ON CARATHÉODORY'S THEOREM

P. Scherk
(received February 24, 1966)

The following proof of Carathéodory's Theorem, while not essentially new, seems to be natural and therefore of interest.

LEMMA 1. Let P denote a supporting hyperplane of the convex polytope K. Then $P \cap K$ is a convex polytope whose vertices are vertices of K.

Proof. Let $K=H\left(a_{1}, \ldots, a_{m}\right)$ be the convex hull of the points a_{1}, \ldots, a_{m}. Let $P=\{x \mid c x=\alpha\}$. Thus we have, say, $c x-\alpha \geq 0$ for every point $x \in K$; in particular

$$
c a_{i}-\alpha \geq 0 \quad(i=1, \ldots, m)
$$

Any point $b \in P \cap K$ can be represented in the form

$$
b=\sum_{1}^{m} \lambda_{i} a_{i} ; \Sigma \lambda_{i}=1 ; \lambda_{1} \geq 0, \ldots, \lambda_{m} \geq 0
$$

Since $b \in P$, we have

$$
0=c \cdot b-\alpha=\Sigma \lambda_{i} \cdot c a_{i}-\alpha \Sigma \lambda_{i}\left(c a_{i}-\alpha\right) .
$$

Here $\lambda_{i}\left(c a_{i}-\alpha\right) \geq 0$ for each i. Hence

$$
\lambda_{i}\left(c a_{i}-\alpha\right)=0 \quad(i=1, \ldots, m)
$$

If $\lambda_{j}>0$, then $c a_{j}-\alpha=0$, i.e., $a_{j} \in P$. Suppose, say, that

Canad. Math. Bull. vol. 9, no. 4, 1966
a_{1}, \ldots, a_{p} are those a_{i} that lie in $P \cap K$. Then $\lambda_{j}=0$ if $j>p$. Thus $b \in H\left(a_{1}, \ldots, a_{p}\right)$ and $P \cap K \subset H\left(a_{1}, \ldots, a_{p}\right)$. The inverse relation being trivial, we obtain

$$
P \cap K=H\left(a_{1}, \ldots, a_{p}\right)
$$

LEMMA 2. Every point of a convex polytope lies in a simplex whose vertices are also vertices of the polytope.

A short analytic proof of this lemma is implicitly contained in Eggleston's proof of Carathéodory's Theorem, [H.G. Eggleston, Convexity (Cambridge, 1958), pp.34f.]

Alternate Proof. Let $K=H\left(a_{1}, \ldots, a_{m}\right)$ be the given polytope. The assertion is trivial if $\operatorname{dim} K \leq 1$. Suppose it is proved for $\operatorname{dim} K<d$ and let $\operatorname{dim} K=d$. By restricting our attention to the flat spanned by K, we may assume that K spans the whole space.

Let b denote a point on the boundary of K. Thus there exists a supporting hyperplane P of K through b. By Lemma 1, $\mathrm{P} \cap \mathrm{K}$ is a convex polytope whose vertices are vertices of K. Since $\operatorname{dim}(P \cap K)<d$, there exists a simplex containing b whose vertices are vertices of $P \cap K$ and hence of K .

Now let c be an interior point of K. Then there exists a point b on the boundary of K such that c lies on the segment connecting a_{m} with b. Construct a supporting hyperplane P of K through b and a simplex in P containing b as before. Since c and a_{m} do not lie in P, this simplex and a_{m} span a simplex containing c.

Let A be any non-void set in n-space. Let K_{m} denote the union of all the convex polytopes with m vertices belonging to A:

$$
\mathrm{K}_{\mathrm{m}}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right\} \subset \mathrm{A} \quad \mathrm{H}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)
$$

(The points a_{1}, \ldots, a_{m} need not be mutually distinct.) Put

$$
K=\bigcup_{1}^{\infty} K_{m}
$$

LEMMA 3. K is equal to the convex hull $H(A)$ of A (cf. Eggleston, l.c., p. 35).

Proof. Given any m-tuple $\left\{a_{1}, \ldots, a_{m}\right\} \subset A$, we have

$$
H\left(a_{1}, \ldots, a_{m}\right) \subset H(A),
$$

hence $K_{m} \subset H(A)$ and therefore $K \subset H(A)$.

Let x and y denote any two points of K , say $x \in H\left(a_{1}, \ldots, a_{m}\right), \quad y \in H\left(a_{m+1}, \ldots, a_{p}\right)$.

Then $H\left(a_{1}, \ldots, a_{p}\right)$ contains both x and y. Thus the segment $H(x, y)$ also lies in $H\left(a_{1}, \ldots, a_{p}\right) \subset K_{p} \subset K$. Hence K is convex. Since $A=K_{1} \subset K, H(A) \subset K$.

CARATHEODORY'S THEOREM. Let A be a set in n-space. Then every point of $H(A)$ lies in a simplex whose vertices belong to A.

Proof. We may assume $A \neq \emptyset$. Let $x \in H(A)$. By Lemma 3, there exists an m such that $x \in K_{m}$. Thus x lies in some convex polytope $H\left(a_{1}, \ldots, a_{m}\right)$ with vertices in A. By Lemma 2, there exists a simplex containing x with vertices in A .

