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ON REDUCTIVE LIE ADMISSIBLE ALGEBRAS 

ARTHUR A. SAGLE 

1. I n t r o d u c t i o n , A Lie admissible algebra is a non-associative algebra 
A such t h a t A~ is a Lie algebra where A~ denotes the ant i -commutat ive algebra 
with vector space A and with commutat ion [X, Y] — XY — YX as mult i 
plication; see [1; 2 ; 5]. Next let Lr(X): A~ -> A~: Y-^[X,Y] and 
H = {L~(X): X G A~~}\ then, since A" is a Lie algebra, we see t h a t H is 
contained in the derivation algebra of A~ and consequently the direct sum 
g = A" © H can be natural ly made into a Lie algebra with multiplication 
[PQ] given by: P = X + L~(U), Q = F + Lr(V) G fl, then 

[PQ] = [X, F] + L- (C7)F - Ir(V)X + L~([U, V]) + L~([X, F]) 

and note t h a t for any P , [PP] = 0 so t h a t [PQ] = — [QP] and the Jacobi 
identi ty for g follows from the fact t h a t A" is Lie. In particular, [L~(U) F] = 
-[YL-(U)] = Lr(U)Ysnd[XY] = [X, F] + L~([X, F ] ) ; t h u s g = A~ 0 i J 
is a reductive Lie algebra according to the following definition. 

Definition 1. Let g be a Lie algebra and let Ï) be a subalgebra; then the pair 
(Q, f)) is called a reductive pair if there is in g a subspace m with g = m + § 
(subspace direct sum) and [ï)tn] C fit. In this case we shall frequently say 
g = in + b is a reductive Lie algebra. 

For example, if g and Ï) are finite-dimensional and semi-simple over a field 
of characteristic zero, then since the Killing form, K, of g restricted to ï) X Ï) 
is non-degenerate, we can write g = m + f) with m = ï)-1" the orthogonal 
complement of f) relative to K. For X Ç m and U, V G f) we have 

X ( [ * £ / ] , F ) = i£ (X , [ t / F ] ) = 0 

so t ha t [nit)] C f)x = nt and consequently (g, I)) is a reductive pair [9]. 
Let A be a non-associative algebra over the field P with identi ty element 1, 

then the algebra A~~ has P I as a set of absolute divisors of zero. Thus , when 
considering problems relating the simplicity of A with t h a t of A" (see [5]) i t 
is perhaps more natural to use the algebra A0 = A~/F1. We can relate A~ and 
A0 to Lie algebras as follows. 

Definition 2. A non-associative algebra A is reductive Lie admissible if there 
exists a Lie subalgebra H (or H°) of the derivation algebra of A" (or ^4°) so 
t h a t g = A" © H (or g° = A0 © H°) is a reductive Lie algebra with mult i
plication, [PQ], satisfying: for X, Y 6 A~ (or A0) and D,D' £ H (or # ° ) 
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we have [XD] = - [DX] = D(X) 6 4 ~ (or A0), [£>£>'] = £>£>' - D'D and 
[XF] = [X, F] + £>(X, F), where [X, F] is the product in A" (or .4°) and 
D(X, Y) is a suitable element in H (or i l°) . 

Note that if A contains an identity 1 and g = A" © H is a reductive Lie 
algebra as above, then g = i7! -f Ô, where g is isomorphic to g° above. This 
follows since A~ — F\ -j- B, where B is isomorphic to A0, and since D £ II 
is such that D( l ) = 0, we see that D induces a derivation D° G H°. Thus we 
could define reductive Lie admissibility in terms of g = A~~ © H and then 
pass to the algebra g° = A0 © if0. But it is frequently easier to use A0 when 
considering simplicity of algebras and easier to use A~ when considering 
identities of algebras. 

As an example let A be an alternative algebra, then A~ is a Malcev algebra 
(a Lie algebra if A is associative). From the identities for a Malcev algebra it 
was noted in [10] that for the inner derivations D(X, F) = [L(X), L(Y)] + 
L([X, F]) in H (= derivation algebra of A~), the set g = ^4~ © H is a reduc
tive Lie algebra with the product as in the above definition. But if 1 Ç A, then 
g or ^4~ is not simple. For example, if A is the 8-dimensional split Cayley-
Dickson algebra, then A0 = A~/F1 is the split simple 7-dimensional Malcev 
algebra and we discuss this and the corresponding simple Lie algebra g° later. 
Thus from this case, since A~ is not a Lie algebra, the class of reductive Lie 
admissible algebras is larger than the class of Lie admissible algebras; also 
see [7; 8]. 

In this paper we start with the reductive pair (g, Ï)) with fixed decomposition 
g = m + f) and construct a reductive Lie admissible algebra relative to m. 
First, for X, F G m let [XY] = X o Y + h(X, F), where X o F = [XY]m 

(h(X, F)) is the projection of [XY] in g into m (£)) ; then we have the following 
identities for X, F, Z Ç. m and ft G Ï): 

( l ) X o F - - F o X (bilinear); 
(2) ft(X, F) = - ft(F,X) (bilinear); 
(3) [ft(X, F)Z] + [ft (7 , Z)X] + [ft(Z, X ) F ] = 

X o ( F o Z) + Y o (Z o X) + Z o (X o F) ; 
(4) ft(Xo F, Z) + f t ( F o Z , X ) + ft(ZoX, F) = 0; 
(5) [ftft(X, F)] = ft([ftX], F) + ft(X, [ftF]); 
(6) [ftX o F] = [ftX] o F + X o [ftF]. 

In particular, we see from (6) that the map D(h): m —» m: X —» [ftX] is a 
derivation of the anti-commutative algebra m with multiplication 
X o Y = [XF]m ;see [7; 8; 9; 10; 11]. Let Dft) = {D(h): ft G f)}-

Next, by Ado's theorem we can represent the reductive Lie algebra by a 
reductive Lie algebra of endomorphisms g = m + Ï). We form the associative 
enveloping algebra g* and assume that it contains an identity element 1. Let 
a = Fl + m and decompose g* = a + f into subspaces; then we discuss the 
reductive Lie admissible algebras formed from a with the product P * Q 
obtained from the projection of the product PQ in g* into a. We see that 
a~ or a0 is isomorphic to the algebra m with multiplication X o F and relate 
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the simplicity of the algebras m, a, cr, and a0. Finally, we indicate how the 
split 7-dimensional simple Malcev algebra can be considered as a space m 
with multiplication X o Y = [XY]m and use this process to construct the 
split S-dimensional Cayley-Dickson algebra. All algebras in this paper 
are finite-dimensional over an algebraically closed field F of characteristic 
zero. 

In [4] there is considered the opposite process to the above; namely s tar t ing 
with an associative algebra K with subalgebra B, decompose K = A + B 
and use the projection multiplication in A. This is analogous to constructing 
the ant i -commutat ive algebra m from the reductive Lie algebra g = m -f f). 

2. T h e c o n s t r u c t i o n . Let g = m + ï) (fixed decomposition) be a reductive 
Lie algebra of endomorphisms with commutat ion [X, Y] = XY — YX as 
multiplication and let g* be the enveloping associate algebra of endomorphisms 
generated by g [3]. W e shall assume t h a t g* has an identi ty element 1; adjoin 
1 if necessary. Let a = F\ + m and let g* = a + f be a fixed subspace decom
position for a suitable subspace f. For example, if D(§) is completely reducible 
in g, then since a is D(i))-invariant, choose f to be a D(§)-invariant comple
ment . We now define a multiplication * on a which will give the reductive Lie 
admissible algebras as follows. Let P = a\ + X and Q = /31 + F be in a and 
form the product PQ in g* and let P * Q = (PQ)a which is the projection of 
PQ in g* into a relative to the fixed decomposition g* = a + f- W e shall see 
in Remark (1) t h a t this yields a reductive Lie admissible algebra bu t we 
first consider the following special case. 

T h e usual situation for our construction will be when g is a semi-simple Lie 
algebra and f) is a semi-simple subalgebra. Then we can write g = m + ï), 
where m = ï}x wThich is the orthogonal complement of Ï) relative to the Killing 
form, K, of g and note t h a t [mï)] C m. T h u s g = m + ï) is a reductive Lie 
algebra and in particular if g is simple, then m with the multiplication [X, Y]m 

is the zero algebra (i.e. [m, m]m = 0) or m is a simple algebra [9]. 
NowT assume t h a t g is simple as above; then it is completely reducible so 

t h a t the associative algebra g* is semi-simple with identi ty 1. T h u s the form 
T(U, V) = trace UV is a non-degenerate invariant (or associative) form on 
g* [3, p . 69]. Bu t since g is a simple Lie algebra of endomorphisms, r|g X g is 
a non-degenerate invariant form on g. Thus , since the field F is algebraically 
closed, r(U, V) = \K(U, V) for all U, V in g, where X Ç F\ in particular, 
r | m X Trt is non-degenerate. Let a = F\ + in be the subspace of g* spanned 
by 1 and m (note t h a t 1 (? g since g is simple so t h a t 1 g tn). Then since 
r ( l , 1) 9e 0 we see t h a t r |a X a is non-degenerate and wre can decompose 
g* = a + Ï, where Î — a-1- is the orthogonal complement of a relative to r. ! is 
usually not a subalgebra of g* bu t is D($)-invariant since r is an invar iant 
form and D(ï))a C ct. Now, relative to this decomposition g* = a + ï we 
define the multiplication P * Q as before to make a into an algebra which we 
denote, in general, by (a, *) . 
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Remark 1. The algebra (a, *) is reductive Lie admissible as follows. Let 
P = a l + X and Q = 01 + F be in a = Fl + m; then PÇ> = «01 + a F + 
0X + I F in g*. Thus P * 0 = a/31 + a F + 0X + X * F and consequently 

P *Q- Q*P = X *Y - Y*X = (XF)fl - (YX)a 

in g*. First assume that 1 G m; then m = a and from XY = (XF) a + (XY)t = 
(XF)m + (XF) f in g* we see that 

[X, Y]m= (XY- YX)a 

= [(XF) a + ( I F ) ( - (FX) a - (YX)t]a 

= (XF)a ~ (YX)a 

= P*<2-<2*P. 
Thus in the algebra ct~" the commutator is the product in the anti-commutative 
algebra m. Consequently, H — D(i)) is contained in the derivation algebra of 
CT and ct~ © H = g with the obvious operations becomes a reductive Lie 
algebra which is a homomorphic image of g = m + f)-

Next assume that 1 g m; then for P = a l + X, Q = /31 + F G a = Fl + m 
we have in g* = a + f, 

I F = ( I F ) , + (XF) f = (XF)m + X(XF)1 + (XY)h 

where (XF)m G m and X(XF) G F. Thus 

[X, F]m = ( I F - YX)m 

= (XF)m - (FX) m 

= (XF) a - (FX) a - [X(XF) - X(FX)]1 

= P * < 2 - < 2 * P + XI 

with X G P. Now extend the derivations D(h) of m to a - by set t ing D(h)l = 
[1, h] = 0; then Z>(f)) induces a derivat ion algebra i ? on a0 = a ~ / P l . In this 
case g° = û° © H° becomes a reductive Lie algebra. 

Example 1. Le t g = m -f- t) be a reduct ive Lie algebra where g is of type G2, 
Ï) of type A 2, and let g be represented by derivat ions of the 7-dimensional 
simple split Malcev algebra [6, p . 455]. Then using the nota t ion of [6], the 
elements of g have the matr ix representat ion 

0 2d2 2d, 2d, -2d, -2d, -2d, 
d-0 d8 d% dio 0 d, -dz 

de, du dn du — d. 0 d2 

di du di5 — d8 — d L2 dz — d2 0 
— d2 0 -di d, — d8 — du — du 

-d, d, 0 d. — d9 — d12 — du 

— di — ds db 0 dio — du ds + d 

Now if Di denotes the matrix with dt = 1 and dj = 0 for i ^ 7, then for the 
reductive decomposition of g we let m have basis \D{. 2 ^ i ^ 7} and Î) have 
basis {Di\ 8 ^ i ^ 15}. From this we easily see that g = m + Ï) is actually 
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a reductive decomposition and Ï) is of type Az- For m with multiplication 
X o Y = [X, Y] m as given in the introduction, we have the following multi
plication table. 

D2 D3 Dt Dt Ds D7 

Ds 0 2D7 -2D, 0 0 0 
Dz -2D7 0 2Ds 0 0 0 
Dt 2D, -2D, 0 0 0 0 
Dt 0 0 0 0 -2D 4 2Z>3 
D6 0 0 0 2Z>4 0 -2D, 
D1 0 0 0 -2D» 2Dt 0 

It is easy to check that m is a simple algebra (also see [9]). Now to compute a 
we let Î — ax as previously explained and obtain the following multiplication 
table for a = IF + m. 

I D2 D, D* D, D, Di 

I I Dz Dz D, DS D, D7 

D2 Dz 0 D7 -D, 0 0 0 
D, D3 -X>7 0 Dt 0 0 0 
£>4 Di Pe -Ds 0 0 0 0 
Ds D-0 0 0 0 0 -Dt Dz 
D6 D, 0 0 0 D, 0 -Dz 
D7 D7 0 0 0 -Dz Dz 0 

Notice that 2[DU D f\m = Di*Dj - Dj*Dt so that m ^ ct° = or/IF and 
also notice that the subspace m C d is an ideal of a. This leads to the following 
theorem; cf. [2; 5]. 

THEOREM. Let g = m + f) be a reductive Lie algebra of endomorphisms and 
let g* be its enveloping algebra which we assume contains an identity element 1. 
Let a = Fl + m be the algebra with multiplication P * Q as defined in Remark 1 
relative to a fixed decomposition cr* = a + I. Then 

(1) If 1 G m, /&e» a - is isomorphic to m as algebras; 
(2) If 1 $ m, //&£w a0 is isomorphic to m as algebras; 
(3) If m is a simple anti-commutative algebra and h is a proper ideal of a, then 

b° is isomorphic to m as algebras and b is the only proper ideal of a. That 
is, if a — Fl + m is not simple, then it can have only one ideal. 

Proof. Parts (1) and (2) follow from Remark 1. Next suppose that m with 
multiplication [X, Y]m is a simple anti-commutative algebra and suppose 
that b is a proper ideal in the algebra a. Since m is simple, 1 g m because 
[1, m]m = 0 implies that Fl is an ideal of m; therefore m = a0 as algebras. 
The ideal b of a yields an ideal b° = b + Fl of a0 and since a0 = m is simple, 
b° = a0 or b° = 0. If b° = 0, then i = IF which is not an ideal of a; thus 
b° = a0^ m. 
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Next note that since b is a proper ideal of a, 1 € b so that dim b° = dim b ; 
thus we have dim m = dim a0 = dim b° = dim 6. Thus let bi be any other 
proper ideal of a and consider the ideal b P bi. If b P bi 9e 0, then from the 
above dimension results applied to the proper ideals b, bi and b Pi bi we have 
dim b = dim bi = dim(b P bi) since they all equal dim m. Thus b P bi C b 
implies that b = b (^ bi and similarly bi = b P bi so that b = bi. Next, if 
b P bi = 0, then we have dim b = dim bi = dim a — 1. Thus since dim b 
or dim bi is at least 1, we have a = b + bi and actually a = b + bi since 
bi P b = 0. Therefore 

dim in + 1 = dim a = dim(b + &i) = dim b + dim bi = 2 dim m. 

Thus dim m = 1, a contradiction to the simplicity of m. These results show 
that b is the only proper ideal in a. 

Remark 2. (i) Part (3) of the Theorem is illustrated by the preceding 
example; that is, a = Fl + m can have an ideal even though m is simple. 
However, the simple 8-dimensional split Cayley-Dickson algebra a is of the 
form a = Fl + m and a0 = or/Fl == m is a simple 7-dimensional Malcev 
algebra; that is, a = Fl -f- m is simple where m is simple. 

(ii) As noted in the beginning of this section, the hypothesis that m be a 
simple algebra is satisfied in the case that g is simple, f) is semi-simple, and 
[m, m]m ^ 0. Thus many examples can easily be formed. 

Example 2. We can use this construction to determine the split Cayley-
Dickson algebra from the corresponding Malcev algebra and associative 
algebra g*. Thus, let A be the split simple 7-dimensional Malcev algebra as 
given in [6, p. 434]. In [10] it was shown that there exists a reductive Lie 
algebra g = m + ï)> where g is of type B^ and f) is of type G2 so that the Malcev 
algebra A is given by the subspace m with multiplication [X, Y]m and we 
identify A with m. Briefly, the construction is that for X, Y G A and XY the 
product in A we have, from the identities in [6], 

(*) [L(X), L(Y)] = - L{XY) + D(X, Y), 

where D(X, Y) is an inner derivation of A (and all derivations of A are sums 
of inner derivations). Next, since no derivations of A are of the form L(Z) 
with Z 9^ 0 [6], we have the direct sum 

l = L(A)+D(A), 
where D(A) is the derivation algebra of A. Using equation (*) above, we see 
that g is a reductive Lie algebra of endomorphisms and with m = L(A), 
Ï) = D(A) we see that the map $: A —> m: X —» —L(X) is an algebra isomor
phism since 

ct>(XY) = - L(XY) = [L(X),L(Y)]n = [<£(X), 0(F)] m . 
Next, by choosing a suitable basis in A, the system of roots were computed 
in [11] to obtain g and Î) of type J33 and G2, respectively. Note that g is the Lie 
algebra generated by L (A ). 

https://doi.org/10.4153/CJM-1971-032-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-032-9


LIE ADMISSIBLE ALGEBRAS 331 

Now with g = m + Ï) as above, note that g* = Horn (A, A) ( = 7 X 7 
matrix algebra) and for a = F\ + Ttt let g* = a + f, where t is the orthogonal 
complement as previously discussed. Thus with the multiplication on a 
defined by P * Q = (PQ)a as in Remark 1, we see that a is a reductive Lie 
admissible algebra with a0 isomorphic to m and therefore isomorphic to the 
M alee v algebra A. Also, a is isomorphic to the split Cayley-Dickson algebra % 
as follows. Choose the basis {et} of A as given in [6] and let Et = \L{e^)\ 
then a straightforward computation using the decomposition çr* = a + ï 
yields the following multiplication table which shows that a is isomorphic to 
the split 8-dimensional Cayley-Dickson algebra as indicated in [6, p. 434]. 

I £1 £2 £3 £ 4 £5 £e £ 7 

I I Ei £2 £3 £ 4 £5 £e £ 7 

-Ei £1 0 £2 £3 £ 4 -£3 -£6 - £ 7 

£2 £2 -£2 0 £7 -Et M 0 0 
£3 E% -E, -ET 0 £5 0 M 0 
£4 £4 -£4 £e -£5 0 0 0 u 
£5 £5 £5 — u 0 0 0 - £ 4 £s 
£e £6 £6 0 — W 0 £ 4 0 -Et 

£7 £7 £7 0 0 —u - £ 3 £ 2 0 

where u = § ( / — £1). Thus we may recover the split Cayley-Dickson algebra 
§1 from the corresponding Malcev algebra A. 
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