CLOSABLE DERIVATIONS OF SIMPLE C*-ALGEBRAS

by ASSADOLLAH NIKNAM

(Received 29 March, 1982)

1. Introduction. In this note we show that any derivation of a simple C*-algebra, whose range is not dense, is closable. We also derive a necessary and sufficient condition for a *-derivation of a C*-algebra, which is defined on the domain of a closed *-derivation, to be closed.

A linear mapping \(\delta \) from a dense *-subalgebra \(D(\delta) \) of a C*-algebra \(\mathcal{A} \) into \(\mathcal{A} \) is called a derivation if \(\delta(ab) = \delta(a)b + a\delta(b) \) (a, b \(\in D(\delta) \)). If in addition \(\delta(a^*) = \delta(a)^* \), then \(\delta \) is called a *-derivation. For a linear mapping \(\delta \) from a linear subspace \(D \) of a Banach space \(\mathcal{A} \) into \(\mathcal{A} \), we let \(\sigma(\delta) \) denote the set \(\{ b \in \mathcal{A} : \text{there is a sequence} \ (a_n) \ \text{in} \ D \ \text{with} \ a_n \to 0 \ \text{and} \ \delta(a_n) \to b \} \), and call it the separating space of \(\delta \). The hypothesis on \(\sigma(\delta) \) forces \(\sigma(\delta) \) to be a closed linear subspace of \(\mathcal{A} \), and \(\delta \) is closable if and only if \(\sigma(\delta) = \{0\} \) [4, p. 8].

We show that the separating space of a derivation of a C*-algebra is a closed two-sided ideal. Then we apply this result to prove the main result of this paper. In the paper \(R(\delta) \) denotes the range of the derivation \(\delta \); i.e. \(R(\delta) = \delta(D(\delta)) \). S. Sakai [3] has asked: when is the range of a closed *-derivation of a simple C*-algebra not dense? Our result implies the answer to a converse question, namely, if the range of a *-derivation \(\delta \) of a simple C*-algebra is not dense, then \(\delta \) is closable.

Let \(\delta \) and \(\delta_0 \) be derivations of a C*-algebra defined on the same domains \(D \), say; then \(\delta \) is called \(\delta_0 \)-bounded if there is a number \(M > 0 \) such that \(\|\delta(a)\| \leq M(\|a\| + \|\delta_0(a)\|) \) \((a \in D) \). It follows from [1] that if \(\delta_0 \) is a closed *-derivation and \(\delta \) is a *-derivation with \(D(\delta) \supseteq D(\delta_0) \), then \(\delta \) is \(\delta_0 \)-bounded. Sakai conjectured that \(\delta \) should be closable [2]. An easy argument shows that if \(D(\delta) = D(\delta_0) \), then \(\delta \) is closed if and only if \(\delta_0 \) is \(\delta \)-bounded.

2. The results. It will now be shown that, under one restriction, a derivation of a simple C*-algebra admits a closed extension.

Theorem 1. Let \(\mathcal{A} \) be a simple C*-algebra and \(\delta \) be a derivation of \(\mathcal{A} \). Then \(\delta \) is closable if \(R(\delta) \) is not dense in \(\mathcal{A} \).

Proof. It suffices to show that the separating space \(\sigma(\delta) \) is \(\{0\} \). The separating space \(\sigma(\delta) \) is obviously a linear subspace of \(\mathcal{A} \). We show that it is a closed two-sided ideal in \(\mathcal{A} \). Suppose \((b_n) \) is a sequence in \(\sigma(\delta) \) and \(b_n \to b \); then there is a sequence \((c_n) \subseteq D(\delta) \) such that \(\|c_n\| < 1/n \) and \(\|\delta(c_n) - b_n\| < 1/n \); it therefore follows that \(c_n \to 0 \) and \(\delta(c_n) \to b \). We conclude that \(\sigma(\delta) \) is closed. Let \(c \in D(\delta) \) and \(b \in \sigma(\delta) \); then there exists a sequence \((a_n) \) in \(D(\delta) \) such that \(a_n \to 0 \) and \(\delta(a_n) \to b \). Hence \(ca_n \to 0 \), \(a_n b \to 0 \), and

\[
\delta(ca_n) = \delta(c)a_n + c \delta(a_n) \to cb,
\]

\[
\delta(a_n c) = \delta(a_n)c + a_n \delta(c) \to bc.
\]

Thus \(cb, bc \in \sigma(\delta) \). Suppose now that \(b \in \sigma(\delta) \) and \(c \in \mathbb{A} \). The density of \(D(\delta) \) in \(\mathbb{A} \) implies that there is a sequence \((c_n) \) in \(D(\delta) \) such that \(c_n \to c \) and hence \(c_nb, bc_n \in \sigma(\delta) \), \(cb, bc \in \sigma(\delta) \), since \(\sigma(\delta) \) is closed. Thus \(\sigma(\delta) \) is a closed two-sided ideal in \(\mathbb{A} \). It follows now that \(\sigma(\delta) = \{0\} \) or \(\mathbb{A} \). If \(\sigma(\delta) = \mathbb{A} \), then \(R(\delta) \) would be dense in \(\mathbb{A} \); however, by our assumption \(R(\delta) \) is not dense. This contradiction shows that \(\sigma(\delta) = \{0\} \) and therefore \(\delta \) is closable.

Corollary 2. Let \(\delta \) be a \(*\)-derivation of a simple \(C^* \)-algebra \(\mathbb{A} \). Then \(\delta \) is closable if one of the two sets \(\{a + \delta(a) : a \in D(\delta)\} \) is not dense in \(\mathbb{A} \).

Proof. This follows from the proof of the theorem above.

Let \(\delta_0 \) be a closed \(*\)-derivation of a \(C^* \)-algebra \(\mathbb{A} \) and let \(\delta \) be a \(*\)-derivation of \(\mathbb{A} \) with the domain \(D(\delta) = D(\delta_0) \). The next result gives a necessary and sufficient condition for \(\delta \) to be closed. By [1] \(\delta \) is \(\delta_0 \)-bounded. Suppose moreover that \(\delta_0 \) is \(\delta \)-bounded; then there exists two real numbers \(M, K > 0 \) such that for \(a \in D(\delta) = D(\delta_0) \) we have

\[
\|\delta(a)\| \leq M(\|a\| + \|\delta_0(a)\|),
\]

\[
\|\delta_0(a)\| \leq K(\|a\| + \|\delta(a)\|).
\]

If \(a_n \to a \, (a_n \in D(\delta)) \) and \(\delta(a_n) \to b \), then

\[
\|\delta_0(a_n) - \delta_0(a_m)\| = \|\delta_0(a_n - a_m)\| \leq K(\|a_n - a_m\| + \|\delta(a_n) - \delta(a_m)\|);
\]

thus \((\delta_0(a_n))\) is a Cauchy sequence in \(\mathbb{A} \) and hence is convergent. Thus \(a \in D(\delta_0) \) and \(\delta_0(a_n) \to \delta_0(a) \) and so \(\delta(a_n) \to \delta(a) \). This gives the following theorem.

Theorem 3. Let \(\delta_0 \) and \(\delta \) be \(*\)-derivations of a \(C^* \)-algebra \(\mathbb{A} \). Suppose \(\delta_0 \) is closed and \(D(\delta) = D(\delta_0) \). Then \(\delta \) is closed if and only if \(\delta_0 \) is \(\delta \)-bounded.

3. Comments. Let \(\mathbb{A} \) be a normed space. A subset \(\mathbb{A}_0 \) of \(\mathbb{A} \) is said to be a \(G_\delta \) set if there exists a countable family \(\{G_n\} \) of open sets such that \(\mathbb{A}_0 = \bigcap_{n=1}^\infty G_n \). For a closed linear mapping \(\delta \) of a normed space \(\mathbb{A} \) into \(\mathbb{A} \) with \(R(\delta) = \mathbb{A} \), the closedness condition of \(R(\delta) \) is equivalent to \(R(\delta) \) being a \(G_\delta \) set. In fact if \(R(\delta) \) is of second category, then \(R(\delta) = \mathbb{A} \). If we can show that the range \(R(\delta) \) of a closed \(*\)-derivation \(\delta \) of a simple \(C^* \)-algebra \(\mathbb{A} \) is not closed and is a \(G_\delta \) set, then it follows that \(\overline{R(\delta)} \subseteq \mathbb{A} \). The following problem poses itself: suppose \(\delta_0 \) is a closed \(*\)-derivation of a simple \(C^* \)-algebra \(\mathbb{A} \) and \(\overline{R(\delta_0)} \subseteq \mathbb{A} \). Let \(\delta \) be a \(*\)-derivation of \(\mathbb{A} \) with its domain \(D(\delta) = D(\delta_0) \). Then can we conclude that \(\overline{R(\delta)} \subseteq \mathbb{A} \) and thus \(\delta \) is closable?

Let \(\delta_0 \) be a closed \(*\)-derivation of a \(C^* \)-algebra \(\mathbb{A} \) and \(\delta \) be a \(*\)-derivation of \(\mathbb{A} \) with its domain \(D(\delta) = D(\delta_0) \); then \((\delta_0 - \delta)\) is \(\delta_0 \)-bounded. Hence there are two positive numbers \(N, M \) such that

\[
\|(\delta_0 - \delta)(a)\| \leq N\|a\| + M\|\delta_0(a)\|.
\]

An easy computation shows that \(\delta \) is closed if \(M < 1 \).
We note that the proof of Theorem 1 shows that the separating space of a derivation from a Banach algebra is a closed two-sided ideal. It also follows that if T is a densely defined operator from a Banach algebra and $D(T)\sigma(T)\subseteq\sigma(T)$, $\sigma(T)D(T)\subseteq\sigma(T)$, then $\sigma(T)$ is a closed two-sided ideal.

REFERENCES

DEPARTMENT OF MATHEMATICS
MASHHAD UNIVERSITY
MASHHAD, IRAN.