# FINITE ARITHMETIC SUBGROUPS OF $\boldsymbol{G L}_{n}$, II 

YOSHIYUKI KITAOKA

In [1] $\sim$ [6] the following question was treated: Let $k$ be a totally real Galois extension of the rational number field $\boldsymbol{Q}, O$ the maximal order of $k$ and $G$ a finite subgroup of $G L(n, O)$ which is stable under the operation of $G(k / \boldsymbol{Q})$. Then does $G \subset G L(n, Z)$ hold ?

An aim of this paper is to generalize this. First we introduce a notion of $A$-type for finite subgroups of $G L(n, O)$. Let $k$ be an algebraic number field, $O$ the maximal order of $k$ and $G$ a finite subgroup of $G L(n, O)$. Put $L=Z^{n}$ (row vectors) and operate $G$ on $O L=O^{n}$ as product of matrices. Then we call $G$ of $A$-type if there is a direct decomposition $L=\bigoplus_{i=1}^{m} L_{i}$ such that for each $g \in G$, there exist a root of unity $\varepsilon_{i}(g) \in O$ and a permutation $s(g) \in S_{m}$ satisfying $\varepsilon_{i}(g) g L_{i}=L_{s(g) i}$ for $i=1,2, \cdots, m$.

If $\pm 1$ are all roots of unity in $k$, then we have $G \subset G L(n, Z)$ if $G$ is of $A$-type. Now our question is following:

Let $k$ be a Galois extension of $\boldsymbol{Q}, O$ the maximal order of $k$ and $G$ a finite subgroup of $G L(n, O)$ which is stable under operation of $G(k / Q)$, that is, $g^{\sigma} \in G$ for every $g \in G, \sigma \in G(k / Q)$. Then is $G$ of $A$-type?

It is shown that this is affirmative for abelian fields.
We denote by $O_{k}$ the maximal order of an algebraic number field $k$ and mean by a positive $Z$-lattice a lattice on a positive definite quadratic space over the rational number field $\boldsymbol{Q}$.

Let $k$ be a Galois extension of $\boldsymbol{Q}$ and assume that the complex conjugate induces an element of the center of $G(k / \boldsymbol{Q})$. Then $O_{k}$ becomes a positive $Z$-lattice with quadratic form $\operatorname{tr}_{k / Q}|x|^{2},\left(x \in O_{k}\right)$. In § 1 we prove that this positive $Z$-lattice is of $E$-type in the sense of [5] if $k$ is abelian. For positive $Z$-lattices $L, M, O_{k} L, O_{k} M$ become cannonically positive definite Hermitian forms. In § 2 we show that if $\sigma$ is an isometry from $O_{k} L$ on $O_{k} M$ and $k$ is abelian, then there exist orthogonal decompositions $L=$ $\perp_{i=1}^{t} L_{i}, M=\perp_{i=1}^{t} M_{i}$ and roots of unity $\varepsilon_{i}$ in $k$ such that $\varepsilon_{i} \sigma\left(L_{i}\right)=M_{i}$. As

Received February 6, 1979.
a corollary we can answer positively our question for abelian fields.
§1. Let $k$ be a finite Galois extension of $\boldsymbol{Q}$ and assume that the complex conjugate induces an element of the center of $G(k / Q)$. Then $O_{k}$ becomes a positive $Z$-lattice with quadratic form $\operatorname{tr}_{k / Q}|x|^{2},\left(x \in O_{k}\right)$. This positive lattice is denoted by $\tilde{O}_{k}$. If $\tilde{O}_{k}$ is of $E$-type in the sense of [5], then we say that $k$ is of $E$-type.

Lemma 1. Let $k, \tilde{O}_{k}$ be as above. Then we have $\min _{\substack{x \in 0_{0} \\ x \neq 0}} \operatorname{tr}_{k / Q}|x|^{2}=[k: Q]$ and $\left\{\left.x \in O_{k}\left|\operatorname{tr}_{k / Q}\right| x\right|^{2}=[k: Q]\right\}=\{$ all roots of unity in $k\}$.

Proof. Take any non-zero element $a$ in $O_{k}$. Then

$$
\begin{aligned}
\operatorname{tr}_{k / \boldsymbol{Q}}|\boldsymbol{a}|^{2} & =\sum_{g \in \in \in(k / \boldsymbol{Q})}|g(a)|^{2} \geq[k: \boldsymbol{Q}]\left(\Pi|g(a)|^{2}\right)^{1 /[k: \boldsymbol{Q}]} \\
& =[k: \boldsymbol{Q}]\left(N_{k / \boldsymbol{Q}}|\boldsymbol{a}|^{2}\right)^{1 /[k: \boldsymbol{Q}]} \geq[k: \boldsymbol{Q}] .
\end{aligned}
$$

Suppose $\operatorname{tr}_{k / \boldsymbol{Q}}|a|^{2}=[k: \boldsymbol{Q}]$, then $N_{k / \boldsymbol{Q}}|a|^{2}=1$ and $|g(a)|^{2}=|a|^{2}$ for every $g \in G(k / Q)$. This implies $|g(a)|=1$ for every $g \in G(k / Q)$. Hence $a$ is a root of unity. Conversely a root of unity $a$ in $k$ satisfies $\operatorname{tr}_{k / \boldsymbol{Q}}|a|^{2}=[k: Q]$.

Lemma 2. Let $k_{1}, k_{2}$ be Galois extensions of $\mathbf{Q}$ and assume that the complex conjugate induces an element of the center of $G\left(\boldsymbol{k}_{i} / \boldsymbol{Q}\right),(i=1,2)$. Then we have
(i) if $k_{1} \supset k_{2}$ and $k_{1}$ is of E-type, then $k_{2}$ is also of E-type,
(ii) if the discriminants of $k_{1}, k_{2}$ are relatively prime and $k_{1}, k_{2}$ are of E-type, then the composite field $k_{1} k_{2}$ is also of $E$-type.

Proof. Suppose $k_{1} \supset k_{2}$. If $\tilde{O}_{k_{1}}$ is of $E$-type, then a submodule $O_{k_{2}}$ of $\tilde{O}_{k_{1}}$ is also of $E$-type by virtue of Prop. 2 in [5] since $1 \in O_{k_{2}}$ is a minimal vector of $\tilde{O}_{k_{1}}$. For $x \in O_{k_{2}}$ we have $\operatorname{tr}_{k_{1} / Q}|x|^{2}=\left[k_{1}: k_{2}\right] \operatorname{tr}_{k_{2} / Q}|x|^{2}$. Hence a submodule $O_{k_{2}}$ of $\tilde{O}_{k_{1}}$ is similar to $\tilde{O}_{k_{2}}$ and so $\tilde{O}_{k_{2}}$ is also of $E$-type. Suppose the assumption of (ii), then $O_{k_{1} k_{2}}=O_{k_{1}} \otimes O_{k_{2}}$ and for $a_{1}, b_{1} \in O_{k_{1}}, a_{2}, b_{2} \in O_{k_{2}}$ we have $\operatorname{tr}_{k_{1} k_{2} / Q} a_{1} a_{2} \overline{b_{1} b_{2}}=\operatorname{tr}_{k_{1} / Q} a_{1} \overline{b_{1}} \cdot \operatorname{tr}_{k_{2} / Q} a_{2} \overline{b_{2}}$ where the bar denotes the complex conjugate. Hence $\tilde{O}_{k_{1} k_{2}}$ is isometric to $\tilde{O}_{k_{1}} \otimes \tilde{O}_{k_{2}}$. Prop. 1 in [5] completes the proof.

Lemma 3. Let $p$ be a prime and $L=Z\left[u_{1}, \cdots, u_{p-1}\right]$ a quadratic lattice defined by $\left(u_{i}, u_{j}\right)=-1$ if $i \neq j$ and $\left(u_{i}, u_{i}\right)=p-1$ for every $i$. Then $L$ is a positive $Z$-lattice and of E-type.

Proof. Let $N$ be a positive $Z$-lattice. We use the same notations
$Q(x),(x, y)$ for the quadratic forms and bilinear forms associated to $L, N$ and $L \otimes N$. For a non-zero element $x=\sum_{i=1}^{p-1} u_{i} \otimes w_{i},\left(w_{i} \in N\right)$ in $L \otimes N$ we have

$$
\begin{aligned}
Q(x) & =\sum_{i, j=1}^{p-1}\left(u_{i}, u_{j}\right)\left(w_{i}, w_{j}\right) \\
& =\sum_{i=1}^{p-1} Q\left(w_{i}\right)+\sum_{i<j} Q\left(w_{i}-w_{j}\right) .
\end{aligned}
$$

Hence $L$ is positive definite. For each permutation $s \in S_{p-1}, u_{i} \mapsto u_{s(i)}$ gives an isometry of $L$. Hence we may assume that $w_{1}, \cdots, w_{k} \neq 0, w_{k+1}=\cdots$ $=w_{p-1}=0$ without changing the value of $Q(x)$. Since $w_{1}, \cdots, w_{k}, w_{1}-$ $w_{k+1}, \cdots, w_{1}-w_{p-1}$ are not zero, we get $Q(x) \geq(p-1) m(N)$ where $m(N)$ denotes the minimum of $Q(y),(y \in N, y \neq 0)$. If we take a special lattice $\langle 1\rangle$ as $N$, then $Q(x) \geq p-1$ for any non-zero $x$ in $L$. Hence we have $m(L)=p-1$ and $m(L \otimes N) \geq m(L) m(N)$. Suppose that $Q(x)=(p-1) m(N)$. Then $w_{i}-w_{j},(i<j)$, should be zero if $(i, j) \neq(1, k+1), \cdots,(1, p-1)$, since $(p-1) m(N)=Q(x) \geq \sum_{i=1}^{k} Q\left(w_{i}\right)+\sum_{k=k+1}^{p-1} Q\left(w_{1}-w_{j}\right) \geq(p-1) m(N)$. Hence we have $w_{2}=\cdots=w_{p-1}$. If $w_{2}=0$, then $x=u_{1} \otimes w_{1}$. If $w_{2} \neq 0$, then $k \geq 2$ implies $w_{1}=w_{2}$ and $x=\left(\sum u_{i}\right) \otimes w_{1}$. Therefore by definition $L$ is of $E$-type.

Lemma 4. Let $\zeta$ be a primitive $p^{n}$-th root of unity where $p$ is prime and $n \geq 2$. Then $\boldsymbol{Q}(\zeta)$ is of E-type.

Proof. It is well known that

$$
\operatorname{tr}_{Q(5) / Q} \zeta^{m}= \begin{cases}p^{n-1}(p-1) & \text { if } p^{n} \mid m \\ -p^{n-1} & \text { if } p^{n-1} \| m \\ 0 & \text { if } p^{n-1} \nmid m\end{cases}
$$

As an integral basis of $Z[\zeta]$ we can take $v_{i}=\zeta^{i-1}$, $\left(1 \leq i \leq p^{n-1}(p-1)\right.$ ). Then $\operatorname{tr}_{Q(\zeta) / Q} v_{i} \bar{v}_{j}=\operatorname{tr}_{Q(5) / Q} \zeta^{i-j}$. Let $L=Z\left[u_{1}, \cdots, u_{p-1}\right]$ be a quadratic lattice defined by $\left(u_{i}, u_{i}\right)=p-1,\left(u_{i}, u_{j}\right)=-1$ for $i \neq j$. By Lemma 3, $L$ is positive definte and of $E$-type. We define another positive $Z$-lattice $M=Z\left[w_{1}, \cdots, w_{p^{n-1}}\right]$ by $\left(w_{i}, w_{j}\right)=p^{n-1} \delta_{i j}$. Then $M=\perp\left\langle p^{n-1}\right\rangle$ is also of $E$-type by Prop. 1 in [5]. We determine a basis $\left\{z_{i}\right\}$ of $L \otimes M$ by $z_{i}=$ $u_{b+1} \otimes w_{a}, \quad\left(i=a+b p^{n-1}, \quad 1 \leq a \leq p^{n-1}\right)$. Put $i=a+b p^{n-1}, \quad j=a^{\prime}+$ $b^{\prime} p^{n-1},\left(1 \leq a, a^{\prime} \leq p^{n-1}\right)$, then $\left(z_{i}, z_{j}\right)=\left(u_{b+1}, u_{b^{\prime}+1}\right) \times\left(w_{a}, w_{a^{\prime}}\right)$. Hence we have $\left(z_{i}, z_{i}\right)=p^{n-1}(p-1)$. Suppose $i \neq j$. If $i \equiv j \bmod p^{n-1}$, then $\left(z_{i}, z_{j}\right)=$ $-p^{n-1}$. $i \not \equiv j \bmod p^{n-1}$ implies $\left(z_{i}, z_{j}\right)=0$. Therefore we have $\operatorname{tr}_{\boldsymbol{Q}(5) / \boldsymbol{Q}} v_{i} \bar{v}_{j}$
$=\left(z_{i}, z_{j}\right),\left(1 \leq i, j \leq p^{n-1}(p-1)\right)$. Since $L \otimes M$ is of $E$-type, $\tilde{O}_{Q(5)}$ is also of $E$-type.

Theorem. Abelian extensions of $\boldsymbol{Q}$ are of E-type.
Proof. Any abelian extension of $\boldsymbol{Q}$ is contained in $\boldsymbol{Q}(\zeta)$ for some root of unity $\zeta$. Hence Lemma 2 and 4 complete the proof.
§2. Through this section we denote by $k$ a Galois extension of $\boldsymbol{Q}$ and assume that the complex conjugate induces an element of the center of $G(k / \boldsymbol{Q})$. For a positive $Z$-lattice $L$ the associated bilinear form (, ) can be generalized to $O_{k} L$ as follows:

For $a, b \in O_{k}$ and $x, y \in L,(a x, b y)=a \bar{b}(x, y)$, where $\bar{b}$ is the complex conjugate of $b$. Hereafter $O_{k} L$ means this positive definite Hermitian form.

Lemma. Let $M, N$ be positive $Z$-lattices and $\sigma$ an isometry from $O_{k} M$ on $O_{k} N$. Assume that there exist submodules $\perp_{i=1}^{m} M_{i}$ of $M$ and $\perp_{i=1}^{m} N_{i}$ of $N$ such that $\left[M: \perp_{i=1}^{m} M_{i}\right],\left[N: \perp_{i=1}^{m} N_{i}\right]<\infty$ and $\varepsilon_{i} \sigma\left(M_{i}\right)=N_{i},(1 \leq i \leq m)$, for some root of unity $\varepsilon_{i}$ in $k$. Then there exist orthogonal decompositions $M=\perp_{i=1}^{n} M_{i}^{\prime}, N=\perp_{i=1}^{n} N_{i}^{\prime}$ such that $\varepsilon_{i}^{\prime} \sigma\left(M_{i}^{\prime}\right)=N_{i}^{\prime},(1 \leq i \leq n)$ for some root of unity $\varepsilon_{i}^{\prime}$ in $k$.

Proof. We use induction on rank M. Lemma is obvious in case of rank $M=1$. Suppose rank $M>1$. Since $\varepsilon_{1} \sigma$ is also an isometry from $O_{k} M$ on $O_{k} N$, we may assume $\varepsilon_{1}=1$ without loss of generality. Take any non-zero element $u$ in $M_{1}$, then $\sigma(u)=v \in N_{1}$ and $\sigma\left(O_{k} u^{\perp}\right)=O_{k} v^{\perp}$. Applying induction to $\sigma\left(O_{k} u^{\perp}\right)=O_{k} v^{\perp}$, we may assume that $M_{1}=Z[u], N_{1}=Z[v]$, $\varepsilon_{1}=1, M_{1}^{\perp}=M_{2} \perp \cdots \perp M_{m}, N_{1}^{\perp}=N_{2} \perp \cdots \perp N_{m}$ and that $M_{1}, N_{1}$ are direct summands of $M, N$ respectively. Hence $M / \perp_{i=1}^{m} M_{i}, N / \perp_{i=1}^{m} N_{i}$ are finite cyclic groups and $\left[M: \perp_{i=1}^{m} M_{i}\right]=\left[O M: \perp_{i=1}^{m} O M_{i}\right]^{1 /[k: Q]}=\left[O N: \perp_{i=1}^{m} O N_{i}\right]^{1 /[k: Q]}$ $=\left[N: \perp_{i=1}^{m} N_{i}\right]=r$ (say). Let $x=r^{-1}\left(\mathrm{au}+\sum_{i=2}^{m} m_{i}\right) y=r^{-1}\left(a^{\prime} v+\sum_{i=2}^{m} n_{i}\right)$ be generators of $M / \perp_{i=1}^{m} M_{i}, N / \perp_{i=1}^{m} N_{i}$ respectively where $a, a^{\prime} \in Z, m_{i} \in M_{i}$ and $n_{i} \in N_{i}$. If $p^{s} \| r, p^{s} \mid a,(s \geqq 1)$, then $p^{-s} r x-p^{-s} a u=p^{-s} \sum_{i=2}^{m} m_{i}$ is in $M$. Hence we have $p^{-s} m_{i} \in M_{i}$ since $\perp_{i=2}^{m} M_{i}$ is a direct summand of $M$. This implies $p^{-s} r x \in \perp_{i=1}^{m} M_{i}$ and it contradicts the definition of $x$. Thus $p^{s} \| r,(s \geq 1)$ yields $p^{s} \nmid a$ and similarly $p^{s} \nmid a^{\prime}$. Suppose that $m_{j} \equiv 0\left(r M_{j}\right)$ for some $j \geq 2$; then any element $m$ in $M$ can be written as $m=c x+\sum_{i=1}^{m} m_{i}^{\prime}$, $\left(c \in Z, m_{i}^{\prime} \in M_{i}\right)$ and $m=\left(c\left(x-r^{-1} m_{j}\right)+\sum_{i \neq j} m_{i}^{\prime}\right)+\left(m_{j}^{\prime}+c r^{-1} m_{j}\right)$. Hence
we have $M=M_{j} \perp M_{j}^{\perp}$. From $\sigma\left(O_{k} M_{j}\right)=O_{k} N_{j}$ follows $\sigma\left(O_{k} M_{j}^{\perp}\right)=O_{k} N_{j}^{\perp}$. Applying induction to $\sigma\left(O_{k} M_{j}^{\perp}\right)=O_{k} N_{j}^{\perp}$, we complete the proof in this case. Now we suppose $m_{j} \not \equiv 0\left(r M_{j}\right)$ for every $j \geq 2$. There is an element $b \in O_{k}$ such that $\sigma(x) \equiv b y \bmod O_{k}\left(\perp_{i=1}^{m} N_{i}\right)$. This is equivalent to $a \equiv a^{\prime} b \bmod r O_{k}$ and $\sigma\left(m_{i}\right) \equiv b n_{i} \bmod r O_{k} N_{i}$. Since there is $b^{\prime} \in O_{k}$ such that $\sigma\left(b^{\prime} x\right) \equiv$ $y \bmod O_{k}\left(\perp_{i=1}^{m} N_{i}\right), b$ is a unit modulo $r O_{k}$. Hence we have $(a, r)=\left(a^{\prime}, r\right)$ $=a^{\prime \prime}$ and $r / a^{\prime \prime} \equiv 0(p)$ if $r \equiv 0(p)$. From this follows that $b$ is congruent to a rational integer modulo $p O_{k}$ for each prime $p \mid r$. Fix $j \geq 2$ and any prime $p$ such that $p^{s} \| r, m_{j} \oplus p^{s} M_{j}$. Take a basis $w_{1}, w_{2}, \cdots$ of $N_{j}$ so that $n_{j}=c w_{1}, \varepsilon_{j} \sigma\left(m_{j}\right)=d w_{1}+e w_{2},(c, d, e \in \boldsymbol{Z})$. Then $\sigma\left(m_{j}\right) \equiv b n_{j} \bmod r O_{k} N_{j}$ implies $d \equiv \varepsilon_{j} b c \bmod r O_{k}$ and $e \equiv 0(r) . \quad m_{j} \oplus p^{s} M_{j} \quad$ yields $\quad \varepsilon_{j} \sigma\left(m_{j}\right)=d w_{1}+$ $e w_{2} \oplus p^{s} N_{j}$ since $\varepsilon_{j} \sigma\left(M_{j}\right)=N_{j}$. Therefore we have $d \not \equiv 0\left(p^{s}\right)$ and $\varepsilon_{j}^{-1} \equiv$ $f \bmod p$ for some $f \in Z$. Then $f^{2} \equiv \varepsilon_{j}^{-1} \overline{\varepsilon_{j}^{-1}} \equiv 1 \bmod p \operatorname{implies} f \equiv \pm 1 \bmod p$ and $\pm \varepsilon_{j} \equiv 1 \bmod p O_{k}$, and from this follows easily $\varepsilon_{j}= \pm 1$ and $\sigma\left(M_{j}\right)=$ $N_{j}$ for each $j \geq 1$. Hence we have $\sigma(\boldsymbol{Q} M)$ and $\boldsymbol{Q N}$ and $\sigma\left(O_{k} M\right)=O_{k} N$ imply $\sigma(M)=N$. This completes the proof.

Theorem. Let $M$, $N$ be positive $Z$-lattices and $\sigma$ an isometry from $O_{k} M$ on $O_{k} N$. Assume that $k$ is of E-type or rank $M \leq 42$. Then there exist orthogonal decompositions $M=\perp_{i=1}^{t} M_{i}, N=\perp_{i=1}^{t} N_{i}$ and roots of unity $\varepsilon_{i}$ in $k$ such that $\varepsilon_{i} \sigma\left(M_{i}\right)=N_{i}$. Especially $M, N$ are isometric.

Proof. Denote by $\widetilde{O_{k} M} O_{k} M$ as a $Z$-module with bilinear form $\operatorname{tr}_{k / Q}($, ). Then $\widetilde{O_{k} M}$ is isometric to $\tilde{O}_{k} \otimes M$. Since $\tilde{O}_{k}$ or $M$ is of $E$-type, any minimal vector of $\tilde{O}_{k} \otimes M$ is of form $\varepsilon \otimes m$ by Lemma 1 in $\S 1$ where $\varepsilon$ is a root of unity in $k$ and $m$ is a minimal vector $m$ of $M$. Hence for a minimal vector $m$ of $M$ we have $\sigma(m)=\varepsilon n$ where $\varepsilon$ is a root of unity in $k$ and $n$ is a minimal vector of $N$, compairing minimal vectors in $\tilde{O}_{k} \otimes M$, $\tilde{O}_{k} \otimes N$. Putting $\sigma^{\prime}=\varepsilon^{-1} \sigma$, we get an isometry $\sigma^{\prime}$ from $O_{k} M$ on $O_{k} N$ such that $\sigma^{\prime}(m)=n$ and $\sigma^{\prime}\left(O_{k} m^{\perp}\right)=O_{k} n^{\perp}$. Applying induction on rank $M$ to $\sigma^{\prime}\left(O_{k} m^{\perp}\right)=O_{k} n^{\perp}$, we complete the proof by virtue of Lemma.
§3. Let $k$ be an algebraic number field and $G$ a finite subgroup in $G L\left(n, O_{k}\right)$. Denote by $L Z^{n}$ (row vectors); then $G$ operates on $O_{k} L=O_{k}^{n}$ from the left as product of matrices. Then we call $G A$-type if there is a direct decomposition $L=\oplus_{i=1}^{m} L_{i}$ such that for each $g \in G$, there exist roots of unity $\varepsilon_{i}(g)$ in $k$ and a permutation $s(g) \in S_{m}$ satisfying $\varepsilon_{i}(g) g L_{i}=L_{s(g) i}$ for $i=1,2, \cdots, m$.

Lemma. Let $k$ be a Galois extension of $\boldsymbol{Q}$ and assume that the complex conjugate induces an element of the center of $G(k / Q)$. For an indecomposable positive $Z$-lattice $L, O_{k} L$ is also indecomposable.

Proof. For a positive $Z$-lattice $M O_{k} M$ is a positive definite (at every infinite prime) Hermitian lattice and for such lattices the uniqueness of decompositions to indecomposable ones holds as 105:1 in [7]. Hence this lemma is proved quite similarly to Theorem 4 in [4].

Theorem. Let $k$ be a Galois extension and assume that the complex conjugate induces an element of the center of $G(k / \boldsymbol{Q})$. Then every $G(k / Q)-$ stable finite subgroup $G$ in $G L\left(n, O_{k}\right)$ is of A-type if $k$ is of $E$-type or $n \leq 42$.

Proof. Put $A=\sum_{g \in G}{ }^{t} g \bar{g}$ where the bar denotes the complex conjugate; then $A$ is a positive definite symmetric matrix with rational entries. Put $L=Z^{n}$ (row vectors) and $(x, y)={ }^{t} x A \bar{y}$ for $x, y \in O_{k} L$. For $g \in G$ we have $(g x, g y)=(x, y)$ and $g O_{k} L=O_{k} L$. Hence $g \in G$ induces an isometry of $O_{k} L$. Since $L$ is a positive $Z$-lattice by (, ), there is the orthogonal decomposition $L=\perp_{i=1}^{m} L_{i}$ where $L_{i}$ is indecomposable. By Lemma $O_{k} L=\perp_{i=1}^{m} O_{k} L_{i}$ is the decomposition to indecomposable lattices. Hence for $g \in G$ there is a permutation $s \in S_{m}$ such that $g\left(O_{k} L_{i}\right)=O_{k} L_{s(i)},(i=1, \cdots, m)$. Applying Theorem in $\S 2$, there is a root of unity $\varepsilon_{i} \in O_{k}$ such that $\varepsilon_{i} g L_{i}=L_{s(i)}$. This completes the proof.

Remark. By using this theorem, we can show a lemma corresponding to Lemma 2 in [3] without the assumption that the complex conjugate induces an element of the center of $G(k / \boldsymbol{Q})$.

## References

[1] H.-J. Bartels, Zur Galoiskohomologie definiter arithmetischer Gruppen, J. reine angew. Math. 298 (1978), 89-97.
[ 2 ] H.-J. Bartels, Definite arithmetische Gruppen, J. reine angew. Math. 301 (1978), 27-29.
[ 3 ] H.-J. Bartels and Y. Kitaoka, Endliche arithmetische Untergruppen der $G L_{n}$, to appear.
[4] Y. Kitaoka, Scalar extension of quadratic lattices, Nagoya Math. J. 66 (1977), 139-149.
[ 5 ] - , Scalar extension of quadratic lattices II, Nagoya Math. J. 67 (1977), 159164.
[6] Y. Kitaoka, Tensor products of positive definite quadratic forms IV, to appear.
[7] O. T. O’Meara, Introduction to quadratic forms, Springer-Verlag, Berlin, 1963.

Department of Mathematics
Nagoya University

