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EULERIAN GRAPHS AND POLYNOMIAL
IDENTITIES FOR SKEW-SYMMETRIC
MATRICES

JOAN P. HUTCHINSON

1. Introduction. Let the standard identity of degree m be given by

1) [ xe...,%,] = Z SEN 0 Xo1 .« « . Xom = 0.

o€ Sm

Then we shall show that the set of all # X #n skew-symmetric matrices over a
field of characteristic 0 satisfies the standard identity of degree at least 2n — 2;
specifically, we shall prove the following.

THEOREM 1. If A4, ..., A, are n X n skew-symmetric matrices over a field of
characteristic 0 and if m = 2n — 2, then (4.1, ..., An] = 0.

In fact, the standard identity of degree 2n — 2 is the minimum standard
identity which the set of skew-symmetric matrices satisfies, for we shall also
prove the following.

THEOREM 2. If m < 2n — 2, then there are m n X n skew-symmetric matrices,
Ay, ..., Ap, over a field of characteristic O, such that [4.1, ..., An) # 0.

Amitsur and Levitzki proved by algebraic means that the polynomial
identity of minimal degree, satisfied by all #» X # matrices over a field of
characteristic 0, was the standard identity of degree 2xn [1]. Bertram Kostant
also considered the same question and using cohomology theory, showed that
the Amitsur-Levitzki result was equivalent to two other established results.
Furthermore, he obtained the result that the Lie algebra of all # X # com-
plex valued, skew-symmetric matrices satisfies the standard identity of degree
m if n is even and if m = 2n — 2 [3]. Richard Swan gave another proof of the
Amitsur-Levitzki result by recognizing the essentially combinatorial nature of
their proof and by translating the problem into an equivalent one in graph
theory [7; 8].

K. C. Smith and H. J. Kumin have conjectured that Kostant’s result for
skew-symmetric matrices is true for # both even and odd and is the best pos-
sible result [4]. The purpose of this paper is to demonstrate the validity of
their conjectures (Theorems 1 and 2). Like Swan, we shall translate the
problem into one concerning Eulerian graphs and show that the appropriate
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result holds for these graphs. An introduction to and an outline of the proof of
Theorems 1 and 2 will appear in [2], and some details found in the latter work
will be omitted here.

Independent proofs of Smith and Kumin’s conjecture have also been an-
nounced in the last months by Louis H. Rowen [6] and by Frank Owens [5].
Copies of their work have been received by the author.

Acknowledgment. The author would like to thank her advisor, Herbert S.
Wilf, for his help and encouragement with this work, and also to thank Albert
Nijenhuis and Herman Gluck for their valuable contributions.

2. The graph-theoretic problem. To establish Theorem 1, it is sufficient
to prove the statement for a basis of the skew-symmetric matrices since the
bracket function as defined in line 1 is multilinear. We choose as a basis for
the skew-symmetric matrices those matrices which are all 0’s except for two
entries a;; and a,; with values 1. Then given a set of m basis matrices, we
construct a directed graph with n vertices and m edges which has an edge
directed from vertex 7 to vertex j for every matrix in our given set with a;; =
+1. We shall study properties of graphs arising in this way. Similarly, to
establish Theorem 2, we shall exhibit appropriate directed graphs on # vertices
and m edges, and from these construct m n X n skew-symmetric matrices
which do not satisfy the standard identity of degree m.

In the course of this work, we shall also have occasion to consider partially
directed graphs, and thus we make the following definitions in this more
general context.

Definition 1. An E path on a directed or partially directed graph G is a path
on G which traverses every edge of G once and only once and which may travel
in either direction on an edge ¢ of G, regardless of the orientation of e.

If the path forms a circuit, we may call it an E circuit. Thus an E path is
an Eulerian path on the underlying, undirected graph which we think of as
living on G. In fact, we shall find that it is the study of these Eulerian paths
on Eulerian graphs which is at the center of the problem.

Definition 2. The orientation coefficient of an E path on a directed or partially
directed graph is (—1)? where z is the number of edges traversed in the direc-
tion opposite to their orientation.

We shall use OC(P) to denote the orientation coefficient of an E path, P.

Definition 3. The sign of an E path on a directed or partially directed graph
with labelled edges is the number sgn o (—1)? where o is the associated permu-
tation of the edges of the graph and where (—1)?is the orientation coefficient
of the path.

Definition 4. A positive (respectively negative) E path is an E path whose
sign is +1 (respectively —1).
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We shall say that a set of paths cancels if there are an equal number of
positive and negative paths in the set.

Definition 5. Two sets of paths will be said to be zsomorphic if there is a one-
to-one, sign-consistent correspondence between the two sets. A sign-consistent
correspondence is a correspondence for which corresponding paths always have
the same sign or always have the opposite sign. In the former case we will call
the correspondence sign preserving, in the latter case, sign reversing. Often to
demonstrate that a set S of paths cancels, we shall show that S is isomorphic
to some set.S’ of paths which cancels, and thus the paths of S will cancel as well.

Definition 6. A vertex V of a directed or a partially directed graph is called
null if the set of all E pathsat V (i.e., which begin at ) cancels. A graph is null
if all its vertices are null.

The transition to graph theory from the original matrix problem can now
be made by observing that if 4, ..., 4, are n X n skew-symmetric basis
matrices, and if G is the associated directed graph with # vertices and m edges,
then the n X »n matrix [44, ..., 4,] has as its (4, j)th entry the number of
positive E paths, going from vertex ¢ to vertex j on G, minus the number of
negative E paths from 7 to j. Thus Theorem 1 is equivalent to the following.

THEOREM 1. If G is a directed graph with n vertices and m edges and if m =
2n — 2, then G 1s null.

Similarly Theorem 2 becomes the following.

THEOREM 2'. Given n = 2 and m < 2n — 2, there is a directed graph with n
vertices and m edges which is not null.

In fact, we can reduce the work in proving Theorems 1’ and 2’ by making
the following remarks which are either self-evident or their proof can be found
in [2]. Let G be a directed or partially directed graph with »n vertices and
m edges.

1. If the underlying, undirected graph of G is not Eulerian (i.e. does not
have 0 or 2 vertices of odd degree), then G is null.

2. If G is null with one labelling of its m edges, then it is null with any
labelling of its edges.

3. If G is null with one orientation of its edges, then it is null with any
orientation of its edges (provided directed edges remain directed and un-
directed edges remain undirected).

4. If G contains two vertices which are joined either by two or more directed
edges or two or more undirected edges, then G is null.

5. If m = 2, then G is null. (This result follows from Swan’s main theorem
in [7].)

6. If G contains two vertices of odd degree, then G is null if and only if
one of these vertices is null.
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Definition 7. C(n, m, p) is defined to be the set of all directed and partially
directed graphs G on n vertices and m edges, of which precisely p edges are
undirected, such that

(1) G is connected and contains precisely 0 or 2 vertices of odd degree;

(2) G may contain multiple edges;

(3) G may contain undirected loops, but no directed loops.

In [2] it is shown that all graphs, not in C(n, m, p) for some value of n, m,
and p, are either automatically null or do not arise when translating the
algebra problem to graph theory. Furthermore, because of Remark 5 it follows
that to prove Theorem 1’, it is sufficient to prove that if G € C(n, m, 0) where
m = 2n — 20r 2n — 1, then G is null. We shall prove two Theorems (3 and 4)
which will then give us Theorem 1’.

3. The main theorems. We begin with a few lemmas. Here and in the
proof of Theorem 3 we shall defer the proofs of the more technical lemmas to
the final section of the paper.

Suppose G € C(n, m, p) has all vertices of even degree. We define an
equivalence relation on the E circuits at a fixed vertex V of G as follows. Let C
and C’ be two different circuits at V. Let C have the associated permutation
(1, X2, « oo, Xp) and C” (y1, ¥2, - - -, ¥Ym). Then C and C’ will be in the same
equivalence class if and only if

1y Yoy ooy V) = (X oo vy Xy X1y« v vy Xym1)

for some 7 € {2, 3, ..., m}. We shall refer to these equivalence classes as the
rotation classes of E circuits at a vertex V.

LemMmAa 1. If G € C(n, m, p) where m is odd and where G has all vertices of
even degree, then a vertex Y of G is null if and only if the rotation classes of E
circuits at 'Y have a set of representatives, one from each rotation class, which
cancels.

Proof. If the valence of ¥ is 2p, then each equivalence class of E circuits at
Y has p elements, all of the same sign, and the lemma follows.

LemMmA 2. If G € C(n, m, p) has all vertices of even degree and if m is an odd
integer, then G 1s null if and only if G has at least one null vertex.

Proof. 1f G is null, by definition all vertices are null. Thus we suppose G has
one null vertex YV, and let Z be another vertex of G.

Notice that we may pair the E circuits at Z by pairing two circuits where
one is obtained by reversing the other. If m = 0 or 3 (mod 4) and p is odd or
if m = 1or2 (mod 4) and p is even, such paired circuits always have opposite
signs. Since all circuits at Z can be associated in such cancelling pairs, Z is
a null vertex as we wished to show. Thus we shall assume that either m = 0
or 3 (mod 4) and p is even or m = 1 or 2 (mod 4) and p is odd. For these
values of m and p, two circuits, paired by reversing, will have the same signs.
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By Lemma 1 we know that the set R of representatives of the circuits at
the null vertex ¥ cancel where R is the set of those circuits which either begin
or end on a fixed edge ¢ at V. R = R;\U R, where R, (respectively R,) is the
set of those circuits of R which begin on (respectively end on) e. From the
discussion of the last paragraph we know that there is a sign preserving iso-
morphism between R; and R, and therefore the circuits of R; cancel.

Let S; (respectively S;) be the set of E circuits at Z with respect to which
the initial vertex of ¢ is (respectively is not) Y. Again there is a one-to-one sign
preserving correspondence between S; and S, so that Z is null if and only if S;
cancels. By Lemma 1 the paths of S; cancel if and only if a set of representatives
cancels, and we choose this set, T, to be all those circuits of S; which traverse
edge e before returning to Z for the first time. But now we see that the sets R;
and 7" are isomorphic since an element of R; can be cyclically rotated to a
unique £ circuit in 7" and conversely. The signs of the corresponding elements
are the same so that 7" cancels as do then S; and Ss. The vertex Z is null then
and since Z was arbitrary, G is null.

One other important lemma requires a bit of notation which we now consider.

Definition 8. Given G € C(n, m, p), ¥V a vertex of G, and (e, ¢;, €), an
ordered triple of edges of G with e; adjacent to e; and e; adjacent to
er, S(ey, €5 6, V), 1 < k,is defined to be the set of all E paths on G which begin
at Y and which are of the form

pleiejekpg or pgekejeim

where p;, 1 = 1, ..., 4, are paths of G (maybe of length 0).

Suppose e; joins vertices S; and S}, edge ¢; joins S; and S, and e, joins Si
and S;. Let G(eq, €5, ¢,) = G — {ey, €5, e} + { f} where f joins S; and S, and
is directed (respectively undirected) if an even (respectively odd) number of
the edges {e;, ¢;, &} are directed.

If.S; = S,and an odd number of {e;, e;, ¢;} are directed, define S’ (¢4, ¢;, ¢, V),
i < k, to be those paths of S(e;, e;, ex, V) of the form

pleiejekPQ, 1 < k.

LEMMA 3. Gwen G € C(n, m, p) and a non-empty set of paths S(e;, e;, ex, V)
on G,

(1) If S; = S, and an even number of {e;, e;, e} are directed, the paths of
S(eq, e;, e, Y) cancel.

(2) Otherwise if S; = Sy, the paths of S(e;, e;, ex, Y) cancel if and only if the
paths of S’ (es, €;, e, Y) cancel. Furthermore, there is an isomorphism between
S’ (e, ;, e, ¥V) and the set of all E paths which begin at vertex Y on G(ey, ¢, €;).

(3) If S; # Sy, there is an isomorphism between S(e;, ¢;, ex, V) and the set of
all E paths which begin at vertex Y on G (e, e;, €;)-

The proof of this lemma is included at the end of the paper.

THEOREM 3. If G € C(n,2n — 1,1),1 = 0, 1, then G is null.
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Proof. Suppose the theorem is not true. Let
Sim) = {G € C(m,2m — 1,1),1 = 0, 1|G is not null}

and let » = min {m!S(m) # 0}. We shall call an element of S(z) a minimal
graph.

Observe that #n > 2. Every element of C(2, 3, 7), + = 0, 1, has multiple
directed edges and hence is null by Remark 4.

We shall study the properties of minimal graphs, that is, of elements of S(n),
and we will show that, in fact, S(n) is empty. To clarify the proof, we give now
a general outline. A graph G € S(n) has either all vertices of even degree or
precisely two vertices of odd degree. In the former case we shall see such a
graph is not in S(n) by using the minimality of #. In the latter case, suppose
the two vertices of odd degree of G are V and W. G must fall into precisely one
of the following four categories. (We denote the valence of a vertex Z by p(Z).)

(2)  Imin {p(V), p(W)} =1
II min {p(V), p(W)} =
III min {p(V), p(W)} = 5and if nisodd, G € C(n, 2n — 1,1) or
if niseven G € C(n,2n — 1,0)
S5and if niseven, G € C(n,2n — 1,1) or
if nisodd, G € C(n, 2n — 1, 0).

W

%

IV min {p(V), p(W)}

We shall check each case and find that in each category, there can be no
minimal graph. Therefore S(z) = @, a contradiction, and thus the theorem
will be proved.

We begin by supposing G is a minimal graph with all vertices of even degree.
We observe that G has a vertex of degree 2 since there are 2n — 1 edges in G.
Suppose V, a vertex of degree 2, has incident edges e and ¢’ and is adjacent to
vertices 4 and B (maybe 4 = B). We consider G’ = G — {V, ¢, ¢}, a graph
also with either 0 or 2 vertices of odd degree. Thus G’ € C(n — 1, 2n — 3, 1),
1 = 0, 1, and therefore is null by the minimality of #. There is an isomorphism
between the set of all E circuits on G which begin at V' and the set containing
the union of the E paths on G’ beginning at 4 and those beginning at B. (3)
Since 4 and B are null vertices of G’, V is a null vertex of G. By Lemma 2,
G is null, and we see that no minimal graph can have all vertices of even degree.

Therefore, all minimal graphs must have two vertices of odd degree. If
G € S(n), then G belongs to precisely one of the 4 cases mentioned earlier
(see line 2).

Case I. No minimal G can have a vertex V of degree 1, for suppose G were
such a graph and suppose ¢ is the edge joining V' to a vertex Y. We consider
G' =G —{V,e} andsince G' € C(n —1,2n — 2,1),7 =0, 1, G’ is null by
Remark 5. Since there is an isomorphism between the set of all E paths on G,
beginning at V, with the set of all E paths on G’, beginning at ¥, ' is a null
vertex of G, and G is null by Remark 6.

Case 11. We shall show next that no minimal G can have a vertex V of
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degree 3. Let G € C(n,2n — 1,1),1 = 0, 1, let G have a vertex V of degree 3
and let W be the other vertex of odd degree. Then there are either 2 or 3
distinct edges incident at V. If G € C(n, 2n — 1, 1), there may be a loop !
at 1 as well as an edge ¢, joining V to Y. In this case we consider G’ = G —
{V,e, 1}, and since G' € C(n — 1,2n — 3,0), G is null by the minimality of .
There is an isomorphism between the E paths on G, beginning at V, with the
E paths on G’, beginning at ¥, whence V is a null vertex and G is a null graph
by Remark 6.

Otherwise there must be three distinct edges, e;, 1 = 1, 2, 3, incident at V
and let e; join vertex S; to V (the S; need not all be distinct). Let G’ = G +
{l}, G with an undirected loop added at V. G’ € C(n, 2n, 1), 7 = 1, 2, and by
Remark 5 is null. The set of all E paths from V to W on G’ is the disjoint
union of two sets P; and P, where P; is the set of all paths from V to Won G’
of the form le;pie,erp2 and where P, is the set of all paths of the form e;pse lerps
where (i, j, k) is a permutation of {1, 2, 3} and where p;, ¢ = 1, ..., 4, are
paths on G (maybe of length 0).

We first will see that the paths of P, cancel with the aid of Lemma 3.
Py = S(ey, L es, V)\J S(ey, L, e3, V) \J S(es, I, e3, V) and we shall see that each
of these three sets cancels. To simplify notation we shall prove that the paths
of S(ey, 1, es, V) cancel.

By Lemma 3 we know that if S; = S; and both e; and e, are directed, then
the paths of S(es, [, es, V) cancel. If S; = .Sy and only one of the edges e, or e
is directed or if S; # Ss, we consider S’ (e, [, €2, V) or S(ey, [, €2, V) respectively.
By Lemma 3 each is isomorphic to the set of all £ paths from V to W on
G(ey, L, €2). G(er, I, €3) € C(m, 2n — 2, 1), 2 = 0, 1, and contains a vertex
of degree 1, namely V. Let G = G(ey, I, e) — {V, es}. Then G €
Cn—1,2n — 3,1), 7 =0, 1, which is null by our assumption of the mini-
mality of n. Then G (e1, /, e,) is also null, implying that the paths of S’ (e, , es, V)
and S(ey, [, e, V) cancel.

The proof that the sets S(ey, [, e3, V) and S(es, /, €3, V) cancel is identical,
and therefore we see that the paths of P, cancel.

Since G’ is null, the set of all E paths from V to W on G’ cancels, implying
that the paths of P; must cancel also. But there is an isomorphism between
the paths of P; and the set of all E paths from V to Won G whence Vis a null
vertex of G. By Remark 6, G is null and is not a minimal graph.

We now know that a minimal graph G has two vertices of odd degree = 5.

Case 111. Let G be a minimal graph. Suppose nisodd and G € C(n, 2n — 1,1)
or nis even and G € C(n, 2n — 1, 0). We shall then see that G is null, con-
tradicting the fact that G is minimal.

Let V and W be the two vertices of odd degree and let p(V) = k. Let
G’ = G + {e, I} where ¢ is an edge directed from W to V and where [ is an
undirected loop at V. (See Figure 1.) Then G’ € C(n, 2n + 1, 1) if n is even
and G’ € (n, 2n + 1, 2) if n is odd. In either case G’ is null by Remark 5. In
particular, W is a null vertex of G'.
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FIGURE 1

The set of E circuits at ¥ is the disjoint union of two sets C; and Cy where
C: is the set of circuits in which / either immediately precedes or immediately
succeeds edge e, and where C, is the set of circuits in which / and e are not
traversed consecutively.

We shall first show that the circuits of C; cancel. Now the circuits of Cs are

all of the form piepseile;ps or paeide;pseps where p;, 2 = 1, ..., 6, are paths on
G’, and where ¢; and e¢; are two distinct edges, other than e, incident with
vertex V.
Thus
C2 = U S(eiy ly e]'v W)
1,j€{l,..., k}
i<j

We apply Lemma 3 to each set S(e;, /, ¢;, W) and see that either the set
cancels immediately or the set is isomorphic to the set of all E paths on
G(ey I, €;) which begin at W. Since G(e;, I, ¢;) € C(n, 2n — 1, 1), 1 = 0, 1,
and G(e;, [, e;) has all vertices of even degree, we know that G(e;, [, ¢;) is not
a minimal graph and hence is null. Therefore the paths of each S(e, , ¢;, W)
cancel and so do those of Co,.

Since the graph G’ is null, the paths of C; cancel. As in Lemma 1 we divide
the elements of C; into rotation classes and we have by that lemma that the
set R of representatives of the rotation classes cancels, where we pick R to be
the set of E circuits at W of the form elp or ple, p an E path between V and W
on G.
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There is a natural pairing of the elements of R: those which begin with el
being paired with those which end with le, namely by associating with elp,
the reversed circuit p~e. A routine check shows that two such associated paths
have the same sign.

Since the paths of R cancel, the subset S, of those circuits which begin with
el already cancel. There is an isomorphism between S, and the set of all £ paths
from V to W on the original G whence V is a null vertex of G. Thus G is null
and we see that no minimal graph can meet the conditions of case I1I.

Case TV. If there is a minimal graph G, it must have two vertices of odd
degree =5, and if n is even G € C(n, 2n — 1, 1) or if n is odd, G €
C(n, 2n — 1, 0).

Let the two vertices of G of odd degree be U and V. Let G’ be the graph
obtained from G by adding an edge ¢’, directed from V¥ to A4, a new vertex,
and an edge ¢, directed from 4 to U. G’ € C(n + 1,2n + 1,1),7 = 0, 1, and
G’ has all vertices having even degree. We wish to show that G’ is null for the
following reason: If G’ is null, then 4 is a null vertex of G’. The E circuits at 4
in G’ may be paired, epe’ with e’p~—le, one circuit obtained by reversing the
other and such paired paths have the same sign.

Thus if 4 is a null vertex of G’, then even the set S, of E circuits at 4 which
begin with edge e cancel. There is an isomorphism between .S, and the set of E
paths from U to Y on the original G whence U is a null vertex, G is null by
Remark 6 and therefore is not a minimal graph as claimed. 4)

We shall now see that G’ is null, and since G’ has an odd number of edges,
by Lemma 2 G’ is null if it has a null vertex. (The question of whether # is even
or odd plays no part here.) Notice that if G’ has a vertex Z of degree 2 which
is adjacent to only one other vertex, then G’ is null, for G = G —
{Z & 2 edges at Z} has all vertices of even degree, G ¢ C(n, 2n — 1,14),1 =
0, 1. Thus G is null, and Z is a null vertex of G’. By Lemma 2 G’ is null and
hence we shall assume G’ contains no such vertex Z. (5).

We now invoke the following lemma which will be proved in the next section.

LemMA 4. If T is a graph with p vertices and 2p — 1 edges which has all vertices
of even degree, then cither T contains two adjacent vertices of degree 2 or a vertex
of degree 2d, d > 1, which is adjacent to at least 2d — 3 vertices of degree 2.

We may apply this lemma to the graph G’. If G’ contains two adjacent ver-
tices of degree 2, label them B and V. If not, consider the set X of vertices
of G', where U € X if and only if U is adjacent to at least 2d — 3 vertices of
degree 2 when p(U) = 2d. Let VV € X be such that

p(V) = min {p(U,), U, € X}

and let B be a vertex of degree 2, adjacent to V. By the assumption of line 5,
we have B adjacent to VVand W with V = W.
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Let G = G’ — {B & 2 edges at B}. Then G € C(n, 2n — 1, 1), 1 = 0, 1.
We wish to show that the E paths from ¥ to W on G" cancel, for then G is
a null graph. As we saw in line 3, B is then a null vertex of G’ (6)
and G’ is also null by Lemma 2 as desired.

Consider the E paths on G'’ from V to W. If the valence of Vin G'" is 1 or
3, we know by cases I and II that G’ is not a minimal graph, i.e. G’ is null.
Otherwise vertex V has valence 2d — 1 in G/, d = 3, and there are at least
2d — 4 vertices of degree 2 adjacent to V in G”. (See Figure 2.)

14

FIGURE 2. Some of the vertices, other than S;, ¢ =4, ..., 2d — 1, may coincide, but
note that T, % V,j =4, ..., 2d — 1 by the assumption of line 5. Also notice that by our
choice of V and B in G", no S; and S; are adjacent, 7, j = 4, ..., 2d — 1, and p(T:) = 5,
i=4,...,2d — 1. In fact, p(T:) = 6 unless T; = W.

The E paths from V to Won G” can be divided into 2d — 1 disjoint sets Q;,
where Q; is the set of those E paths which begin with edge ¢;. Consider Q4
1 = 4. Let R; be the set of all E paths from 7°; to W (maybe T'; = W) (7)
on G; =G" — {Sy e, fi.SinceG; € C(n — 1,2n — 3,1),1 = 0, 1, we know
that G, is null. Thus the paths of R; cancel and since there is an isomorphism
between Q; and R;, the paths of Q; cancel,7 =4, ..., 2d — 1. (8)

Let Q = U310, Every element ¢ of Q;, i < 3, partitions 9)
the set of indices {1, 2,...,2d — 1} — {7} into unordered pairs where j and k
are paired if and only if ¢ = piejerps or ¢ = psere;py where p;, 2 =1,..., 4,
are subpaths of ¢. For this reason we define a T'ype I partition to be a partition
of {1,2,...,2d — 1} into d — 1 pairs of elements and one singleton, j, such
that j < 3 and the two elements {1, 2, 3} — {j} are not paired together. A
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Type II partition is a partition of {1,2,...,2d — 1} intod — 1 pairs and one
singleton, 7, such that j < 3 and the two elements {1, 2, 3} — {j} are paired
together. Thus associated with every ¢ € Q we have a Type I or Il partition
and Q = Q(I) \J Q(II) where Q(I) (respectively Q(II)) is the set of those
paths of Q whose associated partition of {1, 2, ..., 2d — 1} is of Type I
(respectively 1I).

Lemma 5. Let H € C(n, 2n — 1,14), 1 = 0, 1, have two vertices of odd degree,
V and W, such that p(V) = 2d — 1 = 5 and V 1s adjacent to at least 2d — 4
nonadjacent vertices of degree 2. Suppose these vertices of degree 2 are each adjacent
to another vertex besides V. Then the set P of all E paths on H which induce a
partition of Type I on {1, 2, ..., 2d — 1} cancels.

This lemma says precisely that the paths of Q(I) cancel.
We now consider the paths of Q(IT). For example, if ¢ € Q begins on edge
e1, then ¢ € Q(II) if and only if ¢ traverses the edges ¢, and e; consecutively.

LEMMA 6. Let H € C(n, 2n — 1,1),1 = 0, 1, satisfy the same hypotheses as in
Lemma 5. Then the set P of all E paths on H which induce a partition of Type I1
on {1,2,...,2d — 1} cancels.

The proofs of Lemmas 5 and 6 are included in the final section of the paper.

With the aid of these lemmas we see that the set Q cancels (see line 9). Then
so do all E paths from 7 to W on G (see lines 7 and 8), and by Remark 6
G’ is null.

To review why we are done now, recall that B is therefore a null vertex of G’
(see line 6), and G’ is a null graph. Thus 4, a vertex of G’, is null and (by line 4)
we see that our original G is a null graph and therefore not minimal.

Earlier we saw that a minimal graph must fall into one of four cases, but then
we saw that there could be no minimal graph in each of the four categories.
Hence there are no minimal graphs; S(z#) = 0, contradicting our original as-
sumption; and Theorem 3 is true.

TurorEM 4. If G € C(n, 2n — 2, 0), then G is null.

Proof. Suppose G has all vertices of even degree. We wish to show that an
arbitrary vertex V is null. Let G’ = G + {/}, where [ is a loop attached to V.
Thus G” € C(n, 2n — 1, 1) and hence is null by Theorem 3. Consider the
rotation classes of E circuits at V. By Lemma 1, the set R of representatives
of the E circuits at V' on G’ cancels where we pick as our set R, the set of
circuits at V which begin by traversing the loop /. There is an isomorphism
between R and the set of all E circuits at 1 on G. Thus V is a null vertex of G
and G is a null graph.

Suppose G has two vertices, V and W, of odd degree. Let G' = G + {¢}
where ¢ is an edge, directed from W to V. G’ € C(n, 2n — 1, 0) and hence is
null. Consider the E circuits at W. The set of E circuits at W which either
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begin or end with edge e are a set R of representatives of the rotation classes
and hence cancel by Lemma 1. R = C;\U C; where C; is the set of those
circuits which begin with edge e and C; is the set of those circuits which end
with edge e. Because of Remark 2 we may assume that edge ¢ has the label
“2n — 1. Then there is a one-to-one, sign preserving correspondence between
C1 and the set Sy of all E paths from 7 to W on G, and there is a one-to-one,
sign reversing correspondence between C, and the set Sy of all E paths from
W to V on G. If —Syy denotes the set Sy with all elements having sign
opposite to their sign as E paths from W to V, we see that Sy U —Syvy is
isomorphic to R and hence cancels.

Now let G’ = G + {e} where e is an undirected edge joining V to W. G’ €
C(n,2n — 1, 1) and is null by Theorem 3. As above, we consider the E circuits
in G’ at W and see that there is a one-to-one, sign preserving correspondence
between the paths of C; (respectively C;) and the paths of Syy (respectively
Swv). Therefore Sy U Syv is a set of paths which cancels. Thus both
Syw and Sy must cancel and G is null.

Theorems 3 and 4 together with Remark 5 give us Theorem 1’ which we
have asserted then gives us Theorem 1 as desired.

We wish to mention one other related result since the same technique as
used in the proof of Theorem 4 can give us the following.

THEOREM 5. If nisodd and G € C(n,2n — 2, 1), then G 1s null.

This result, together with Theorem 3, tells us that if we are given m — 1
n X n skew-symmetric matrices and one symmetric matrix, if # is odd and
m = 2n — 2orif nisevenand m = 2n — 1, then the bracket of these matrices
is 0. We shall see that these results are also best possible for a set of skew-
symmetric matrices and one symmetric matrix (see Theorem 8). These results
have also been obtained by L. Rowen [6].

4. Examples of non-null graphs. We shall now exhibit a number of non-
null directed graphs with # vertices and m edges which will demonstrate the
validity of Theorem 2'.

THEOREM 6. Given n = 2 and m = 2n — 3, there 1s a directed graph with n

vertices and m edges which is not null.

Proof. Consider the graph H in Figure 3. We shall show that the vertex 4
is not a null vertex of H.

Notice that there are # — 1 paths joining vertices 4 and B, n — 2 of length
2 and one of length 1. Thus there are (n — 1)! E paths on H which begin at 4.
If » is odd, these E paths also end at 4, but if n is even, the paths end at the
vertex B.

Notice also that if P is an E path beginning at 4, then (—1)? as defined in
line 1, is 4+ 1 if and only if the edge e is traversed from 4 to B by P. Also
if P has the associated permutation ¢ € S,,, then sgn ¢ = (—1)* where x is
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FIGURE 3

the number of paths of length 2 which are used in P when travelling from B
to 4.

Let S be the set of all E paths on H which begin at 4. We shall see that all
elements of S are positive if n = 1, 2 (modulo 4) and all are negative if n =
0, 3 (modulo 4). Let .S; be the set of all paths in .S which traverse edge e from
A to B and let S; be the remaining paths of S (which therefore traverse ¢ from
B to 4). As mentioned before, given P an E path, (—1)° = 4 1 if and only if
P € S,. Thus for each P’ we must determine sgn ¢ to establish whether P is
positive or negative.

Suppose # is even. Then in an E path P, n/2 trips are made from vertex 4
to vertex B and (n — 2)/2 are made from B to 4. For the pathsof S, (n — 2)/2
subpaths of length 2 are used in travelling from B to 4. Thus the sign of the
permutation corresponding to P € S; is

(—1)-=272 = —1 if n =0 (mod 4)
T l41 if n =2 (mod 4).

For the paths of S,, (n — 4)/2 paths of length 2 are used in travelling from B
to A and have permutation signs

(—1)n—/2 = +1 ifn =0 (mod 4)

Then remembering to multiply by the appropriate value of (—1)? we see that
the paths of S; and .Ss have signs as E paths given by

—1 if =0 (mod 4)
+1 ifnw =2 (mod4).

If nis odd, (n — 1)/2 paths are traversed from 4 to B and (n — 1)/2 from
B to A. For the paths of S; (defined as before) we have the permutation signs
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and E path signs given by
(—1)0-vr2 — +1 ?f n =1 (mod 4)
—1 if n =3 (mod 4).
For the paths of S; we have (n — 3)/2 paths of length 2 traversed from B to 4
whence we have associated permutation signs
(—1)n=vr2 = —1 %an 1 (mod 4)
+1 if » =3 (mod 4)

and by multiplying by (—1)? = — 1, we have signs of £ paths given by
+1 ifn=1 (mod4)
—1 if » =3 (mod 4).

Thus regardless of #, we have either all positive or all negative E paths
beginning at 4. 4 cannot then be null.

We can now use the graph H of Figure 3 to obtain the necessary examples
to complete the proof of Theorem 2’ for m < 2n — 3. Consider the connected
directed graph on p vertices and p — 1 edges which has one vertex ¥ with
out-degree 1 and in-degree 0, one vertex Z with out-degree 0 and in-degree 1,
and the remaining p — 2 vertices with both in-degree and out-degree 1. We
shall call this graph the directed p-chain from Y to Z. Then the following
result is clear.

LEMMA 7. Let G be a directed graph and V a vertex of G. Let G’ be the directed
graph obtained by adding the directed p-chain from Y to Z on at the vertex V
(i.e. by identifying vertices Z and V). Then Y is not a null vertex of G’ if and
only if V 1s not a null vertex of G.

THEOREM 7. Given n = 2 and m < 2n — 3, there is a directed graph with n

vertices and m edges which is not null.

Proof. Suppose n — 1 < m < 2n — 3. Then construct a graph G as in
Figure 3 with m 4+ 3 — n vertices and 2% 4+ 3 — 2% edges. We know that 4
is not a null vertex of G by Theorem 6. (Notice that m + 3 — n > 2 since
m > n — 1.) If we attach the directed p-chain from Y to Z on to G at vertex 4
where p = 2n — m — 3, we obtain a new graph G’ with n vertices and m
edges. By Lemma 7, the vertex ¥ of G’ is not null.

Suppose m = n — 1. Then the directed m-chain plus # — m isolated vertices
is not null, for if ¥ is one of the two vertices of degree 1, ¥ is not null since
precisely one E path begins at Y.

Theorems 6 and 7 together give us Theorem 2’ which we have asserted is
equivalent to Theorem 2. In fact, given » and m < 2n — 2, we can explicitly
describe a set of m n X n skew-symmetric matrices 4i, ..., 4, for which
(41, ..., 4,] # 0. Namely, given such an #» and m, draw and label the ap-
propriate graph G with these parameters as given in Theorems 6 and 7. Then
for each edge ¢;, k = 1, ..., m, of G which is directed from vertex 7 to vertex j,
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let the matrix 4; be the matrix of all 0’s except fora;; = + landa;, = — 1.
Then for these 4;'s, [41, ..., 4] # 0. In this way, we obtain Theorem 2.

We mentioned one additional result in Theorem 5 which we can now see is
also the best possible result for partially directed graphs with one undirected
edge.

THEOREM 8. If nis odd and m < 2n — 2 or if nis even and m < 2n — 1, then
there is a partially directed graph G with n vertices and m edges, of which pre-
cisely one is undirected, such that G is not null.

Sketch of the proof. Using the same techniques as in the proof of Theorem 6,
it can be shown that the vertex 4 in each of the graphs, shown in Figure 4,
is not null. Then for » — 1 < m < 2n — 3, a graph as in Figure 4a with
m 4+ 3 — n vertices and 2m + 3 — 2n edges and with a directed p-chain
added on at 4 (p = 2n — m — 3) will be a suitable non-null graph. For
m < n — 1, an m-chain with one undirected edge will do.

A 1 2

2n — 3

(b) n even.

FIGURE 4
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5. Technical lemmas.
Proof of Lemma 3. If S; = S, then the paths of S(e;, ¢, e, ¥) can be paired

pleiejekpg Wlth pleke,-eim

where p; and p» are paths on G.

(1) If an even number of edges {e,, ¢;, e;} are directed, these paired elements
have opposite signs. In this case S(e;, ¢, ¢;, Y) is the union of such cancelling
pairs and therefore cancels.

(2) If S, = S, and an odd number of the edges {e;, ¢;, ¢;} are directed, then
the paths, paired as above, are both of the same sign. Therefore S(ey, ¢;, ¢, V)
cancels if and only if S’ (e;, ¢;, ex, ¥) cancels.

G(es e; ) = G — {e, e, e + { f} where fis an undirected lcop at vertex
S There is then a one-to-one correspondence between S'(e;, ¢;, e, V) and
the E paths at ¥ on G(ey, e;, €;) and we claim that the correspondence is also
sign-consistent. Because of Remark 2 we may assume that the edge e; has
some label & € {1, 2, ..., m}, e the label & + 1, and we give f the label of e;.
Consider two corresponding paths P; = pieeepe, © < k and P, = pifp.
where f is a loop. The signs of the corresponding permutations are the same and
the corresponding orientation coefficients are either always the same or always
opposite. In either case the correspondence is sign-consistent as claimed in (2).

B)IfS; # S, G(es, e5,e) =G — {ey, €5 e} + { f} where fis an edge (not
a loop) between S; and S;. Then there is a one-to-one correspondence between
S(e;, €;, e, V) and the set of all E paths at ¥ on G(e;, e;, ), obtained by
associating an element P = piee erps, © < k, (respectively Q = piere eipa)
with the E path P’ = p,fp, (respectively Q' = psfp,) on G(ey, e, €;). Converse-
ly, given an E path on G(e;, ¢;, &) P’ = pfp’, we obtain the element P =
pe.eep’ (respectively Q = perejep’) of S(ey, ej, e, YV) if f is traversed from
S; to S, (respectively from S, to .S;) in P’. We claim that the correspondence is
sign-consistent; that is, we must show that the correspondence of paths P
with P’ and Q with Q’ is always sign preserving or always sign reversing for
our given graph. We may assume that the edge e; has some label #,
h € {1,2,...,m}, and that ¢, has the label # 4+ 1. Let f receive the label of e,.

Then the permutations corresponding to P and P’ have the same signs
whereas those corresponding to Q and Q' differ from each other. Suppose

OC(P) = OC(P’). Then a routine check shows that OC(Q) = — OC(Q’),
and in these cases we have that the correspondence is sign preserving. If
OC(P) = — OC(P’), then similarly OC(Q) = OC(Q’) and we see that the

correspondence is sign reversing. Thus in all cases there is an isomorphism as
claimed in (3).

Proof of Lemma 4 (due to Herbert S. Wilf). Let us construct the p X p
symmetric adjacency matrix, 4, of T in the following way. Let »; be the
number of vertices of degree jin I'. Then in 4 we list the »; vertices of degree 2
in the first v, rows and columns; in the next vy rows and columns we list the
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vertices of degree 4, etc. Let Bs » stand for the v, X vy submatrix in the first »,
rows and v, columns; let B, » stand for the v4 X vy submatrix of 4 in the first vo
columns and in rows vy 4+ 1 through vy 4 v4; and in general let By o, j 2= 1,
stand for the v; X v, submatrix of 4 in the first » columns and in rows & + 1
through k& + vy, where b = 3.%Zlvs,. Let Ci, stand for the vy X (p — vs) sub-
matrix of 4 in the first », rows and in columns v, + 1 through p.

Suppose that no two vertices of degree 2 are adjacent. B, » is then a vy X vq
zero matrix.

Suppose also that every vertex of degree 2d is adjacent to at most 2d — 4
vertices of degree 2. Thus every vertex of degree 4 is adjacent to no vertices of
degree 2; hence B, is also a zero matrix of dimension vy X »,. Furthermore
since each vertex of degree 6 is adjacent to at most 2 vertices of degree 2, each
row sum of Bg » is at most 2. Similarly each row sum of B, is at most 4, etc.

Then the sum of the entries in By 2 + Bss + Bs2 + . .. is at most

O+2V5+4Vg+...=ZVzd(2d—4)
:Z(p(v)_4)9

this last sum being over all vertices of G of degree at least 4.

Since 4 is symmetric, the sum of the entriesin By 2 + Bs2 + ... 1s equal to
the sum of the entries in Cs, and each row sum of C,, is precisely 2 since
By 2 = 0. Thus the sum of the entries of Cs is 2v; and

202 2 () —4) = 2 (b() —4) — (—2m),
p(v) =4 v
with the last sum now over all vertices of the graph. Thus
2 (@) -4 20
or equivalently 2(2p — 1) = 4p, a contradiction.

Proof of Lemma 5. P = U3, P; where P, is the set of those paths of P which
begin on edge e;. (See Figure 2.) We shall see that each P; cancels, but to
simplify notation, consider P;.

Py = U S(m) where S(r) is the set of all paths of P; whose associated Type I
partition is 7, and where the union is taken over all Type I partitions in which
the singleton is {1}. We shall see that each S(=) cancels, but to simplify nota-
tion, suppose w is the partition

{1}, {2, 4},13,5},{6,7},...,{2d — 2,24 — 1}.

We shall apply Lemma 3 several times. All the paths of S(w) traverse the
edges e, ey, and f, consecutively. Therefore we see by parts 1 and 2 of Lemma 3
that if Sp = T, either the paths of S(w) cancel or the paths of S(r) cancel if
and only if the paths of S’ (7) cancel where S’ (7) contains those paths of S(w)
of the form piesesfspo.

Then applying parts 2 and 3 of the lemma, there is an isomorphism between
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the paths of S'(7) or S(7) respectively and the set of paths S(n’), all E paths
from V to Won Hyy = H — {es, €4, f1} + {d2}, (where ds joins S, and T’y and
is directed or not as dictated by the lemma) which induce on the set
{1,3,5,6,...,2d — 1} the partition =’ where

o= {1},13,5), {20, 20 + 1}, i=3,...,d — 1.

Hy€ Cn— 1, 2n — 3, p) where p = 0, 1, 2. (The number of undirected
edges may have increased.)

We apply the lemma again to the triple (es, es f5) in the graph Hay, and we
see again that either S(#’) cancels or there is an appropriate isomorphism of
these paths with those of S(#”), the set of all E paths from V to W on
Hoyzs = Hoy — {es3, €5, f5} + {d3} (where d3 joins S; and T's) which partition
the set {1,6,7,...,2d — 1} into the sets {1}, {2{,20 +1}:=3,...,d — 1.
Hogs € C(n — 2,2n — 5, p) where p =0,1,2 or 3.

We apply Lemma 3 d — 3 more times, once for each of the triples

(e24y €2441, foir1) fore = 3, ...,d — 1, and we find eventually that either the
paths of S() cancel or S(=) is isomorphic to the set of all E paths from V to
W on
H=H—f{e,i=2,...,2d — 1,fs, foys1,j =2,...,d — 1}
+ {dg,dzmn = 2,...,d - 1}

where d; joins .S; to T';,; and may be directed or not. Thus
HcCn—d+1,2n—2d+1,9p),

p €1{0,1,...,d — 1}, and has a vertex of degree 1, namely V, since all edges
except for e; have been removed. But then K = H — {V, ¢} is null by Remark 5
since K € C(n — d,2n — 2d, p). Thus H is null so that the paths of S(r) cancel.

In the same way the paths of S(r) cancel for any Type I partition = and thus
so do the paths of P;, 7 = 1, 2, 3 and hence P.

Proof of Lemma 6. (See Figure 2.) The proof is by induction on m and p.
We know that the result is true for p = 2 and for every m =< n, for when
p = 2, (V) = 3 and in this case we are discussing the set of all £ paths on H
which begin at V. By the minimality of #» and by the discussion of case II, we
know that such a set of E paths cancels since the graph H is null.

We assume the lemma is true for every pair (¢, k) ¢ < p and & < m and we
wish to prove the lemma for the parameters p and m =< #.

We may write P = U S(w) where S(r) is the set of all E paths on H with
associated partition m of Type II and where the union is taken over all parti-
tions of Type II of {1, 2,...,2p — 1}. To simplify notation, let z = 2p — 1.
In every Type II partition =, z is paired with some element w where 4 < w < z,
and we may write

2p—2

P=US)= U US3Gz)
=4

T
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where S(j, 2, ') is the set of those paths of S(x) in which z and j are paired
and where 7’ is the Type II partition of {1, 2,...,2d — 2} — {j}, obtained by
removing the pair {j, z} from .

For a fixed j, consider U, S(j, 2, #') and to simplify notation, assume
j=2z—1=2p — 2. Thus we consider the set D = \U..S(z — 1, 2z, 7’), the
union being over all Type II partitions =’ of {1, 2, ..., 2d — 3}.

Notice that if 7', = W, then there may be some paths in D which are of
the form pf,_ie,-1€.f,, i.e. paths which end at T, just after having traversed
edge f.. Let the set of all such paths of D be denoted by D’ and let D"/ = D —
D’. Thus D" contains those paths of D which are either of the form

pPifei€aiefops (P2 # 0) or pafiee.iforps

where p;, 7 = 1, ..., 4, are subpaths.

We shall see first that the paths of D’ cancel, for there is an isomorphism
between the paths of D’ and the set R of all E paths from Vto T,y on G’ =
G — { fa.1, €221, €4, [} wWhich induce a Type II partitionon {1,2,...,2d — 3}.
G €Cm—2,2m — 5,1),1 = 0,1; vertex Vin G has valence 2p — 3 and is
adjacent to at least 2p — 6 vertices of degree 2. Therefore by induction the
paths of R cancel as do the paths of D’.

Notice that in a path of D” f, has either a predecessor or successor which is
an edge at 7',. If p(7",) = k + 1, suppose the edges, other than f,, are labelled
g,1=1,2,...,k, where g, joins T, and U,. (The U, may not all be distinct
and it may happen that U; = T, or S; for some values of 7, j or k.)

We now apply Lemma 3 twice, first with the triple of edges (f.-1, €.—1, €.).
Note that every path of D'’ travels on these three edges consecutively and so
we replace them by an edge f joining T7',_; and S, and which is suitably directed
or not. (Notice that by assumption 7°,_; 5 .S,.) Thus we have that the set D"’
is isomorphic to the set R of all E paths from V to W on H = H —
{fee1, €.-1, e} + {f} which have an associated Type II partition
{1,2,...,2d — 3} and which are of the form ¢iff.g» (g2 # 0) or gsf:fgs where
g, t =1,...,4,aresub-paths. H € C(m — 1,2m — 3,7),7 = 0,1, 2. (The
number of undirected edges may have increased.)

Now notice that R = \U%_,R; where R, is the set of those paths of R which
are of the form ¢, ff.g.qs0r gsg:f.fqs1 € {1,...,k}, where g, is the successor or
predecessor of f,, other than f. Now we apply Lemma 3 again to each triple
(f, f2 g:) to see that either the set R; cancels immediately or there is an ap-
propriate isomorphism between R; and the set X ; of all E paths from V to W
onH; =H — {f,f.,g:} + {d:} whered;joins T,_; and U;and is appropriate-
ly directed or not and where the paths must induce a Type II partition of

{1,2,...,2d — 3}.
The important thing to notice is that H; € C(m — 2, 2m — 5,7),j = 0, 1,
foreveryi = 1,2, ...,k even though H' may have had two undirected edges.

(A routine check will verify this.) The graph H,; and the set X, satisfy our
inductive hypothesis. ¥V in H; has valence 2p — 3 and is adjacent to at least
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2p — 6 vertices of degree 2, and X, is the set of all E paths at ¥ on H; which
induce a Type II partition on {1, 2, ..., 2d — 3}. Thus the paths of X ; cancel
for every 1, implying that the paths of R; and R cancel. Thus D"’ cancels and
the set D = U~S(z — 1, 2, 7'), cancels. In the same way so does the set

U~S(, 2, '), j =4, ..., 2p — 3. Thus the paths of P cancel as claimed.
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