FINITE ARITHMETIC SUBGROUPS OF GL,, II

YOSHIYUKI KITAOKA

In [1] \sim [6] the following question was treated: Let k be a totally real Galois extension of the rational number field Q, O the maximal order of k and G a finite subgroup of GL(n, O) which is stable under the operation of G(k/Q). Then does $G \subset GL(n, Z)$ hold?

An aim of this paper is to generalize this. First we introduce a notion of A-type for finite subgroups of GL(n, O). Let k be an algebraic number field, O the maximal order of k and G a finite subgroup of GL(n, O). Put $L = \mathbb{Z}^n$ (row vectors) and operate G on $OL = O^n$ as product of matrices. Then we call G of A-type if there is a direct decomposition $L = \bigoplus_{i=1}^m L_i$ such that for each $g \in G$, there exist a root of unity $\varepsilon_i(g) \in O$ and a permutation $s(g) \in S_m$ satisfying $\varepsilon_i(g)gL_i = L_{s(g)i}$ for $i = 1, 2, \dots, m$.

If ± 1 are all roots of unity in k, then we have $G \subset GL(n, \mathbb{Z})$ if G is of A-type. Now our question is following:

Let k be a Galois extension of Q, O the maximal order of k and G a finite subgroup of GL(n, O) which is stable under operation of G(k/Q), that is, $g'' \in G$ for every $g \in G$, $\sigma \in G(k/Q)$. Then is G of A-type?

It is shown that this is affirmative for abelian fields.

We denote by O_k the maximal order of an algebraic number field k and mean by a positive Z-lattice a lattice on a positive definite quadratic space over the rational number field Q.

Let k be a Galois extension of Q and assume that the complex conjugate induces an element of the center of G(k|Q). Then O_k becomes a positive Z-lattice with quadratic form $\operatorname{tr}_{k/Q}|x|^2$, $(x \in O_k)$. In § 1 we prove that this positive Z-lattice is of E-type in the sense of [5] if k is abelian. For positive Z-lattices L, M, $O_k L$, $O_k M$ become cannonically positive definite Hermitian forms. In § 2 we show that if σ is an isometry from $O_k L$ on $O_k M$ and k is abelian, then there exist orthogonal decompositions $L = \coprod_{i=1}^t L_i$, $M = \coprod_{i=1}^t M_i$ and roots of unity ε_i in k such that $\varepsilon_i \sigma(L_i) = M_i$. As

Received February 6, 1979.

a corollary we can answer positively our question for abelian fields.

§1. Let k be a finite Galois extension of Q and assume that the complex conjugate induces an element of the center of G(k/Q). Then O_k becomes a positive Z-lattice with quadratic form $\operatorname{tr}_{k/Q}|x|^2$, $(x \in O_k)$. This positive lattice is denoted by \tilde{O}_k . If \tilde{O}_k is of E-type in the sense of [5], then we say that k is of E-type.

LEMMA 1. Let k, \tilde{O}_k be as above. Then we have $\min_{\substack{x \in O_k \\ x \neq 0}} \operatorname{tr}_{k/Q} |x|^2 = [k:Q]$ and $\{x \in O_k | \operatorname{tr}_{k/Q} |x|^2 = [k:Q]\} = \{all \text{ roots of unity in } k\}.$

Proof. Take any non-zero element a in O_k . Then

$$egin{aligned} \operatorname{tr}_{k/m{Q}} |a|^2 &= \sum\limits_{g \in \widehat{G}(k/m{Q})} |g(a)|^2 \geq [k \colon m{Q}] (I\!I \, |g(a)|^2)^{1/[k \colon m{Q}]} \ &= [k \colon m{Q}] (N_{k/m{Q}} \, |a|^2)^{1/[k \colon m{Q}]} \geq [k \colon m{Q}] \;. \end{aligned}$$

Suppose $\operatorname{tr}_{k/Q}|a|^2=[k:Q]$, then $N_{k/Q}|a|^2=1$ and $|g(a)|^2=|a|^2$ for every $g\in G(k/Q)$. This implies |g(a)|=1 for every $g\in G(k/Q)$. Hence a is a root of unity. Conversely a root of unity a in k satisfies $\operatorname{tr}_{k/Q}|a|^2=[k:Q]$.

- LEMMA 2. Let k_1 , k_2 be Galois extensions of \mathbf{Q} and assume that the complex conjugate induces an element of the center of $G(k_i/\mathbf{Q})$, (i=1,2). Then we have
 - (i) if $k_1 \supset k_2$ and k_1 is of E-type, then k_2 is also of E-type,
- (ii) if the discriminants of k_1 , k_2 are relatively prime and k_1 , k_2 are of E-type, then the composite field k_1k_2 is also of E-type.

Proof. Suppose $k_1 \supset k_2$. If \tilde{O}_{k_1} is of E-type, then a submodule O_{k_2} of \tilde{O}_{k_1} is also of E-type by virtue of Prop. 2 in [5] since $1 \in O_{k_2}$ is a minimal vector of \tilde{O}_{k_1} . For $x \in O_{k_2}$ we have $\operatorname{tr}_{k_1/q} |x|^2 = [k_1 \colon k_2] \operatorname{tr}_{k_2/q} |x|^2$. Hence a submodule O_{k_2} of \tilde{O}_{k_1} is similar to \tilde{O}_{k_2} and so \tilde{O}_{k_2} is also of E-type. Suppose the assumption of (ii), then $O_{k_1k_2} = O_{k_1} \otimes O_{k_2}$ and for $a_1, b_1 \in O_{k_1}$, $a_2, b_2 \in O_{k_2}$ we have $\operatorname{tr}_{k_1k_2/q} a_1a_2\overline{b_1b_2} = \operatorname{tr}_{k_1/q} a_1\overline{b_1} \operatorname{tr}_{k_2/q} a_2\overline{b_2}$ where the bar denotes the complex conjugate. Hence $\tilde{O}_{k_1k_2}$ is isometric to $\tilde{O}_{k_1} \otimes \tilde{O}_{k_2}$. Prop. 1 in [5] completes the proof.

LEMMA 3. Let p be a prime and $L = Z[u_1, \dots, u_{p-1}]$ a quadratic lattice defined by $(u_i, u_j) = -1$ if $i \neq j$ and $(u_i, u_i) = p - 1$ for every i. Then L is a positive Z-lattice and of E-type.

Proof. Let N be a positive Z-lattice. We use the same notations

Q(x), (x, y) for the quadratic forms and bilinear forms associated to L, N and $L \otimes N$. For a non-zero element $x = \sum_{i=1}^{p-1} u_i \otimes w_i$, $(w_i \in N)$ in $L \otimes N$ we have

$$egin{aligned} Q(x) &= \sum\limits_{i,j=1}^{p-1} (u_i, \, u_j)(w_i, \, w_j) \ &= \sum\limits_{i=1}^{p-1} Q(w_i) + \sum\limits_{i < j} Q(w_i - w_j) \; . \end{aligned}$$

Hence L is positive definite. For each permutation $s \in S_{p-1}$, $u_i \mapsto u_{s(i)}$ gives an isometry of L. Hence we may assume that $w_1, \dots, w_k \neq 0$, $w_{k+1} = \dots = w_{p-1} = 0$ without changing the value of Q(x). Since w_1, \dots, w_k , $w_1 - w_{k+1}, \dots, w_1 - w_{p-1}$ are not zero, we get $Q(x) \geq (p-1)m(N)$ where m(N) denotes the minimum of Q(y), $(y \in N, y \neq 0)$. If we take a special lattice $\langle 1 \rangle$ as N, then $Q(x) \geq p-1$ for any non-zero x in L. Hence we have m(L) = p-1 and $m(L \otimes N) \geq m(L)m(N)$. Suppose that Q(x) = (p-1)m(N). Then $w_i - w_j$, (i < j), should be zero if $(i, j) \neq (1, k+1), \dots, (1, p-1)$, since $(p-1)m(N) = Q(x) \geq \sum_{i=1}^k Q(w_i) + \sum_{k=k+1}^{p-1} Q(w_i - w_j) \geq (p-1)m(N)$. Hence we have $w_2 = \dots = w_{p-1}$. If $w_2 = 0$, then $x = u_1 \otimes w_1$. If $w_2 \neq 0$, then $k \geq 2$ implies $w_1 = w_2$ and $x = (\sum u_i) \otimes w_1$. Therefore by definition L is of E-type.

Lemma 4. Let ζ be a primitive p^n -th root of unity where p is prime and $n \geq 2$. Then $\mathbf{Q}(\zeta)$ is of E-type.

Proof. It is well known that

$$\mathrm{tr}_{m{Q}(\zeta)/m{Q}}\,\zeta^m = egin{cases} p^{n-1}(p-1) & & ext{if } p^n \,|\, m \;, \ -p^{n-1} & & ext{if } p^{n-1} \|m \;, \ 0 & & ext{if } p^{n-1} \!
ot |\, m \;. \end{cases}$$

As an integral basis of $Z[\zeta]$ we can take $v_i=\zeta^{i-1}$, $(1\leq i\leq p^{n-1}(p-1))$. Then $\operatorname{tr}_{Q(\zeta)/Q}v_i\overline{v_j}=\operatorname{tr}_{Q(\zeta)/Q}\zeta^{i-j}$. Let $L=Z[u_1,\cdots,u_{p-1}]$ be a quadratic lattice defined by $(u_i,u_i)=p-1$, $(u_i,u_j)=-1$ for $i\neq j$. By Lemma 3, L is positive definte and of E-type. We define another positive Z-lattice $M=Z[w_1,\cdots,w_{p^{n-1}}]$ by $(w_i,w_j)=p^{n-1}\delta_{ij}$. Then $M=\bot\langle p^{n-1}\rangle$ is also of E-type by Prop. 1 in [5]. We determine a basis $\{z_i\}$ of $L\otimes M$ by $z_i=u_{b+1}\otimes w_a$, $(i=a+bp^{n-1},\ 1\leq a\leq p^{n-1})$. Put $i=a+bp^{n-1},\ j=a'+b'p^{n-1}$, $(1\leq a,a'\leq p^{n-1})$, then $(z_i,z_j)=(u_{b+1},u_{b'+1})\times(w_a,w_{a'})$. Hence we have $(z_i,z_i)=p^{n-1}(p-1)$. Suppose $i\neq j$. If $i\equiv j \mod p^{n-1}$, then $(z_i,z_j)=-p^{n-1}$. $i\not\equiv j \mod p^{n-1}$ implies $(z_i,z_j)=0$. Therefore we have $\operatorname{tr}_{Q(\zeta)/Q}v_i\overline{v_j}$

 $=(z_i,z_j), \ (1\leq i,j\leq p^{n-1}(p-1)).$ Since $L\otimes M$ is of E-type, $\tilde{O}_{Q(\zeta)}$ is also of E-type.

Theorem. Abelian extensions of Q are of E-type.

Proof. Any abelian extension of Q is contained in $Q(\zeta)$ for some root of unity ζ . Hence Lemma 2 and 4 complete the proof.

§2. Through this section we denote by k a Galois extension of Q and assume that the complex conjugate induces an element of the center of G(k/Q). For a positive Z-lattice L the associated bilinear form (,) can be generalized to O_kL as follows:

For $a, b \in O_k$ and $x, y \in L$, $(ax, by) = a\overline{b}(x, y)$, where \overline{b} is the complex conjugate of b. Hereafter O_kL means this positive definite Hermitian form.

LEMMA. Let M, N be positive Z-lattices and σ an isometry from $O_k M$ on $O_k N$. Assume that there exist submodules $\bigsqcup_{i=1}^m M_i$ of M and $\bigsqcup_{i=1}^m N_i$ of N such that $[M: \bigsqcup_{i=1}^m M_i], [N: \bigsqcup_{i=1}^m N_i] < \infty$ and $\varepsilon_i \sigma(M_i) = N_i$, $(1 \le i \le m)$, for some root of unity ε_i in k. Then there exist orthogonal decompositions $M = \bigsqcup_{i=1}^n M_i', \ N = \bigsqcup_{i=1}^n N_i'$ such that $\varepsilon_i' \sigma(M_i') = N_i'$, $(1 \le i \le n)$ for some root of unity ε_i' in k.

Proof. We use induction on rank M. Lemma is obvious in case of rank M=1. Suppose rank M>1. Since $\varepsilon_1\sigma$ is also an isometry from $O_k M$ on $O_k N$, we may assume $\varepsilon_1 = 1$ without loss of generality. Take any non-zero element u in M_1 , then $\sigma(u) = v \in N_1$ and $\sigma(O_k u^{\perp}) = O_k v^{\perp}$. Applying induction to $\sigma(O_k u^{\perp}) = O_k v^{\perp}$, we may assume that $M_1 = Z[u]$, $N_1 = Z[v]$, $\varepsilon_1=1,\ M_1^\perp=M_2\perp\cdots\perp M_m,\ N_1^\perp=N_2\perp\cdots\perp N_m$ and that M_1,N_1 are direct summands of M, N respectively. Hence $M/ \perp_{i=1}^m M_i, N/ \perp_{i=1}^m N_i$ are finite cyclic groups and $[M: \perp_{i=1}^m M_i] = [OM: \perp_{i=1}^m OM_i]^{1/[k: Q]} = [ON: \perp_{i=1}^m ON_i]^{1/[k: Q]}$ $= [N: \perp_{i=1}^m N_i] = r \text{ (say)}.$ Let $x = r^{-1}(au + \sum_{i=2}^m m_i)$ $y = r^{-1}(a'v + \sum_{i=2}^m n_i)$ be generators of $M/ \perp_{i=1}^m M_i$, $N/ \perp_{i=1}^m N_i$ respectively where $a, a' \in \mathbb{Z}$, $m_i \in M_i$ and $n_i \in N_i$. If $p^s || r, p^s | a$, $(s \ge 1)$, then $p^{-s} rx - p^{-s} au = p^{-s} \sum_{i=2}^m m_i$ is in M. Hence we have $p^{-s}m_i \in M_i$ since $\coprod_{i=2}^m M_i$ is a direct summand of M. This implies $p^{-s}rx \in \coprod_{i=1}^m M_i$ and it contradicts the definition of x. Thus $p^s || r, (s \ge 1)$ yields $p^s \nmid a$ and similarly $p^s \nmid a'$. Suppose that $m_j \equiv 0$ (rM_j) for some $j \geq 2$; then any element m in M can be written as $m = cx + \sum_{i=1}^{m} m'_{i}$, $(c \in Z, m_i' \in M_i)$ and $m = (c(x - r^{-1}m_j) + \sum_{i \neq j} m_i') + (m_j' + cr^{-1}m_j)$. Hence

we have $M = M_i \perp M_i^{\perp}$. From $\sigma(O_k M_i) = O_k N_i$ follows $\sigma(O_k M_i^{\perp}) = O_k N_i^{\perp}$. Applying induction to $\sigma(O_k M_j^{\perp}) = O_k N_j^{\perp}$, we complete the proof in this case. Now we suppose $m_j \not\equiv 0(rM_j)$ for every $j \geq 2$. There is an element $b \in O_k$ such that $\sigma(x) \equiv by \mod O_k(\prod_{i=1}^n N_i)$. This is equivalent to $a \equiv a'b \mod rO_k$ and $\sigma(m_i) \equiv b n_i \mod r O_k N_i$. Since there is $b' \in O_k$ such that $\sigma(b'x) \equiv$ $y \mod O_k(\perp_{i=1}^m N_i)$, b is a unit modulo rO_k . Hence we have (a, r) = (a', r)=a'' and $r/a'' \equiv 0(p)$ if $r \equiv 0(p)$. From this follows that b is congruent to a rational integer modulo pO_k for each prime p|r. Fix $j \geq 2$ and any prime p such that $p^s || r$, $m_j \in p^s M_j$. Take a basis w_1, w_2, \cdots of N_j so that $n_j=cw_1,\, arepsilon_j\sigma(m_j)=dw_1+ew_2,\, (c,\,d,\,e\in \pmb{Z}). \ \ ext{Then } \sigma(m_j)\equiv bn_j\, ext{mod } rO_kN_j ext{ im-}$ plies $d \equiv \varepsilon_j bc \mod rO_k$ and $e \equiv 0(r)$. $m_j \in p^s M_j$ yields $\varepsilon_j \sigma(m_j) = dw_1 + c$ $ew_2 \in p^s N_j$ since $\varepsilon_j \sigma(M_j) = N_j$. Therefore we have $d \not\equiv 0(p^s)$ and $\varepsilon_j^{-1} \equiv$ $f \bmod p$ for some $f \in \mathbb{Z}$. Then $f^2 \equiv \varepsilon_j^{-1} \overline{\varepsilon_j^{-1}} \equiv 1 \bmod p$ implies $f \equiv \pm 1 \bmod p$ and $\pm \varepsilon_j \equiv 1 \mod pO_k$, and from this follows easily $\varepsilon_j = \pm 1$ and $\sigma(M_j) =$ N_j for each $j \geq 1$. Hence we have $\sigma(QM)$ and QN and $\sigma(O_kM) = O_kN$ imply $\sigma(M) = N$. This completes the proof.

THEOREM. Let M, N be positive Z-lattices and σ an isometry from $O_k M$ on $O_k N$. Assume that k is of E-type or rank $M \leq 42$. Then there exist orthogonal decompositions $M = \coprod_{i=1}^t M_i, N = \coprod_{i=1}^t N_i$ and roots of unity ε_i in k such that $\varepsilon_i \sigma(M_i) = N_i$. Especially M, N are isometric.

Proof. Denote by O_kM O_kM as a Z-module with bilinear form $\operatorname{tr}_{k/Q}(\ ,\)$. Then O_kM is isometric to $O_k\otimes M$. Since O_k or M is of E-type, any minimal vector of $O_k\otimes M$ is of form $\varepsilon\otimes m$ by Lemma 1 in § 1 where ε is a root of unity in E and E is a minimal vector E of E. Hence for a minimal vector E of E where E is a root of unity in E and E is a minimal vector of E of unity in E and E is a minimal vector of E, compairing minimal vectors in $O_k\otimes M$, $O_k\otimes N$. Putting $O_k=E$ is an isometry $O_k=E$ of $O_k=$

§ 3. Let k be an algebraic number field and G a finite subgroup in $GL(n, O_k)$. Denote by L Z^n (row vectors); then G operates on $O_k L = O_k^n$ from the left as product of matrices. Then we call G A-type if there is a direct decomposition $L = \bigoplus_{i=1}^m L_i$ such that for each $g \in G$, there exist roots of unity $\varepsilon_i(g)$ in k and a permutation $s(g) \in S_m$ satisfying $\varepsilon_i(g)gL_i = L_{s(g)i}$ for $i = 1, 2, \dots, m$.

LEMMA. Let k be a Galois extension of Q and assume that the complex conjugate induces an element of the center of G(k/Q). For an indecomposable positive Z-lattice L, O_kL is also indecomposable.

Proof. For a positive Z-lattice M O_kM is a positive definite (at every infinite prime) Hermitian lattice and for such lattices the uniqueness of decompositions to indecomposable ones holds as 105:1 in [7]. Hence this lemma is proved quite similarly to Theorem 4 in [4].

Theorem. Let k be a Galois extension and assume that the complex conjugate induces an element of the center of G(k|Q). Then every G(k|Q)-stable finite subgroup G in $GL(n, O_k)$ is of A-type if k is of E-type or $n \leq 42$.

Proof. Put $A=\sum_{g\in G}{}^t g\overline{g}$ where the bar denotes the complex conjugate; then A is a positive definite symmetric matrix with rational entries. Put $L=Z^n$ (row vectors) and $(x,y)={}^t xA\overline{y}$ for $x,y\in O_kL$. For $g\in G$ we have (gx,gy)=(x,y) and $gO_kL=O_kL$. Hence $g\in G$ induces an isometry of O_kL . Since L is a positive Z-lattice by (,), there is the orthogonal decomposition $L=\coprod_{i=1}^m L_i$ where L_i is indecomposable. By Lemma $O_kL=\coprod_{i=1}^m O_kL_i$ is the decomposition to indecomposable lattices. Hence for $g\in G$ there is a permutation $s\in S_m$ such that $g(O_kL_i)=O_kL_{s(i)}$, $(i=1,\cdots,m)$. Applying Theorem in § 2, there is a root of unity $\varepsilon_i\in O_k$ such that $\varepsilon_igL_i=L_{s(i)}$. This completes the proof.

Remark. By using this theorem, we can show a lemma corresponding to Lemma 2 in [3] without the assumption that the complex conjugate induces an element of the center of G(k/Q).

REFERENCES

- H.-J. Bartels, Zur Galoiskohomologie definiter arithmetischer Gruppen, J. reine angew. Math. 298 (1978), 89-97.
- [2] H.-J. Bartels, Definite arithmetische Gruppen, J. reine angew. Math. 301 (1978), 27-29.
- [3] H.-J. Bartels and Y. Kitaoka, Endliche arithmetische Untergruppen der GL_n , to appear.
- [4] Y. Kitaoka, Scalar extension of quadratic lattices, Nagoya Math. J. 66 (1977), 139-149.
- [5] —, Scalar extension of quadratic lattices II, Nagoya Math. J. 67 (1977), 159-

- [6] Y. Kitaoka, Tensor products of positive definite quadratic forms IV, to appear.
- [7] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, Berlin, 1963.

Department of Mathematics Nagoya University