), we can deduce that

Now we can apply W\; ^estimates (cf. [10]) to obtain

where <xe(0,1) is arbitrary and C depends only on the known data. Finally, by the local
solvability we can establish existence on QT for any T>0. This completes our proof.

Remark 1. In deriving (2.1), one can multiply the equation (1.1) by um+l and then
integrate over QT. Formally, by assuming u(x,t) is smooth in QT one can apply the
integration by parts and obtain the same estimates. In what follows, we shall use this
way to calculate the energy.

The next two results deal with the comparison principle and the continuous
dependence on the known data.

Theorem 23. Let uo(x) and ng(x) be two initial data which satisfy the hypothesis
H(A). Let u{x,t) and u*(x,t) be the corresponding solutions in QT. Then, if
onti,

forall(x,t)eQT.
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108 JOHN M. CHADAM AND HONG-MING YIN

Proof. This can be shown by the classical maximum principle. Indeed, if
w(x,i) = u{x,t)—u*(x,t), then w(x,t) satisfies the heat equation (1.7). Moreover, w(x,t)^0
on the parabolic boundary dpQT. We claim that w(x,t) cannot attain its negative
minimum on the interface rT. To see this we note that on the interface FT, w(x,i)
satisfies

-, \ +/ * dw~(x,t) dw+(x,t) ,...„. .. . . . . .
w (x,t) = w+(x,t), v ' ' - l ' ' = /'(6>(x,t))w(x,t), (2.2)

where 0(x,t) lies between u(x,t) and u*(x,t).
We first assume that MO(X)>UJ(X) on T. Then the continuity of the solution implies

that there exists a To>0 such that w(x,t)>0 on Tx[0, T0]. Let T* =
sup(r:w(x,T)>0,0^T^t,xer}. If T*^T, nothing needs to be proved. If T*<T, then
w(x,t)>0 for all (x,t)eFx [0, T*) and there exists a x 0 e F such that w(xo, T*)=0. The
maximum principle implies w(x,t)^0 in Qj-.. Since w(xoT*) = 0, it follows that on
Q-j,, w(x, t) attains its minimum at (x0, T*). Hopf's lemma implies that

dn{x0) ' dn(x0)

This contradicts the condition (2.2) at (x0, T*). To remove the strict inequality between
the two initial values, we can use uo(x)+e as the initial value which satisfies the strict
inequality uo(x) + e>«J(x). Then we have

ue(x,t)Zu*(x,t).

By taking the limit and noting the continuity of ut on e (see Theorem 2.5 below), we
obtain the desired result.

Corollary 2.4. Assume that /(0) ^0 . //uo(x) ^0 , then u(x, t) ̂  0 on QT.

Theorem 2.5. Let uo(x) and «*(x) be two initial data which satisfy the condition H(A).
Let u(x, t) and u*(x, t) be the corresponding solutions in QT. Then

where C depends only on ||u0||Lco(Qx),IIUOIIL-IG7') *" we^ a s on QT> ^ an^ «•

Proof. By Green's representation, we have

u(x, t) = | G(x, y; t, 0)uo(y)dy + J J G(x, y; t, x)f(u(y, z))ds dx (2.3)
n o r

and similarly for u*(x, t). To verify the representation (2.3), we again need to extend the
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A DIFFUSION EQUATION 109

hypersurface such that F separates Q into two parts. We may assume that A is one of
the regions for which n(x) on F is the inward normal. Then the equation (1.7) as well as
(1.10)— 1̂.11) can be written in the weak sense:

Now using the Green's representation and applying the divergence theorem as before we
have the expression (2.3).

Note that

|G(x,y;t,T)|^C , ex

and

T i J ( \x-y\2\,^ C
J , exp<— c> ^ > a s S I •

It follows that

Consequently, Gronwall's inequality yields the desired inequality.

3. Blowup property

To prove the blowup property, in addition to the condition H(A), we need the
following hypotheses:

H(B):WithF(ii)=j5/(s)is,

(1) - M n " o , ^ + jrf(«oW)ds>0;

(2) / ( M ) ^ 0 for u^O. There exists a constant a>0 such that /

The condition H(B)(l) indicates that, initially, the energy is positive. The condition
H(B)(2) implies that the nonlinear reaction should be fast in order to have the blowup
phenomenon.

Theorem 3.1. Under the assumptions H(A) and H(B), the solution of (I.l)-(1A) blows
up in finite time.

Proof. The method follows from H. Levine's convexity method (cf. [11]). Multiply-
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110 JOHN M. CHADAM AND HONG-MING YIN

ing the equation (1.1) by u{x,t) and u^x,t), respectively, (see Remark 1) we have, after
integrating over Q, that

\±Wdx + lrfxdx = lf{u)uds. (3.1)
2 dt a n r

utds. (3.2)
n ^ at n r

We define

*• a r

From (3.2), we have

J(t)-J(O) = ]$u?dxdt. (3.3)
o n

Let

I(t) =
o n

where A is a constant to be specified later.
Then

I'(t) = fu(x,t)2dx, /"(t) = ^ J i
n dt a

From (3.1) and the assumption H(B), one obtains

For a > 0 sufficiently small, to be chosen later, we calculate

\ Su?dxdt]\\ $
on J Lo n

Now
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t

= 2j \uut
on

\\u2dxdt\ \l\u2dxdt\ +\u%dx
on J Loo J n

by Holder's inequality.
It follows by Cauchy's inequality that

} \u2dxdt\ Jtf f j
on on \ e / \_a

Hence,

on

1+<J I I .OB J|_o n

J $u2dxdt + A

Consequently, if we choose a and e sufficiently small such that

while we take A to be large enough such that (J(0)>0 by H(B)),

4(l+o)J(0)

then we obtain

This implies that I(t)~" must become zero in finite time. That is u(x,t) will become
infinite in finite time. Moreover, the blowup time, say T, obeys the following estimate
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T<

Corollary 3.2. For f(u) = u" with p>l, the solution will blowup in finite time, provided
that the initial data satisfies H(B)(l).

Proof. It is easy to verify that the assumption H(B)(2) holds for f{u) = up. The result
follows from Theorem 3.1.

In order to obtain a result for an exponential nonlinearity, we need the condition:

H(B): (3) Let dist{r,dSi}>0. Assume that A«o^0 on fi\F and uo(x)^
2(1 +a) in a neighbourhood of F.

Corollary 33. For f(u) = e", in addition to the assumption H(B)(l), if uo(x) satisfies
H(B)(3), then u(x, t) blows up in finite time.

Proof. By the condition H(B)(3) and the maximum principle, we can obtain M,^0.
Therefore, there exists a neighbourhood, say K(FT), of TT such that u(x, t) ̂  2( 1 + a). It
follows that for (x,t)eK{TT)

Thus, the assumption H(B){2) holds in ^(Fr) , which is sufficient from the proof of
Theorem 3.1. Hence, Theorem 3.1 implies the desired result.

4. Blowup rate estimates and blowup set

Throughout this section, T will denote the blowup time.

Theorem 4.1. For f(u) = u" with p>\, there exists a constant C>0 such that

Proof. For any ze(0, T), we have

u(x, t) = f G(x,y; t, z)u(y, z)dy+$ J Gu'ds dx.
a z r

For te{z,T), let
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A{t) = SUP ||H(-,T)||t.(n).

Then

A(t)^A(z) + c\ -X— dx A(ty
/t

(4.1)

By using the argument of [15], one concludes that for all te(z,T)

£ ^ (4.2)

provided that fi>A(z) and 0<z<T. Otherwise, from (4.1) we would have A(t)^f} for all
te(z, T), which is contradiction since u(x,i) blows up at t = T. In particular, if we take
P = 2A(z) in (4.2) and let t-»T to obtain

Remark 2. It would be interesting to have a similar estimate for the upper bound. It
is an open problem. However, a formal asymptotic analysis suggests the upper bound
should be the same as the lower bound.

We now study the blowup set. We are only able to deal with the problem in one
space dimension. In this case the model equation (1.1) reduces to (1.5) if one assumes
that the interface r = {x = 0}. In the following, we take the domain g r = ( - l , l)x(O,T).

Recall that a point x0 is said to be a blowup point if there exists a sequence (xn, tn)
with tn<T such that (xn, ta)-*(x0,T) as n-*co and

limu(xn,tn) = oo.

Theorem 4.2. Assume G(z) = f,™ds/f(s) is defined on [z0,oo) with some zo>O and
/ ' (s)^0, f"(s)>0 for s>0. Moreover, for s ^ s o >0 assume there exists a constant
K(so)>0 such that

then the blowup occurs only at x=0.

Proof. First of all, it is clear that x=0 is a blowup point.
Let 6? = [0,1] x [0, T). On Q%, we define a new function
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w(x,t)=u(x,t) + u(-x,t).

It is easy to see that w(x, t) satisfies

w,-wxx=0, (x,t)eQt, (4.4)

; (4.5)

w(l,t)=0, Ogt<T; (4.6)

w{x,0) = wQ(x) = uo(x) + uo(-x), O ^ x ^ l . (4.7)

For a fixed a>0, we can choose t0 close to T such that

The monotonicity of /(s) implies that wx(0,t)^ — /(a/2) in r o ^ t < T . Consequently,
there exists a neighbourhood Na(x,t) = { 0 ^ x ^ a , t o ^ t < r } such that

foral\(x,t)eNa(x,t).
On No(x, t), we introduce an auxiliary function

J(x, t) = wx(x, t) + v{x, t)f(w),

where v(x,t) will be specified later. We would like to show that there exists a bounded
function v{x,t) such that J{x,t)^0. To this end we first choose v(x,t) satisfying

v{0,t) = v(a,t)=0,

Moreover, we choose vo(x) = v(x, t0) to be sufficiently small such that

With the above v(x, t), we see that on the parabolic boundary dpNa(x, t)
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By a direct calculation, one finds

Since /"(w)>0, the Cauchy inequality implies

|2t>xf'(w)wx\ ^ vf"(w)wl + { \ • ^ .
f{w) v

It follows from the assumptions that

|2P J » w,| ̂  »/"(w) w* + K(s0) ̂  /(w).

Consequently,

where Ko = K(s0). Now we consider the following problem

v, ~ vxx - ^ = 0, (x, t) e Na(x, t), (4.8)

(4.9)

v{x,to) = vo(x), O^x^a. (4.10)

Note that the equation (4.8) is singular at the boundary. However we claim that the
problem (4.8)-(4.10) admits a bounded solution on [t0, T]. For this purpose we consider
the following regularized problem:

^ = 0 , (x,0eNa(x,t), (4.11)

v(0,t) = v(a,t) = e, to^t^T, (4.12)

v(x,t0) = v0(x)+e, Ogxgfl. (4.13)

The maximum principle implies

Since the consistency conditions hold at the corner points (0,0) and (a,0), the classical
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theory implies that the problem (4.11)—(4.13) posseses a unique classical solution
v{x,t)eC(Na(x,t))nC2+p'i+W2)(Na). Moreover, again by the maximum principle,
{vt(x,t)} is a monotone decreasing sequence. It follows that {v,.(x,t)} converges to a
function, denoted by v(x,t), uniformly on Na(x, t). Furthermore, the Schauder theory
yields

where N' is any compact subdomain of Na(x, t) and C depends only on M, a and Ko,
but not on e.

The standard compactness argument implies that the limit function v(x,t) solves the
problem (4.8M4-10). Finally, we choose v(x,t) to be the solution of (4.8)-(410), then on
Na(x,t)

Combining the initial and boundary conditions, we obtain by the maximum principle
that

J(x,t)^0, (x,t)eNa(x,t).

Now we integrate the above inequality over [0, a] to obtain

(a.t) <

J -±-ds^-C(t).
(O.r) J (s)

o f(w

It follows that

w(a.t)

J
w(O

That is

G{w(a,t))-G(w(O,mC(t).
Since x = 0 is a blowup point, we have G(w(0,t))->0 as t->T. As v(x,t)^0 and v(x,t)^O,
we have for any t e [t0, T]

It follows that

= \v(x,t)dx>Q.
o

lim inf G(w(a,x))^C{T)>0
t-T ro§tg«
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which implies

lim sup w{a, T)<OO.
t—T (ogtSr

For any xoe(0,a), we can repeat the above procedure to conclude that xo is not a
blowup point. On the interval [a, 1], we can use the maximum principle to get

lim sup *v(x, f)<oo.
t—T lo^tSi

This completes our proof.

Corollary 43. For f(u) = up with p>\ or f(u)=eu, the blowup set consists of the
single point x = 0.

Acknowledgement. The authors would like to express their gratitude to the referee
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