ON REDUCTIVE LIE ADMISSIBLE ALGEBRAS

ARTHUR A. SAGLE

1. Introduction. A Lie admissible algebra is a non-associative algebra A such that A^{-}is a Lie algebra where A^{-}denotes the anti-commutative algebra with vector space A and with commutation $[X, Y]=X Y-Y X$ as multiplication; see $[\mathbf{1} ; \mathbf{2} ; \mathbf{5}]$. Next let $L^{-}(X): A^{-} \rightarrow A^{-}: Y \rightarrow[X, Y]$ and $H=\left\{L^{-}(X): X \in A^{-}\right\}$; then, since A^{-}is a Lie algebra, we see that H is contained in the derivation algebra of A^{-}and consequently the direct sum $\mathfrak{g}=A^{-} \oplus H$ can be naturally made into a Lie algebra with multiplication [$P Q$] given by: $P=X+L^{-}(U), Q=Y+L^{-}(V) \in \mathfrak{g}$, then

$$
[P Q]=[X, Y]+L^{-}(U) Y-L^{-}(V) X+L^{-}([U, V])+L^{-}([X, Y])
$$

and note that for any $P,[P P]=0$ so that $[P Q]=-[Q P]$ and the Jacobi identity for \mathfrak{g} follows from the fact that A^{-}is Lie. In particular, $\left[L^{-}(U) Y\right]=$ $-\left[Y L^{-}\left(U^{-}\right)\right]=L^{-}(U) Y$ and $[X Y]=[X, Y]+L^{-}([X, Y]) ;$ thus $\mathfrak{g}=A^{-} \oplus H$ is a reductive Lie algebra according to the following definition.

Definition 1 . Let \mathfrak{g} be a Lie algebra and let \mathfrak{h} be a subalgebra; then the pair $(\mathfrak{g}, \mathfrak{h})$ is called a reductive pair if there is in \mathfrak{g} a subspace \mathfrak{m} with $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$ (subspace direct sum) and $[\mathfrak{h m}] \subset \mathfrak{m}$. In this case we shall frequently say $\mathfrak{g}=\mathrm{m} \dot{\mathfrak{h}}$ is a reductive Lie algebra.

For example, if \mathfrak{g} and \mathfrak{h} are finite-dimensional and semi-simple over a field of characteristic zero, then since the Killing form, K, of \mathfrak{g} restricted to $\mathfrak{h} \times \mathfrak{h}$ is non-degenerate, we can write $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$ with $\mathfrak{m}=\mathfrak{h} \perp$ the orthogonal complement of \mathfrak{h} relative to K. For $X \in \mathfrak{m}$ and $U, V \in \mathfrak{h}$ we have

$$
K([X U], V)=K(X,[U V])=0
$$

so that $[\mathrm{mh}] \subset \mathfrak{h} \perp=\mathrm{m}$ and consequently $(\mathfrak{g}, \mathfrak{h})$ is a reductive pair [9].
Let A be a non-associative algebra over the field F with identity element 1, then the algebra A^{-}has $F 1$ as a set of absolute divisors of zero. Thus, when considering problems relating the simplicity of A with that of A^{-}(see [5]) it is perhaps more natural to use the algebra $A^{0}=A^{-} / F 1$. We can relate A^{-}and A^{0} to Lie algebras as follows.

Definition 2. A non-associative algebra A is reductive Lie admissible if there exists a Lie subalgebra H (or H^{0}) of the derivation algebra of A^{-}(or A^{0}) so that $\mathfrak{g}=A^{-} \oplus H$ (or $\mathfrak{g}^{0}=A^{0} \oplus H^{0}$) is a reductive Lie algebra with multiplication, $[P Q]$, satisfying: for $X, Y \in A^{-}\left(\right.$or $\left.A^{0}\right)$ and $D, D^{\prime} \in H$ (or H^{0})

[^0]we have $[X D]=-[D X]=D(X) \in A^{-}$(or A^{0}), $\left[D D^{\prime}\right]=D D^{\prime}-D^{\prime} D$ and $[X Y]=[X, Y]+D(X, Y)$, where $[X, Y]$ is the product in A^{-}(or A^{0}) and $D(X, Y)$ is a suitable element in H (or H^{0}).

Note that if A contains an identity 1 and $\mathfrak{g}=A^{-} \oplus H$ is a reductive Lie algebra as above, then $\mathfrak{g}=F 1 \dot{+} \tilde{\mathfrak{g}}$, where $\tilde{\mathfrak{g}}$ is isomorphic to \mathfrak{g}^{0} above. This follows since $A^{-}=F 1 \dot{+} B$, where B is isomorphic to A^{0}, and since $D \in H$ is such that $D(1)=0$, we see that D induces a derivation $D^{0} \in H^{0}$. Thus we could define reductive Lie admissibility in terms of $\mathfrak{g}=A^{-} \oplus H$ and then pass to the algebra $\mathfrak{g}^{0}=A^{0} \oplus H^{0}$. But it is frequently easier to use A^{0} when considering simplicity of algebras and easier to use A^{-}when considering identities of algebras.

As an example let A be an alternative algebra, then A^{-}is a Malcev algebra (a Lie algebra if A is associative). From the identities for a Malcev algebra it was noted in [10] that for the inner derivations $D(X, Y)=[L(X), L(Y)]+$ $L([X, Y])$ in $H\left(=\right.$ derivation algebra of $\left.A^{-}\right)$, the set $\mathfrak{g}=A^{-} \oplus H$ is a reductive Lie algebra with the product as in the above definition. But if $1 \in A$, then \mathfrak{g} or A^{-}is not simple. For example, if A is the 8 -dimensional split CayleyDickson algebra, then $A^{0}=A^{-} / F 1$ is the split simple 7 -dimensional Malcev algebra and we discuss this and the corresponding simple Lie algebra \mathfrak{g}^{0} later. Thus from this case, since A^{-}is not a Lie algebra, the class of reductive Lie admissible algebras is larger than the class of Lie admissible algebras; also see $[7 ; 8]$.

In this paper we start with the reductive pair $(\mathfrak{g}, \mathfrak{h})$ with fixed decomposition $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$ and construct a reductive Lie admissible algebra relative to m. First, for $X, Y \in \mathfrak{m}$ let $[X Y]=X \circ Y+h(X, Y)$, where $X \circ Y=[X Y]_{\mathrm{m}}$ ($h(X, Y)$) is the projection of $[X Y]$ in \mathfrak{g} into $m(\mathfrak{h})$; then we have the following identities for $X, Y, Z \in \mathfrak{m}$ and $h \in \mathfrak{h}$:
(1) $X \circ Y=-Y \circ X$ (bilinear);
(2) $h(X, Y)=-h(Y, X)$ (bilinear);
(3) $[h(X, Y) Z]+[h(Y, Z) X]+[h(Z, X) Y]=$

$$
X \circ(Y \circ Z)+Y \circ(Z \circ X)+Z \circ(X \circ Y)
$$

(4) $h(X \circ Y, Z)+h(Y \circ Z, X)+h(Z \circ X, Y)=0$;
(5) $[h h(X, Y)]=h([h X], Y)+h(X,[h Y])$;
(6) $[h X \circ Y]=[h X] \circ Y+X \circ[h Y]$.

In particular, we see from (6) that the map $D(h): \mathfrak{m} \rightarrow \mathfrak{m}: X \rightarrow[h X]$ is a derivation of the anti-commutative algebra $\mathfrak{m t}$ with multiplication $X \circ Y=[X Y]_{\mathfrak{m}} ;$ see $[\mathbf{7} ; \mathbf{8} ; \mathbf{9} ; \mathbf{1 0} ; \mathbf{1 1}]$. Let $D(\mathfrak{h})=\{D(h): h \in \mathfrak{h}\}$.

Next, by Ado's theorem we can represent the reductive Lie algebra by a reductive Lie algebra of endomorphisms $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$. We form the associative enveloping algebra \mathfrak{g}^{*} and assume that it contains an identity element 1 . Let $\mathfrak{a}=F 1+\mathfrak{m}$ and decompose $\mathfrak{g}^{*}=\mathfrak{a} \dot{+} \mathfrak{f}$ into subspaces; then we discuss the reductive Lie admissible algebras formed from \mathfrak{a} with the product $P * Q$ obtained from the projection of the product $P Q$ in \mathfrak{g}^{*} into \mathfrak{a}. We see that \mathfrak{a}^{-}or \mathfrak{a}^{0} is isomorphic to the algebra \mathfrak{m} with multiplication $X \circ Y$ and relate
the simplicity of the algebras $\mathfrak{m}, \mathfrak{a}, \mathfrak{a}^{-}$, and \mathfrak{a}^{0}. Finally, we indicate hnw the split 7 -dimensional simple Malcev algebra can be considered as a space \mathfrak{m} with multiplication $X \circ Y=[X Y]_{\mathfrak{m}}$ and use this process to construct the split S-dimensional Cayley-Dickson algebra. All algebras in this paper are finite-dimensional over an algebraically closed field F of characteristic zero.

In [4] there is considered the opposite process to the above; namely starting with an associative algebra K with subalgebra B, decompose $K=A \dot{+} B$ and use the projection multiplication in A. This is analogous to constructing the anti-commutative algebra m from the reductive Lie algebra $\mathfrak{g}=\mathfrak{m} \dot{+}$.
2. The construction. Let $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$ (fixed decomposition) be a reductive Lie algebra of endomorphisms with commutation $[X, Y]=X Y-Y X$ as multiplication and let g^{*} be the enveloping associate algebra of endomorphisms generated by \mathfrak{g} [3]. We shall assume that \mathfrak{g}^{*} has an identity element 1 ; adjoin 1 if necessary. Let $\mathfrak{a}=F 1+\mathfrak{m}$ and let $\mathfrak{g}^{*}=\mathfrak{a} \dot{+} \mathfrak{f}$ be a fixed subspace decomposition for a suitable subspace \mathfrak{f}. For example, if $D(\mathfrak{h})$ is completely reducible in \mathfrak{g}, then since \mathfrak{a} is $D(\mathfrak{h})$-invariant, choose \mathfrak{f} to be a $D(\mathfrak{h})$-invariant complement. We now define a multiplication $*$ on \mathfrak{a} which will give the reductive Lie admissible algebras as follows. Let $P=\alpha 1+X$ and $Q=\beta 1+Y$ be in \mathfrak{a} and form the product $P Q$ in \mathfrak{g}^{*} and let $P * Q=(P Q)_{\mathfrak{a}}$ which is the projection of $P Q$ in \mathfrak{g}^{*} into a relative to the fixed decomposition $\mathfrak{g}^{*}=\mathfrak{a} \dot{+} \mathfrak{f}$. We shall see in Remark (1) that this yields a reductive Lie admissible algebra but we first consider the following special case.

The usual situation for our construction will be when \mathfrak{g} is a semi-simple Lie algebra and \mathfrak{h} is a semi-simple subalgebra. Then we can write $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$, where $\mathfrak{m}=\mathfrak{h}^{\perp}$ which is the orthogonal complement of \mathfrak{h} relative to the Killing form, K, of \mathfrak{g} and note that $[\mathfrak{m b}] \subset \mathfrak{m}$. Thus $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$ is a reductive Lie algebra and in particular if \mathfrak{g} is simple, then \mathfrak{m} with the multiplication $[X, Y]_{\mathfrak{m}}$ is the zero algebra (i.e. $[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}} \equiv 0$) or \mathfrak{m} is a simple algebra $[9]$.

Now assume that \mathfrak{g} is simple as above; then it is completely reducible so that the associative algebra g^{*} is semi-simple with identity 1 . Thus the form $\tau(U, V)=$ trace $U V$ is a non-degenerate invariant (or associative) form on $\mathfrak{g}^{*}[\mathbf{3}, \mathrm{p} .69]$. But since \mathfrak{g} is a simple Lie algebra of endomorphisms, $\tau \mid \mathfrak{g} \times \mathfrak{g}$ is a non-degenerate invariant form on \mathfrak{g}. Thus, since the field F is algebraically closed, $\tau(U, V)=\lambda K(U, V)$ for all U, V in \mathfrak{g}, where $\lambda \in F$; in particular, $\tau \mid \mathfrak{m} \times \mathrm{m}$ is non-degenerate. Let $\mathfrak{a}=F 1+\mathrm{m}$ be the subspace of \mathfrak{g}^{*} spanned by 1 and \mathfrak{m} (note that $1 \notin \mathfrak{g}$ since \mathfrak{g} is simple so that $1 \notin \mathfrak{m}$). Then since $\tau(1,1) \neq 0$ we see that $\tau \mid \mathfrak{a} \times \mathfrak{a}$ is non-degenerate and we can decompose $\mathfrak{g}^{*}=\mathfrak{a} \dot{f}$, where $\mathfrak{f}=\mathfrak{a}^{+}$is the orthogonal complement of \mathfrak{a} relative to τ. \mathfrak{f} is usually not a subalgebra of \mathfrak{g}^{*} but is $D(\mathfrak{h})$-invariant since τ is an invariant form and $D(\mathfrak{h}) \mathfrak{a} \subset \mathfrak{a}$. Now, relative to this decomposition $\mathfrak{g}^{*}=\mathfrak{a} \dot{+}$ we define the multiplication $P * Q$ as before to make \mathfrak{a} into an algebra which we denote, in general, by ($\mathfrak{a}, *$).

Remark 1. The algebra ($\mathfrak{a}, *$) is reductive Lie admissible as follows. Let $P=\alpha 1+X$ and $Q=\beta 1+Y$ be in $\mathfrak{a}=F 1+\mathfrak{m}$; then $P Q=\alpha \beta 1+\alpha Y+$ $\beta X+X Y$ in \mathfrak{g}^{*}. Thus $P * Q=\alpha \beta 1+\alpha Y+\beta X+X * Y$ and consequently

$$
P * Q-Q * P=X * Y-Y * X=(X Y)_{\mathfrak{a}}-(Y X)_{\mathfrak{a}}
$$

in \mathfrak{g}^{*}. First assume that $1 \in \mathfrak{m}$; then $\mathfrak{m}=\mathfrak{a}$ and from $X Y=(X Y)_{\mathfrak{a}}+(X Y)_{\mathfrak{t}}=$ $(X Y)_{\mathfrak{m}}+(X Y)_{\mathfrak{t}}$ in \mathfrak{g}^{*} we see that

$$
\begin{aligned}
{[X, Y]_{\mathfrak{m}} } & =(X Y-Y X)_{\mathfrak{a}} \\
& =\left[(X Y)_{\mathfrak{a}}+(X Y)_{\mathfrak{t}}-(Y X)_{\mathfrak{a}}-(Y X)_{\mathfrak{t}}\right]_{\mathfrak{a}} \\
& =(X Y)_{\mathfrak{a}}-(Y X)_{\mathfrak{a}} \\
& =P * Q-Q * P
\end{aligned}
$$

Thus in the algebra \mathfrak{a}^{-}the commutator is the product in the anti-commutative algebra \mathfrak{m}. Consequently, $H=D(\mathfrak{h})$ is contained in the derivation algebra of \mathfrak{a}^{-}and $\mathfrak{a}^{-} \oplus H=\tilde{\mathfrak{g}}$ with the obvious operations becomes a reductive Lie algebra which is a homomorphic image of $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$.

Next assume that $1 \notin \mathfrak{m}$; then for $P=\alpha 1+X, Q=\beta 1+Y \in \mathfrak{a}=F 1 \dot{+}$ we have in $\mathfrak{g}^{*}=\mathfrak{a} \dot{+} \mathfrak{f}$,

$$
X Y=(X Y)_{\mathfrak{a}}+(X Y)_{\mathfrak{t}}=(X Y)_{\mathfrak{m}}+\lambda(X Y) 1+(X Y)_{\mathfrak{t}}
$$

where $(X Y)_{\mathfrak{m}} \in \mathfrak{m}$ and $\lambda(X Y) \in F$. Thus

$$
\begin{aligned}
{[X, Y]_{\mathfrak{m}} } & =(X Y-Y X)_{\mathfrak{m}} \\
& =(X Y)_{\mathfrak{m}}-(Y X)_{\mathfrak{m}} \\
& =(X Y)_{\mathfrak{a}}-(Y X)_{\mathfrak{a}}-[\lambda(X Y)-\lambda(Y X)] 1 \\
& =P * Q-Q * P+\lambda 1
\end{aligned}
$$

with $\lambda \in F$. Now extend the derivations $D(h)$ of \mathfrak{m} to \mathfrak{a}^{-}by setting $D(h) 1=$ $[1, h]=0$; then $D(\mathfrak{h})$ induces a derivation algebra H on $\mathfrak{a}^{0}=\mathfrak{a}^{-} / F 1$. In this case $\mathfrak{g}^{0}=\mathfrak{a}^{0} \oplus H^{0}$ becomes a reductive Lie algebra.

Example 1. Let $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$ be a reductive Lie algebra where \mathfrak{g} is of type G_{2}, \mathfrak{h} of type A_{2}, and let \mathfrak{g} be represented by derivations of the 7 -dimensional simple split Malcev algebra [6, p. 455]. Then using the notation of [6], the elements of \mathfrak{g} have the matrix representation

$$
D=\left[\begin{array}{ccccccc}
0 & 2 d_{2} & 2 d_{3} & 2 d_{4} & -2 d_{5} & -2 d_{6} & -2 d_{7} \\
d_{5} & d_{8} & d_{9} & d_{10} & 0 & d_{4} & -d_{3} \\
d_{6} & d_{11} & d_{12} & d_{13} & -d_{4} & 0 & d_{2} \\
d_{7} & d_{14} & d_{15} & -d_{8}-d_{12} & d_{3} & -d_{2} & 0 \\
-d_{2} & 0 & -d_{7} & d_{6} & -d_{8} & -d_{11} & -d_{14} \\
-d_{3} & d_{7} & 0 & d_{5} & -d_{9} & -d_{12} & -d_{15} \\
-d_{4} & -d_{6} & d_{5} & 0 & d_{10} & -d_{13} & d_{8}+d_{12}
\end{array}\right]
$$

Now if D_{i} denotes the matrix with $d_{i}=1$ and $d_{j}=0$ for $i \neq j$, then for the reductive decomposition of \mathfrak{g} we let \mathfrak{m} have basis $\left\{D_{i}: 2 \leqq i \leqq 7\right\}$ and \mathfrak{h} have basis $\left\{D_{i}: 8 \leqq i \leqq 15\right\}$. From this we easily see that $\mathfrak{g}=\mathfrak{m} \dot{h}$ is actually
a reductive decomposition and \mathfrak{h} is of type A_{2}. For \mathfrak{m} with multiplication $X \circ Y=[X, Y]_{\mathfrak{m}}$ as given in the introduction, we have the following multiplication table.

	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}
D_{2}	0	$2 D_{7}$	$-2 D_{6}$	0	0	0
D_{3}	$-2 D_{7}$	0	$2 D_{5}$	0	0	0
D_{4}	$2 D_{6}$	$-2 D_{5}$	0	0	0	0
D_{5}	0	0	0	0	$-2 D_{4}$	$2 D_{3}$
D_{6}	0	0	0	$2 D_{4}$	0	$-2 D_{2}$
D_{7}	0	0	0	$-2 D_{3}$	$2 D_{2}$	0

It is easy to check that \mathfrak{m} is a simple algebra (also see [9]). Now to compute \mathfrak{a} we let $\mathfrak{f}=\mathfrak{a}^{\perp}$ as previously explained and obtain the following multiplication table for $\mathfrak{a}=I F \dot{+} \mathrm{m}$.

	I	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}
I	I	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}
D_{2}	D_{2}	0	D_{7}	$-D_{6}$	0	0	0
D_{3}	D_{3}	$-D_{7}$	0	D_{5}	0	0	0
D_{4}	D_{4}	D_{6}	$-D_{5}$	0	0	0	0
D_{5}	D_{5}	0	0	0	0	$-D_{4}$	D_{3}
D_{6}	D_{6}	0	0	0	D_{4}	0	$-D_{2}$
D_{7}	D_{7}	0	0	0	$-D_{3}$	D_{2}	0

Notice that $2\left[D_{i}, D_{j}\right]_{\mathfrak{m}}=D_{i} * D_{j}-D_{j} * D_{i}$ so that $\mathfrak{m} \cong \mathfrak{a}^{0}=\mathfrak{a}^{-} / I F$ and also notice that the subspace $m \subset \mathfrak{a}$ is an ideal of \mathfrak{a}. This leads to the following theorem; cf. [2;5].

Theorem. Let $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{b}$ be a reductive Lie algebra of endomorphisms and let \mathfrak{g}^{*} be its enveloping algebra which we assume contains an identity element 1. Let $\mathfrak{a}=F 1+\mathfrak{m}$ be the algebra with multiplication $P * Q$ as defined in Remark 1 relative to a fixed decomposition $\mathfrak{g}^{*}=\mathfrak{a} \dot{+} \mathfrak{f}$. Then
(1) If $1 \in \mathfrak{m}$, then \mathfrak{a}^{-}is isomorphic to \mathfrak{m} as algebras;
(2) If $1 \notin \mathfrak{m}$, then \mathfrak{a}^{0} is isomorphic to \mathfrak{m} as algebras;
(3) If \mathfrak{m} is a simple anti-commutative algebra and \mathfrak{b} is a proper ideal of \mathfrak{a}, then \mathfrak{b}^{0} is isomorphic to \mathfrak{m} as algebras and \mathfrak{b} is the only proper ideal of \mathfrak{a}. That is, if $\mathfrak{a}=F 1 \dot{+} \mathrm{m}$ is not simple, then it can have only one ideal.
Proof. Parts (1) and (2) follow from Remark 1. Next suppose that \mathfrak{m} with multiplication $[X, Y]_{\mathrm{m}}$ is a simple anti-commutative algebra and suppose that \mathfrak{b} is a proper ideal in the algebra \mathfrak{a}. Since m is simple, $1 \notin \mathfrak{m}$ because $[1, \mathfrak{m}]_{\mathfrak{m}}=0$ implies that $F 1$ is an ideal of \mathfrak{m}; therefore $\mathfrak{m} \cong \mathfrak{a}^{0}$ as algebras. The ideal \mathfrak{b} of \mathfrak{a} yields an ideal $\mathfrak{b}^{0}=\mathfrak{b}+F 1$ of \mathfrak{a}^{0} and since $\mathfrak{a}^{0} \cong \mathfrak{m}$ is simple, $\mathfrak{b}^{0}=\mathfrak{a}^{0}$ or $\mathfrak{b}^{0}=0$. If $\mathfrak{b}^{0}=0$, then $\mathfrak{b}=1 F$ which is not an ideal of \mathfrak{a}; thus $\mathfrak{b}^{0}=\mathfrak{a}^{0} \cong \mathrm{n}$.

Next note that since \mathfrak{b} is a proper ideal of $\mathfrak{a}, 1 \notin \mathfrak{b}$ so that $\operatorname{dim} \mathfrak{b}^{0}=\operatorname{dim} \mathfrak{b}$; thus we have $\operatorname{dim} \mathfrak{m}=\operatorname{dim} \mathfrak{a}^{0}=\operatorname{dim} \mathfrak{b}^{0}=\operatorname{dim} \mathfrak{b}$. Thus let \mathfrak{b}_{1} be any other proper ideal of \mathfrak{a} and consider the ideal $\mathfrak{b} \cap \mathfrak{b}_{1}$. If $\mathfrak{b} \cap \mathfrak{b}_{1} \neq 0$, then from the above dimension results applied to the proper ideals $\mathfrak{b}, \mathfrak{b}_{1}$ and $\mathfrak{b} \cap \mathfrak{b}_{1}$ we have $\operatorname{dim} \mathfrak{b}=\operatorname{dim} \mathfrak{b}_{1}=\operatorname{dim}\left(\mathfrak{b} \cap \mathfrak{b}_{1}\right)$ since they all equal $\operatorname{dim} m$. Thus $\mathfrak{b} \cap \mathfrak{b}_{1} \subset \mathfrak{b}$ implies that $\mathfrak{b}=\mathfrak{b} \cap \mathfrak{b}_{1}$ and similarly $\mathfrak{b}_{1}=\mathfrak{b} \cap \mathfrak{b}_{1}$ so that $\mathfrak{b}=\mathfrak{b}_{1}$. Next, if $\mathfrak{b} \cap \mathfrak{b}_{1}=0$, then we have $\operatorname{dim} \mathfrak{b}=\operatorname{dim} \mathfrak{b}_{1}=\operatorname{dim} \mathfrak{a}-1$. Thus since $\operatorname{dim} \mathfrak{b}$ or $\operatorname{dim} \mathfrak{b}_{1}$ is at least 1 , we have $\mathfrak{a}=\mathfrak{b}+\mathfrak{b}_{1}$ and actually $\mathfrak{a}=\mathfrak{b} \dot{+} \mathfrak{b}_{1}$ since $\mathfrak{b}_{1} \cap \mathfrak{b}=0$. Therefore

$$
\operatorname{dim} \mathfrak{m}+1=\operatorname{dim} \mathfrak{a}=\operatorname{dim}\left(\mathfrak{b}+\mathfrak{b}_{1}\right)=\operatorname{dim} \mathfrak{b}+\operatorname{dim} \mathfrak{b}_{1}=2 \operatorname{dim} \mathfrak{m}
$$

Thus $\operatorname{dim} \mathfrak{m}=1$, a contradiction to the simplicity of m. These results show that \mathfrak{b} is the only proper ideal in \mathfrak{a}.

Remark 2. (i) Part (3) of the Theorem is illustrated by the preceding example; that is, $\mathfrak{a}=F 1 \dot{+} \mathrm{m}$ can have an ideal even though m is simple. However, the simple 8 -dimensional split Cayley-Dickson algebra \mathfrak{a} is of the form $\mathfrak{a}=F 1+\mathfrak{m}$ and $\mathfrak{a}^{0}=\mathfrak{a}^{-} / F 1 \cong \mathfrak{m}$ is a simple 7 -dimensional Malcev algebra; that is, $\mathfrak{a}=F 1 \dot{+} \mathfrak{m}$ is simple where \mathfrak{m} is simple.
(ii) As noted in the beginning of this section, the hypothesis that m be a simple algebra is satisfied in the case that \mathfrak{g} is simple, \mathfrak{h} is semi-simple, and $[\mathfrak{m}, m]_{\mathfrak{m}} \neq 0$. Thus many examples can easily be formed.

Example 2. We can use this construction to determine the split CayleyDickson algebra from the corresponding Malcev algebra and associative algebra \mathfrak{g}^{*}. Thus, let A be the split simple 7 -dimensional Malcev algebra as given in [6, p. 434]. In [10] it was shown that there exists a reductive Lie algebra $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$, where \mathfrak{g} is of type B_{3} and \mathfrak{h} is of type G_{2} so that the Malcev algebra A is given by the subspace \mathfrak{m} with multiplication $[X, Y]_{\mathfrak{m}}$ and we identify A with m . Briefly, the construction is that for $X, Y \in A$ and $X Y$ the product in A we have, from the identities in [6],

$$
\begin{equation*}
[L(X), L(Y)]=-L(X Y)+D(X, Y) \tag{*}
\end{equation*}
$$

where $D(X, Y)$ is an inner derivation of A (and all derivations of A are sums of inner derivations). Next, since no derivations of A are of the form $L(Z)$ with $Z \neq 0[6]$, we have the direct sum

$$
\mathfrak{g}=L(A) \dot{+} D(A)
$$

where $D(A)$ is the derivation algebra of A. Using equation (*) above, we see that \mathfrak{g} is a reductive Lie algebra of endomorphisms and with $\mathrm{m}=L(A)$, $\mathfrak{h}=D(A)$ we see that the map $\phi: A \rightarrow \mathfrak{m}: X \rightarrow-L(X)$ is an algebra isomorphism since

$$
\phi(X Y)=-L(X Y)=[L(X), L(Y)]_{\mathfrak{m}}=[\phi(X), \phi(Y)]_{\mathfrak{m}} .
$$

Next, by choosing a suitable basis in A, the system of roots were computed in [11] to obtain \mathfrak{g} and \mathfrak{h} of type B_{3} and G_{2}, respectively. Note that \mathfrak{g} is the Lie algebra generated by $L(A)$.

Now with $\mathfrak{g}=\mathfrak{m} \dot{+} \mathfrak{h}$ as above, note that $\mathfrak{g}^{*}=\operatorname{Hom}(A, A) \quad(=7 \times 7$ matrix algebra) and for $\mathfrak{a}=F 1 \dot{+} \mathfrak{m}$ let $\mathfrak{g}^{*}=\mathfrak{a} \dot{+} \mathfrak{f}$, where \mathfrak{f} is the orthogonal complement as previously discussed. Thus with the multiplication on \mathfrak{a} defined by $P * Q=(P Q)_{a}$ as in Remark 1, we see that \mathfrak{a} is a reductive Lie admissible algebra with \mathfrak{a}^{0} isomorphic to \mathfrak{m} and therefore isomorphic to the Malcev algebra A. Also, \mathfrak{a} is isomorphic to the split Cayley-Dickson algebra \mathfrak{A} as follows. Choose the basis $\left\{e_{i}\right\}$ of A as given in [6] and let $E_{i}=\frac{1}{2} L\left(e_{i}\right)$; then a straightforward computation using the decomposition $\mathfrak{g}^{*}=\mathfrak{a}+\mathfrak{f}$ yields the following multiplication table which shows that \mathfrak{a} is isomorphic to the split 8 -dimensional Cayley-Dickson algebra as indicated in [6, p. 434].

	I	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}	E_{6}	E_{7}
I	I	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}	E_{6}	E_{7}
E_{1}	E_{1}	0	E_{2}	E_{3}	E_{4}	$-E_{5}$	$-E_{6}$	$-E_{7}$
E_{2}	E_{2}	$-E_{2}$	0	E_{7}	$-E_{6}$	u	0	0
E_{3}	E_{3}	$-E_{3}$	$-E_{7}$	0	E_{5}	0	u	0
E_{4}	E_{4}	$-E_{4}$	E_{6}	$-E_{5}$	0	0	0	u
E_{5}	E_{5}	E_{5}	$-u$	0	0	0	$-E_{4}$	E_{3}
E_{6}	E_{6}	E_{6}	0	$-u$	0	E_{4}	0	$-E_{2}$
E_{7}	E_{7}	E_{7}	0	0	$-u$	$-E_{3}$	E_{2}	0

where $u=\frac{1}{2}\left(I-E_{1}\right)$. Thus we may recover the split Cayley-Dickson algebra \mathfrak{A} from the corresponding Malcev algebra A.

References

1. A. A. Albert, Power associative rings, Trans. Amer. Math. Soc. 64 (1948), 552-593.
2. W. Coppage, Peirce decomposition in simple Lie admissible power associative algebras, Dissertation, Ohio State University, Columbus, Ohio, 1963.
3. N. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10 (Interscience, a division of Wiley, New York-London, 1962).
4. W. E. Jenner, Truncation algebras, Notices Amer. Math. Soc. Abstract 672-50 17 (1970), 98.
5. P. J. Laufer and M. L. Tomber, Some Lie admissible algebras, Can. J. Math. 14 (1962), 287-292.
6. A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426-458.
7. On anti-commutative algebras and general Lie triple systems, Pacific J. Math. 15 (1965), 281-291.
8. - A note on triple systems and totally geodesic submanifolds in a homogeneous space, Nagoya Math. J. 32 (1968), 5-20 (in particular, § 5).
9. A. Sagle and D. Winter, On homogeneous spaces and reductice subalgebras of simple Lie algebras, Trans. Amer. Math. Soc. 128 (1967), 142-147.
10. K. Yamaguti, Note on Malcev algebras, Kumamoto J. Sci. 5 (1962), 203-207.
11. - On the theory of Malcev algebras, Kumamoto J. Sci. 6 (1963), 9-45.

University of Minnesota,
Minneapolis, Minnesota

[^0]: Received July 9, 1970. This research was partially supported by NSF Grant GP-8496.

