J. Functional Programming 4 (2): 125-126, April 1994 © 1994 Cambridge University Press 125

Type systems for object-oriented programming

Functional programming has had a broader impact on computing than the
design of a few specific functional languages. One of its contributions is a deeper
understanding of type systems. This special issue of The Journal of Functional
Programming focuses on the difficult and important question of type systems for
object-oriented programming.

This issue had an unusual gestation. When I heard of Kim Bruce’s expository
paper on a type system for object-oriented programming, I immediately invited him
to submit it for publication in JFP. Papers by Pierce and Turner and by Abadi
then came to my attention, and I solicited them as well. By this point we had a
bonus-size special issue, without the usual mechanism of a call for papers. Mitchell
Wand graciously provided an introduction that carefully compares the approaches
of the three papers.

This issue provides an overview of the state-of-the-art, but it is certainly not the
last word. Further submissions on this topic are most welcome.

An extra-size issue requires extra work. Thanks are due to the contributors and
referees for the effort they have put into producing an extraordinary issue.

—PHILIP WADLER

Introduction

Object-oriented programming (OOP) has become one of the cornerstones of mod-
ern programming methodology. Yet there is little agreement on what object-oriented
programming is. Different object-oriented languages typically implement different
collections of facilities, and heated discussions of which facilities are necessary for
true object-oriented programming flare up regularly.

In the light of these discussions, this issue of JFP presents three papers that study
the theoretical bases of object-oriented programming. These papers illustrate the
variety of choices that can be made in the design of a theory of OOP.

Kim Bruce’s paper, ‘A Paradigmatic Object-Oriented Programming Language:
Design, Static Typing, and Semantics’, seeks to model via denotational semantics
as many features of conventional object-oriented languages as is possible within
the functional framework. He defines a language that supports classes, objects,
methods, hidden instance variables and inheritance. He presents static typing rules
for the language, and then gives a model for his types using PERs. He shows the
soundness of the typing rules by giving a denotational semantics, and showing that
the semantics is sensible: if a phrase has static type o, then its denotation is a value

5 FPR 4

https://doi.org/10.1017/50956796800001027 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800001027

126 Introduction

of type . This enterprise is complicated by the necessity of dealing with the self
keyword, which is modelled using recursive types. Instance variables, however, are
modelled using existential types.

By contrast, the paper by Benjamin Pierce and David N. Turner, ‘Simple Type-
Theoretic Foundations for Object-Oriented Programming’, seeks to discover what
kind of lambda-calculus is need to model OOP. They show that the theory F2,
a polymorphic lambda-calculus with existential types and higher-order bounded
quantification, is sufficiently powerful to model encapsulation, message passing and
inheritance with self and super without introducing recursive types. Unlike Bruce,
they do not introduce an explicit object language, but consider object-oriented
facilities as syntactic sugar for terms of F2. Soundness of typing and subtyping
rules, and a subject-reduction theorem, are obtained a fortiori from the known
results for F2.

The last paper in this issue, ‘Baby Modula-3 and a theory of objects’, by Mar-
tin Abadi, takes a still different approach. Abadi’s goal is to find the smallest
object-oriented language that will illustrate the theoretical difficulties involved in
understanding OOP. Here he takes a functional subset of Modula-3. Unlike the
others, this language is object- rather than class-based, and uses delegation or ex-
tension rather than inheritance. His treatment of self is different from either of the
other papers; it can perhaps be described best as being primitive in the theory. A
subject-reduction theorem is proved. Abadi gives a denotational semantics for his
language by interpretation in a fairly standard model of untyped lambda calculus.
He then gives an interpretation of types as ideals in this model, with recursive types
modelled using the usual metric space on ideals. The interpretation of object types
is subtle, so as to accommodate subtyping correctly. He then shows that the typing
and subtyping judgements of his theory are sound in this model.

These papers are long and often subtle, but they will reward the reader who takes
the time to understand their details.

—MITCHELL WAND

https://doi.org/10.1017/50956796800001027 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800001027

