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1. Introduction

A discrete renewal process is a sequence {X{} of independently and
identically distributed random variables which can take on only those values
which are positive integral multiples of a positive real number d. For nota-
tional convenience we take d = 1 and write

(1.1) pn

where

The greatest common divisor, d, of those n for which pn > 0 is called the
period of the renewal process. If d = 1 the renewal process is said to be
aperiodic. In this paper only aperiodic discrete renewal processes are
considered. The limit theorem for periodic discrete renewal processes, that
is d > 1, is easily deducible from that for aperiodic processes.

In renewal theory the random variables Xt are the successive lifetimes
of items which are renewed at the instants Sn = 2"-i-^<- ^ u«> n — *>
is the probability that a renewal occurs at the instant n then the limit
theorem of discrete renewal theory states that

(1.2) lim «„ = /.-!
n-t-oo

where

(1.3) f* = 2»P»

is the mean life of an item and the right-hand side of (1.2) is interpreted at 0
if the series in (1.3) diverges.

This result is due to Erdos, Feller and Pollard [3], It can be deduced
also from a result of Kolmogorov [5] on the ergodicity of Markov chains.
Another proof has been given recently by Feller [4]. In this paper a new
proof of the theorem is given. The ideas underlying the proof are similar to
those of Doob [1], The renewal process is regarded as a particular Markov
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chain and ergodicity is established for that chain. In the next section we
prove two lemmas which are special cases of general results on Markov
chains. It seems logically more appropriate, however, to prove them for the
particular case of this paper than to refer to general theory.

Part of the interest of the methods of this paper is the ease with which
they can be generalised to continuous renewal processes and it is hoped to
present this generalisation in a subsequent paper.

2. The Markov chain associated with a renewal process

Let {Xt}, i i> 1, be a discrete aperiodic renewal process with lifetime
distribution given by (1.1) Introduce the following notation

(2.1) rn = J,Pm. »S1,

(2-2) qn = pnr?, n ^ l , ft = 1.

The following equations axe easily verified.
CO

(2-3) 2 y » = A«.
n - l

where /x is given by (1.3),

(2-4) H (1-?,) = rn

n - l

(2.5) rtqnJJ (1—&) = p n .
i-i

Consider the homogeneous Markov chain with one-step transition probabili-
ties ptt,i ^ l,j ^ 1 defined by

9i H 7 = 1
<2.6) j>tt= { \-qt if ; = *+l

0 otherwise.

Let /", be the conditional probability of first entry into state 1 in n steps
when it is given that the initial state is i. It follows from (2.6) that

(2-7) fa = qn+{-lll(\-9i)-

In particular, /J\ = pn and thus the state 1 is recurrent and its recurrence
time distribution is the lifetime distribution of the renewal process.

Denote by p% the w-step transition probability of the Markov chain
defined by (2.6). The probability pn

tj can be interpreted as the conditional
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probability, given that at time 0 the first lifetime of the renewal process
has lasted as long as i, that at time n the current lifetime has lasted at least
as long as /. The interpretation can be verified easily by noting that it
implies

l9 n .A»+I _ ( 2 £«?*> / = l> * ^ l>
(28) fj = | »i

Comparison with (2.6) shows that this set of equations can be written in the
standard form

(2-9) Plt1 i
k-l

Note that from (2.8) we have

(2.10) PT = PT~iri,

In particular

(2.11) fi,&rt.

We shall use later the following result, namely,

(2.12) 2 ^ = 1 .
• - 1

In order to prove (2.12) we require

t-i

Equation (2.13) is well-known and is proved easily by induction on n. Note
that

(2-14) fT ^Ifcfip-*
t-i

To prove (2.12) we substitute from (2.5) and (2.7) into (2.14) to obtain

oo n+1

Pa ri — 2. r*rn
t-1 k-l

Equation (2.12) then follows from (2.13).
The following two lemmas are particular cases of general results on

Markov chains.

LEMMA (2.1). / / the renewal process is aperiodic then for each i ^l the
greatest common division of those n for which p"( > 0 is unity.
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PROOF. Suppose that the positive pt occur at / = nt, i = 1,2, • • •
then it is easily deducible from the form of the 1-step transition probabilities
(2.6) that pu > 0 if and only if n = «!«!+ • • • +«*»* where alt • • • ak,
are non-negative integers and k is a positive integer. Since the g.c.d. of the
nt is unity it follows that the g.c.d. of those n for which p"t > 0 is also unity.
Since 1-step transitions of the chain are either of the form * -*• 1 or i -*• i+1
the same is true of those n for which p"{ > 0.

LEMMA (2.2). If the renewal process is aperiodic then given an integer
L > 1, there is an integer m = m(L) such that

(2.15) #1 >0, for all l^L.

PROOF. In order to prove this lemma we require the following well-
known result, e.g. Doob [2].

"If S is a set of positive integers, with g.c.d. unity, such that if n.meS
then n-\-m e S then all sufficiently large integers belong to S."

By lemma (2.1) the g.c.d. of those n for which p"t > 0 is unity. Since
PVn' ^ PliPltJt follows from the result quoted above that pn

it > 0 for all
sufficiently large n. Thus to each integer U- there corresponds an integer
mx(/) such that pn

n > 0 for all n ^ mt{l). Write

where the ni are defined in the proof of lemma (2.1). Then p7£ > 0 for
tn2 = tnt(l), thus

for all m ^ m(l) = wtJ /J+m^) . Writing

we obtain the lemma.

3. The limit theorem

We prove the following

THEOREM. In the renewal process with lifetime distribution {pjf ii aperiodic
then the following limit exists and has the stated value

(3.1) lim pi = r,/*"1, •', / ^ 4,

where rt is given by (2.1), p by (1.3) and the right-hand side of (3.1) is intarpreted
as 0 when u = oo.
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PROOF. Write
(• fu = lim sup p%
I

From equations (2.8) we obtain

( 00

2 &*?». ; = L * ̂  L

(3.4)

The second equations of (3.3) and (3.4) follow easily from the second equa-
tions of (2.8). The first equation of (3.3) follows from the second equation
since

00 00

2 A*?* = hi 2 r*v* = hi-
*=1 k-l

The first equation of (3.4) is proved in the same way.
The equations (3.3) can be written as

(3-5) fu l

and it follows by induction that

(3.6) £«
fc-I

Let e be an arbitrarily small positive number and choose a K = K(e) such
that

(3.7) frt£e.
i-K+l

when 2 r i converges, that is p < oo, and such that

(3.8) | r, > e-i

when 2 r i diverges, that is p = oo.
By Lemma (2.2) there is an m = m(K) such that p^ > 0 for k ^ K.

Let Tm be the set of integers, t, such that #J > 0 and let Um be the set of
integers, w, such that p*x = 0. Then Tm contains the integers not exceeding
K and if p < oo
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(3.9) l r , g e

whilst if n = oo

(3.10) 2 ri > e~1-

Let Sm{ be a subsequence of integers {n} such that

Pa* -*-p~a a s » e Sm>, -> oo.

Consider the following set of inequalities.

« i lim inf pi = lim inf &%<• -

Thus

(3.11) lim inf j>% ^ ftk, keTm.

The only step in the argument leading to (3.11) which requires justification
is where we have used

This is justified by (2.11) and (2.12) since plpft ^rtp^ and 2 r ^ n i s

convergent.
It follows from (3.11) that

(3.12) lim *!=£„, keTn.

Suppose now that /i < oo we prove

(3.13) f&,= l.
*=i

To prove (3.13) we note firstly that

(3.14) l f |
i-l i-X

for >̂y g r, and 2 r / converges since /x < oo.
But

1 ^ Um inf f £«

ieTn isUm
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Using (3.3) and (3.4) we obtain

Thus by (3.9) we have

(3.15) f £w ^ 1+e.
3 - 1

Since e is arbitrary (3.14) and (3.15) together imply (3.13). It follows
at once from (3.3) that ftf = rtir

x. An exactly similar argument shows that
PH = rifl~1 an<i this proves the theorem when ft < oo.

Suppose finally that /x = oo, then

^ I §u. fey (3 1 2)

Thus by (3.10)

Since e is arbitrarily small it follows that pa = 0 and thus from (3.3)
fij = 0, t ^ 1,) g 1 and this proves the theorem.
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