ON REDUCTIVE LIE ADMISSIBLE ALGEBRAS

ARTHUR A. SAGLE

1. Introduction. A Lie admissible algebra is a non-associative algebra A such that A^- is a Lie algebra where A^- denotes the anti-commutative algebra with vector space A and with commutation [X, Y] = XY - YX as multiplication; see [1; 2; 5]. Next let $L^-(X): A^- \to A^-: Y \to [X, Y]$ and $H = \{L^-(X): X \in A^-\}$; then, since A^- is a Lie algebra, we see that H is contained in the derivation algebra of A^- and consequently the direct sum $\mathfrak{g} = A^- \oplus H$ can be naturally made into a Lie algebra with multiplication [PQ] given by: $P = X + L^-(U), Q = Y + L^-(V) \in \mathfrak{g}$, then

$$[PQ] = [X, Y] + L^{-}(U)Y - L^{-}(V)X + L^{-}([U, V]) + L^{-}([X, Y])$$

and note that for any P, [PP] = 0 so that [PQ] = -[QP] and the Jacobi identity for g follows from the fact that A^- is Lie. In particular, $[L^-(U)Y] = -[YL^-(U)] = L^-(U)Y$ and $[XY] = [X, Y] + L^-([X, Y])$; thus $g = A^- \oplus H$ is a reductive Lie algebra according to the following definition.

Definition 1. Let \mathfrak{g} be a Lie algebra and let \mathfrak{h} be a subalgebra; then the pair $(\mathfrak{g}, \mathfrak{h})$ is called a *reductive pair* if there is in \mathfrak{g} a subspace \mathfrak{m} with $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$ (subspace direct sum) and $[\mathfrak{h}\mathfrak{m}] \subset \mathfrak{m}$. In this case we shall frequently say $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$ is a reductive Lie algebra.

For example, if \mathfrak{g} and \mathfrak{h} are finite-dimensional and semi-simple over a field of characteristic zero, then since the Killing form, K, of \mathfrak{g} restricted to $\mathfrak{h} \times \mathfrak{h}$ is non-degenerate, we can write $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$ with $\mathfrak{m} = \mathfrak{h} + \mathfrak{h}$ orthogonal complement of \mathfrak{h} relative to K. For $X \in \mathfrak{m}$ and $U, V \in \mathfrak{h}$ we have

$$K([XU], V) = K(X, [UV]) = 0$$

so that $[\mathfrak{m}\mathfrak{h}] \subset \mathfrak{h} = \mathfrak{m}$ and consequently $(\mathfrak{g}, \mathfrak{h})$ is a reductive pair [9].

Let A be a non-associative algebra over the field F with identity element 1, then the algebra A^- has F1 as a set of absolute divisors of zero. Thus, when considering problems relating the simplicity of A with that of A^- (see [5]) it is perhaps more natural to use the algebra $A^0 = A^-/F1$. We can relate A^- and A^0 to Lie algebras as follows.

Definition 2. A non-associative algebra A is reductive Lie admissible if there exists a Lie subalgebra H (or H^0) of the derivation algebra of A^- (or A^0) so that $\mathfrak{g} = A^- \oplus H$ (or $\mathfrak{g}^0 = A^0 \oplus H^0$) is a reductive Lie algebra with multiplication, [PQ], satisfying: for $X, Y \in A^-$ (or A^0) and $D, D' \in H$ (or H^0)

Received July 9, 1970. This research was partially supported by NSF Grant GP-8496.

we have $[XD] = -[DX] = D(X) \in A^-$ (or A^0), [DD'] = DD' - D'D and [XY] = [X, Y] + D(X, Y), where [X, Y] is the product in A^- (or A^0) and D(X, Y) is a suitable element in H (or H^0).

Note that if A contains an identity 1 and $g = A^- \oplus H$ is a reductive Lie algebra as above, then $g = F1 + \tilde{g}$, where \tilde{g} is isomorphic to g^0 above. This follows since $A^- = F1 + B$, where B is isomorphic to A^0 , and since $D \in H$ is such that D(1) = 0, we see that D induces a derivation $D^0 \in H^0$. Thus we could define reductive Lie admissibility in terms of $g = A^- \oplus H$ and then pass to the algebra $g^0 = A^0 \oplus H^0$. But it is frequently easier to use A^0 when considering simplicity of algebras and easier to use A^- when considering identities of algebras.

As an example let A be an alternative algebra, then A^- is a Malcev algebra (a Lie algebra if A is associative). From the identities for a Malcev algebra it was noted in [10] that for the inner derivations D(X, Y) = [L(X), L(Y)] + L([X, Y]) in H (= derivation algebra of A^-), the set $\mathfrak{g} = A^- \oplus H$ is a reductive Lie algebra with the product as in the above definition. But if $1 \in A$, then \mathfrak{g} or A^- is not simple. For example, if A is the 8-dimensional split Cayley-Dickson algebra, then $A^0 = A^-/F1$ is the split simple 7-dimensional Malcev algebra and we discuss this and the corresponding simple Lie algebra \mathfrak{g}^0 later. Thus from this case, since A^- is not a Lie algebra, the class of reductive Lie admissible algebras is larger than the class of Lie admissible algebras; also see [7; 8].

In this paper we start with the reductive pair $(\mathfrak{g}, \mathfrak{h})$ with fixed decomposition $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$ and construct a reductive Lie admissible algebra relative to \mathfrak{m} . First, for $X, Y \in \mathfrak{m}$ let $[XY] = X \circ Y + h(X, Y)$, where $X \circ Y = [XY]_{\mathfrak{m}}$ (h(X, Y)) is the projection of [XY] in \mathfrak{g} into \mathfrak{m} (\mathfrak{h}) ; then we have the following identities for $X, Y, Z \in \mathfrak{m}$ and $h \in \mathfrak{h}$:

- (1) $X \circ Y = Y \circ X$ (bilinear);
- (2) h(X, Y) = -h(Y, X) (bilinear);
- (3) [h(X, Y)Z] + [h(Y, Z)X] + [h(Z, X)Y] =

$$X \circ (Y \circ Z) + Y \circ (Z \circ X) + Z \circ (X \circ Y);$$

- (4) $h(X \circ Y, Z) + h(Y \circ Z, X) + h(Z \circ X, Y) = 0;$
- (5) [hh(X, Y)] = h([hX], Y) + h(X, [hY]);
- (6) $[h X \circ Y] = [hX] \circ Y + X \circ [hY].$

In particular, we see from (6) that the map $D(h): \mathfrak{m} \to \mathfrak{m}: X \to [hX]$ is a derivation of the anti-commutative algebra \mathfrak{m} with multiplication $X \circ Y = [XY]_{\mathfrak{m}}$; see [7; 8; 9; 10; 11]. Let $D(\mathfrak{h}) = \{D(h): h \in \mathfrak{h}\}.$

Next, by Ado's theorem we can represent the reductive Lie algebra by a reductive Lie algebra of endomorphisms $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$. We form the associative enveloping algebra \mathfrak{g}^* and assume that it contains an identity element 1. Let $\mathfrak{a} = F1 + \mathfrak{m}$ and decompose $\mathfrak{g}^* = \mathfrak{a} + \mathfrak{f}$ into subspaces; then we discuss the reductive Lie admissible algebras formed from \mathfrak{a} with the product P * Q obtained from the projection of the product PQ in \mathfrak{g}^* into \mathfrak{a} . We see that \mathfrak{a}^- or \mathfrak{a}^0 is isomorphic to the algebra \mathfrak{m} with multiplication $X \circ Y$ and relate

the simplicity of the algebras \mathfrak{m} , \mathfrak{a} , \mathfrak{a}^- , and \mathfrak{a}^0 . Finally, we indicate how the split 7-dimensional simple Malcev algebra can be considered as a space \mathfrak{m} with multiplication $X \circ Y = [XY]_{\mathfrak{m}}$ and use this process to construct the split 8-dimensional Cayley-Dickson algebra. All algebras in this paper are finite-dimensional over an algebraically closed field F of characteristic zero.

In [4] there is considered the opposite process to the above; namely starting with an associative algebra K with subalgebra B, decompose K = A + B and use the projection multiplication in A. This is analogous to constructing the anti-commutative algebra \mathfrak{m} from the reductive Lie algebra $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$.

2. The construction. Let $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$ (fixed decomposition) be a reductive Lie algebra of endomorphisms with commutation [X, Y] = XY - YX as multiplication and let \mathfrak{g}^* be the enveloping associate algebra of endomorphisms generated by \mathfrak{g} [3]. We shall assume that \mathfrak{g}^* has an identity element 1; adjoin 1 if necessary. Let $\mathfrak{a} = F1 + \mathfrak{m}$ and let $\mathfrak{g}^* = \mathfrak{a} + \mathfrak{f}$ be a fixed subspace decomposition for a suitable subspace \mathfrak{f} . For example, if $D(\mathfrak{h})$ is completely reducible in \mathfrak{g} , then since \mathfrak{a} is $D(\mathfrak{h})$ -invariant, choose \mathfrak{f} to be a $D(\mathfrak{h})$ -invariant complement. We now define a multiplication * on \mathfrak{a} which will give the reductive Lie admissible algebras as follows. Let $P = \alpha 1 + X$ and $Q = \beta 1 + Y$ be in \mathfrak{a} and form the product PQ in \mathfrak{g}^* and let $P * Q = (PQ)_{\mathfrak{a}}$ which is the projection of PQ in \mathfrak{g}^* into \mathfrak{a} relative to the fixed decomposition $\mathfrak{g}^* = \mathfrak{a} + \mathfrak{f}$. We shall see in Remark (1) that this yields a reductive Lie admissible algebra but we first consider the following special case.

The usual situation for our construction will be when \mathfrak{g} is a semi-simple Lie algebra and \mathfrak{h} is a semi-simple subalgebra. Then we can write $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$, where $\mathfrak{m} = \mathfrak{h}$ -which is the orthogonal complement of \mathfrak{h} relative to the Killing form, K, of \mathfrak{g} and note that $[\mathfrak{m}\mathfrak{h}] \subset \mathfrak{m}$. Thus $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$ is a reductive Lie algebra and in particular if \mathfrak{g} is simple, then \mathfrak{m} with the multiplication $[X, Y]_{\mathfrak{m}}$ is the zero algebra (i.e. $[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}} \equiv 0$) or \mathfrak{m} is a simple algebra $[\mathfrak{g}]$.

Now assume that g is simple as above; then it is completely reducible so that the associative algebra \mathfrak{g}^* is semi-simple with identity 1. Thus the form $\tau(U, V) = \text{trace } UV$ is a non-degenerate invariant (or associative) form on \mathfrak{g}^* [3, p. 69]. But since g is a simple Lie algebra of endomorphisms, $\tau|\mathfrak{g} \times \mathfrak{g}$ is a non-degenerate invariant form on g. Thus, since the field F is algebraically closed, $\tau(U, V) = \lambda K(U, V)$ for all U, V in g, where $\lambda \in F$; in particular, $\tau|\mathfrak{m} \times \mathfrak{m}$ is non-degenerate. Let $\mathfrak{a} = F1 + \mathfrak{m}$ be the subspace of \mathfrak{g}^* spanned by 1 and \mathfrak{m} (note that $1 \notin \mathfrak{g}$ since g is simple so that $1 \notin \mathfrak{m}$). Then since $\tau(1, 1) \neq 0$ we see that $\tau|\mathfrak{a} \times \mathfrak{a}$ is non-degenerate and we can decompose $\mathfrak{g}^* = \mathfrak{a} + \mathfrak{f}$, where $\mathfrak{f} = \mathfrak{a}_{-}$ is the orthogonal complement of \mathfrak{a} relative to τ . \mathfrak{f} is usually not a subalgebra of \mathfrak{g}^* but is $D(\mathfrak{h})$ -invariant since τ is an invariant form and $D(\mathfrak{h})\mathfrak{a} \subset \mathfrak{a}$. Now, relative to this decomposition $\mathfrak{g}^* = \mathfrak{a} + \mathfrak{f}$ we define the multiplication P * Q as before to make \mathfrak{a} into an algebra which we denote, in general, by $(\mathfrak{a}, *)$. *Remark* 1. The algebra $(\mathfrak{a}, *)$ is reductive Lie admissible as follows. Let $P = \alpha \mathbf{1} + X$ and $Q = \beta \mathbf{1} + Y$ be in $\mathfrak{a} = F\mathbf{1} + \mathfrak{m}$; then $PQ = \alpha\beta \mathbf{1} + \alpha Y + \beta X + XY$ in \mathfrak{g}^* . Thus $P * Q = \alpha\beta \mathbf{1} + \alpha Y + \beta X + X * Y$ and consequently

$$P * Q - Q * P = X * Y - Y * X = (XY)_{\mathfrak{a}} - (YX)_{\mathfrak{a}}$$

in \mathfrak{g}^* . First assume that $1 \in \mathfrak{m}$; then $\mathfrak{m} = \mathfrak{a}$ and from $XY = (XY)_{\mathfrak{a}} + (XY)_{\mathfrak{f}} = (XY)_{\mathfrak{m}} + (XY)_{\mathfrak{f}}$ in \mathfrak{g}^* we see that

$$[X, Y]_{\mathfrak{m}} = (XY - YX)_{\mathfrak{a}}$$

= $[(XY)_{\mathfrak{a}} + (XY)_{\mathfrak{f}} - (YX)_{\mathfrak{a}} - (YX)_{\mathfrak{f}}]_{\mathfrak{a}}$
= $(XY)_{\mathfrak{a}} - (YX)_{\mathfrak{a}}$
= $P * Q - Q * P.$

Thus in the algebra \mathfrak{a}^- the commutator is the product in the anti-commutative algebra \mathfrak{m} . Consequently, $H = D(\mathfrak{h})$ is contained in the derivation algebra of \mathfrak{a}^- and $\mathfrak{a}^- \oplus H = \mathfrak{g}$ with the obvious operations becomes a reductive Lie algebra which is a homomorphic image of $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$.

Next assume that $1 \notin \mathfrak{m}$; then for $P = \alpha 1 + X$, $Q = \beta 1 + Y \in \mathfrak{a} = F1 + \mathfrak{m}$ we have in $\mathfrak{g}^* = \mathfrak{a} + \mathfrak{k}$,

$$XY = (XY)_{\mathfrak{a}} + (XY)_{\mathfrak{k}} = (XY)_{\mathfrak{m}} + \lambda(XY)\mathbf{1} + (XY)_{\mathfrak{k}}$$

where $(XY)_{\mathfrak{m}} \in \mathfrak{m}$ and $\lambda(XY) \in F$. Thus

$$[X, Y]_{\mathfrak{m}} = (XY - YX)_{\mathfrak{m}}$$

= $(XY)_{\mathfrak{m}} - (YX)_{\mathfrak{m}}$
= $(XY)_{\mathfrak{a}} - (YX)_{\mathfrak{a}} - [\lambda(XY) - \lambda(YX)]\mathbf{1}$
= $P * Q - Q * P + \lambda\mathbf{1}$

with $\lambda \in F$. Now extend the derivations D(h) of \mathfrak{m} to \mathfrak{a}^- by setting $D(h)\mathbf{1} = [\mathbf{1}, h] = 0$; then $D(\mathfrak{h})$ induces a derivation algebra H on $\mathfrak{a}^0 = \mathfrak{a}^-/F\mathbf{1}$. In this case $\mathfrak{g}^0 = \mathfrak{a}^0 \oplus H^0$ becomes a reductive Lie algebra.

Example 1. Let $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$ be a reductive Lie algebra where \mathfrak{g} is of type G_2 , \mathfrak{h} of type A_2 , and let \mathfrak{g} be represented by derivations of the 7-dimensional simple split Malcev algebra [6, p. 455]. Then using the notation of [6], the elements of \mathfrak{g} have the matrix representation

$$D = \begin{bmatrix} 0 & 2d_2 & 2d_3 & 2d_4 & -2d_5 & -2d_6 & -2d_7 \\ d_5 & d_8 & d_9 & d_{10} & 0 & d_4 & -d_3 \\ d_6 & d_{11} & d_{12} & d_{13} & -d_4 & 0 & d_2 \\ d_7 & d_{14} & d_{15} & -d_8 - d_{12} & d_3 & -d_2 & 0 \\ -d_2 & 0 & -d_7 & d_6 & -d_8 & -d_{11} & -d_{14} \\ -d_3 & d_7 & 0 & d_5 & -d_9 & -d_{12} & -d_{15} \\ -d_4 & -d_6 & d_5 & 0 & d_{10} & -d_{13} & d_8 + d_{12} \end{bmatrix}.$$

Now if D_i denotes the matrix with $d_i = 1$ and $d_j = 0$ for $i \neq j$, then for the reductive decomposition of \mathfrak{g} we let \mathfrak{m} have basis $\{D_i: 2 \leq i \leq 7\}$ and \mathfrak{h} have basis $\{D_i: 8 \leq i \leq 15\}$. From this we easily see that $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$ is actually

a reductive decomposition and \mathfrak{h} is of type A_2 . For \mathfrak{m} with multiplication $X \circ Y = [X, Y]_{\mathfrak{m}}$ as given in the introduction, we have the following multiplication table.

	D_2	D_3	D_4	D_{5}	D_6	D_7
D_2	0	$2D_{7}$	$-2D_{6}$	0	0	0
D_3	$-2D_{7}$	0	$2D_5$	0	0	0
D_4	$2D_{6}$	$-2D_{5}$	0	0	0	0
D_5	0	0	0	0	$-2D_{4}$	$2D_3$
D_{6}	0	0	0	$2D_4$	0	$-2D_{2}$
D_7	0	0	0	$-2D_{3}$	$2D_2$	0

It is easy to check that \mathfrak{m} is a simple algebra (also see [9]). Now to compute \mathfrak{a} we let $\mathfrak{k} = \mathfrak{a} \cdot \mathfrak{a}$ spreviously explained and obtain the following multiplication table for $\mathfrak{a} = IF + \mathfrak{m}$.

	Ι	${D}_2$	D_3	D_4	D_5	D_6	D_7
I	Ι	D_2	D_3	D_4	D_5	D_{6}	D_7
D_2	D_2	0	D_7	$-D_{6}$	0	0	0
D_3	D_3	$-D_{7}$	0	D_5	0	0	0
D_4	D_4	D_{6}	$-D_{5}$	0	0	0	0
D_5	D_{5}	0	0	0	0	$-D_{4}$	D_3
D_{6}	D_6	0	0	0	D_4	0	$-D_{2}$
D_7	D_7	0	0	0	$-D_{3}$	D_2	0

Notice that $2[D_i, D_j]_{\mathfrak{m}} = D_i * D_j - D_j * D_i$ so that $\mathfrak{m} \cong \mathfrak{a}^0 = \mathfrak{a}^-/IF$ and also notice that the subspace $\mathfrak{m} \subset \mathfrak{a}$ is an ideal of \mathfrak{a} . This leads to the following theorem; cf. [2; 5].

THEOREM. Let $\mathfrak{g} = \mathfrak{m} \stackrel{\cdot}{+} \mathfrak{h}$ be a reductive Lie algebra of endomorphisms and let \mathfrak{g}^* be its enveloping algebra which we assume contains an identity element 1. Let $\mathfrak{a} = F1 + \mathfrak{m}$ be the algebra with multiplication P * Q as defined in Remark 1 relative to a fixed decomposition $\mathfrak{g}^* = \mathfrak{a} \stackrel{\cdot}{+} \mathfrak{k}$. Then

- (1) If $1 \in \mathfrak{m}$, then \mathfrak{a}^- is isomorphic to \mathfrak{m} as algebras;
- (2) If $1 \notin \mathfrak{m}$, then \mathfrak{a}^0 is isomorphic to \mathfrak{m} as algebras;
- (3) If m is a simple anti-commutative algebra and b is a proper ideal of a, then b⁰ is isomorphic to m as algebras and b is the only proper ideal of a. That is, if a = F1 + m is not simple, then it can have only one ideal.

Proof. Parts (1) and (2) follow from Remark 1. Next suppose that m with multiplication $[X, Y]_m$ is a simple anti-commutative algebra and suppose that b is a proper ideal in the algebra a. Since m is simple, $1 \notin m$ because $[1, m]_m = 0$ implies that F1 is an ideal of m; therefore $m \cong a^0$ as algebras. The ideal b of a yields an ideal $b^0 = b + F1$ of a^0 and since $a^0 \cong m$ is simple, $b^0 = a^0$ or $b^0 = 0$. If $b^0 = 0$, then b = 1F which is not an ideal of a; thus $b^0 = a^0 \cong m$.

ARTHUR A. SAGLE

Next note that since b is a proper ideal of \mathfrak{a} , $1 \notin \mathfrak{b}$ so that dim $\mathfrak{b}^0 = \dim \mathfrak{b}$; thus we have dim $\mathfrak{m} = \dim \mathfrak{a}^0 = \dim \mathfrak{b}^0 = \dim \mathfrak{b}$. Thus let \mathfrak{b}_1 be any other proper ideal of \mathfrak{a} and consider the ideal $\mathfrak{b} \cap \mathfrak{b}_1$. If $\mathfrak{b} \cap \mathfrak{b}_1 \neq 0$, then from the above dimension results applied to the proper ideals b, \mathfrak{b}_1 and $\mathfrak{b} \cap \mathfrak{b}_1$ we have dim $\mathfrak{b} = \dim \mathfrak{b}_1 = \dim (\mathfrak{b} \cap \mathfrak{b}_1)$ since they all equal dim \mathfrak{m} . Thus $\mathfrak{b} \cap \mathfrak{b}_1 \subset \mathfrak{b}$ implies that $\mathfrak{b} = \mathfrak{b} \cap \mathfrak{b}_1$ and similarly $\mathfrak{b}_1 = \mathfrak{b} \cap \mathfrak{b}_1$ so that $\mathfrak{b} = \mathfrak{b}_1$. Next, if $\mathfrak{b} \cap \mathfrak{b}_1 = 0$, then we have dim $\mathfrak{b} = \dim \mathfrak{b}_1 = \dim \mathfrak{a} - 1$. Thus since dim \mathfrak{b} or dim \mathfrak{b}_1 is at least 1, we have $\mathfrak{a} = \mathfrak{b} + \mathfrak{b}_1$ and actually $\mathfrak{a} = \mathfrak{b} + \mathfrak{b}_1$ since $\mathfrak{b}_1 \cap \mathfrak{b} = 0$. Therefore

 $\dim \mathfrak{m} + 1 = \dim \mathfrak{a} = \dim (\mathfrak{b} + \mathfrak{b}_1) = \dim \mathfrak{b} + \dim \mathfrak{b}_1 = 2 \dim \mathfrak{m}.$

Thus dim $\mathfrak{m} = 1$, a contradiction to the simplicity of \mathfrak{m} . These results show that \mathfrak{b} is the only proper ideal in \mathfrak{a} .

Remark 2. (i) Part (3) of the Theorem is illustrated by the preceding example; that is, $\mathfrak{a} = F1 + \mathfrak{m}$ can have an ideal even though \mathfrak{m} is simple. However, the simple 8-dimensional split Cayley-Dickson algebra \mathfrak{a} is of the form $\mathfrak{a} = F1 + \mathfrak{m}$ and $\mathfrak{a}^0 = \mathfrak{a}^-/F1 \cong \mathfrak{m}$ is a simple 7-dimensional Malcev algebra; that is, $\mathfrak{a} = F1 + \mathfrak{m}$ is simple where \mathfrak{m} is simple.

(ii) As noted in the beginning of this section, the hypothesis that \mathfrak{m} be a simple algebra is satisfied in the case that \mathfrak{g} is simple, \mathfrak{h} is semi-simple, and $[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}} \neq 0$. Thus many examples can easily be formed.

Example 2. We can use this construction to determine the split Cayley-Dickson algebra from the corresponding Malcev algebra and associative algebra \mathfrak{g}^* . Thus, let A be the split simple 7-dimensional Malcev algebra as given in [6, p. 434]. In [10] it was shown that there exists a reductive Lie algebra $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$, where \mathfrak{g} is of type B_3 and \mathfrak{h} is of type G_2 so that the Malcev algebra A is given by the subspace \mathfrak{m} with multiplication $[X, Y]_{\mathfrak{m}}$ and we identify A with \mathfrak{m} . Briefly, the construction is that for $X, Y \in A$ and XY the product in A we have, from the identities in [6],

(*)
$$[L(X), L(Y)] = -L(XY) + D(X, Y),$$

where D(X, Y) is an inner derivation of A (and all derivations of A are sums of inner derivations). Next, since no derivations of A are of the form L(Z)with $Z \neq 0$ [6], we have the direct sum

$$\mathfrak{g} = L(A) \stackrel{\cdot}{+} D(A),$$

where D(A) is the derivation algebra of A. Using equation (*) above, we see that \mathfrak{g} is a reductive Lie algebra of endomorphisms and with $\mathfrak{m} = L(A)$, $\mathfrak{h} = D(A)$ we see that the map $\phi: A \to \mathfrak{m}: X \to -L(X)$ is an algebra isomorphism since

$$\phi(XY) = -L(XY) = [L(X), L(Y)]_{\mathfrak{m}} = [\phi(X), \phi(Y)]_{\mathfrak{m}}$$

Next, by choosing a suitable basis in A, the system of roots were computed in [11] to obtain \mathfrak{g} and \mathfrak{h} of type B_3 and G_2 , respectively. Note that \mathfrak{g} is the Lie algebra generated by L(A).

Now with $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$ as above, note that $\mathfrak{g}^* = \operatorname{Hom}(A, A)$ (=7 × 7 matrix algebra) and for $\mathfrak{a} = F1 + \mathfrak{m}$ let $\mathfrak{g}^* = \mathfrak{a} + \mathfrak{k}$, where \mathfrak{k} is the orthogonal complement as previously discussed. Thus with the multiplication on \mathfrak{a} defined by $P * Q = (PQ)_{\mathfrak{a}}$ as in Remark 1, we see that \mathfrak{a} is a reductive Lie admissible algebra with \mathfrak{a}^0 isomorphic to \mathfrak{m} and therefore isomorphic to the Malcev algebra A. Also, \mathfrak{a} is isomorphic to the split Cayley-Dickson algebra \mathfrak{A} as follows. Choose the basis $\{e_i\}$ of A as given in [6] and let $E_i = \frac{1}{2}L(e_i)$; then a straightforward computation using the decomposition $\mathfrak{g}^* = \mathfrak{a} + \mathfrak{k}$ yields the following multiplication table which shows that \mathfrak{a} is isomorphic to the split 8-dimensional Cayley-Dickson algebra as indicated in [6, p. 434].

	Ι	E_1	E_2	E_3	E_4	E_5	E_6	E_7
I	Ι	E_1	E_2	E_3	E_4	E_5	E_{6}	E_7
E_1	E_1	0	E_2	E_3	E_4	$-E_5$	$-E_6$	$-E_{7}$
E_2	E_2	$-E_2$	0	E_7	$-E_{6}$	и	0	0
E_3	E_3	$-E_{3}$	$-E_7$	0	E_5	0	и	0
E_4	E_4	$-E_4$	E_6	$-E_5$	0	0	0	u
E_5	E_5	E_5	-u	0	0	0	$-E_4$	E_3
E_6	E_6	E_6		-u	0	E_4	0	$-E_2$
E_7	E_7	E_7	0	0	-u	$-E_{3}$	E_2	0

where $u = \frac{1}{2}(I - E_1)$. Thus we may recover the split Cayley-Dickson algebra \mathfrak{A} from the corresponding Malcev algebra A.

References

- 1. A. A. Albert, Power associative rings, Trans. Amer. Math. Soc. 64 (1948), 552-593.
- W. Coppage, Peirce decomposition in simple Lie admissible power associative algebras, Dissertation, Ohio State University, Columbus, Ohio, 1963.
- **3.** N. Jacobson, *Lie algebras*, Interscience Tracts in Pure and Applied Mathematics, No. 10 (Interscience, a division of Wiley, New York–London, 1962).
- W. E. Jenner, Truncation algebras, Notices Amer. Math. Soc. Abstract 672–50 17 (1970), 98.
- 5. P. J. Laufer and M. L. Tomber, Some Lie admissible algebras, Can. J. Math. 14 (1962), 287-292.
- 6. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426-458.
- 7. —— On anti-commutative algebras and general Lie triple systems, Pacific J. Math. 15 (1965), 281–291.
- A note on triple systems and totally geodesic submanifolds in a homogeneous space, Nagoya Math. J. 32 (1968), 5–20 (in particular, § 5).
- 9. A. Sagle and D. Winter, On homogeneous spaces and reductive subalgebras of simple Lie algebras, Trans. Amer. Math. Soc. 128 (1967), 142-147.
- 10. K. Yamaguti, Note on Malcev algebras, Kumamoto J. Sci. 5 (1962), 203-207.
- 11. On the theory of Malcev algebras, Kumamoto J. Sci. 6 (1963), 9-45.

University of Minnesota, Minneapolis, Minnesota