MATRICES OVER ORTHOMODULAR LATTICES
by J. H. BEVIS

(Received 27 December, 1967)

In this paper elementary properties are established for matrices whose coordinates are
elements of a lattice L. In particular, many of the results of Luce [4] are extended to the case
where L is an orthomodular lattice, a lattice with an orthocomplementation denoted by ’ in
which a £b=av(a’'Ab)=>b. Originally, these were called orthocomplemented weakly
modular lattices, Foulis [2]. In Theorem 1 a characterization is given of the nucleus with
respect to matrix multiplication, which is in general nonassociative. Matrices with
A~! = transpose (4) are characterized in Lemma 8. Theorems 3 and 4 respectively, give
partial characterizations of zero divisors and inverses.

1. o, (L) and o7 ,(L) will denote, respectively, the set of all m x n matrices and the set of
all n x n matrices whose coordinates are elements of L. The argument L will be suppressed
when it is not needed. Except for L, capital letters denote matrices. A;; will denote the
(i, j)th element of the matrix 4. For matrices of suitable size A v B, A AB, and, if L has a
complementation, A’ are defined coordinatewise. 4 < B<>A4;; < B;; for all i,j. For con-
formal matrices define the product by (4B);; = V4 AB,;). We assume that L has a
least element o and a greatest element 1. Define 0, Z, and E to be the matrices with 0;; = o,
Iij=1, E;=ofori#j, and E; = 1, the sizes of these and other matrices being determined
by the context, if not otherwise restricted. &7,,,(L) is lattice isomorphic to the direct product
of L with itself mn times; hence, if L is orthomodular, then so is &,,,(L). The proof of the
first lemma is elementary and is therefore omitted.

LemMA 1. For matrices of appropriate size,

(i) BAVCAS (BvC)A, ABvACS< A(BvC), ABAC)< ABAAC, (BAC)A < BAACA,
(i) BEC=>AB< AC and BA<CA,
(iii) OAA=04=A0=0, EA=AE=A, ASAISILASIASL

In an orthocomplemented lattice we say that a commutes with b and write a%b if
(@avbd)ab=anb. The centre of L is defined as (L) = {aeLla‘gb for all beL}. Many
of the results of Foulis [3] concerning the relation € will be used without making specific
references. In particular, great use will be made of the Foulis—Holland theorem which states
that, if L is an orthomodular lattice and two of the three relations a¥b, a€c, b%c hold, then
(avbyac=(anc)v(bac) and (aab)yve=(avec)a(bvc). If L is orthocomplemented,
then so is &,,,(L), and in this case we have AGB <> A4;;¥B;; for all i, j and

C(A ) = {AEHA | 41;€€(L)}.

These concepts should not be confused with matrix multiplication commuting or the multi-
plicative centre of «/,. For the remainder of this section we assume that L is orthomodular.
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LEMMA 2. Given A in oy A€C(A ) if and only if any one (and thus all) of the following
hold for all B, C in o ,,, where p or q is chosen to make the multiplication conformal:

BAv CA=(BvC)4, BCvAC = (BvA)C, ABvAC = A(Bv C), BAv BC = B(A v C).

Proof. If Ae¥(«,,) one may easily check the identities. Conversely, choose B to have
o entries except for B;=5b and C to have o entries except for C,;=05". Then
BA v CA = (Bv C)A implies that (bAA;;) v(b' AA4;)) = Aj;. Thus 4;;€e4(L) for all i and j.
The other cases are similar.

COROLLARY. Matrix multiplication is distributive over joins in o/ (L) if and only if L is
Boolean.

Proof. This follows from the lemma, since (L) = L <> L is Boolean.

A collection S = {s,|x€#, an indexing set} with each s, in L, is said to have property 2
on 4, if whenever xet, x AV, x, = V,(x Ax,), where x,€L(o, 5,) = {seL|s < s,}. Note
that, if s, = o for all but possibly one a or if L(o, 5,) = ¢(L) for all « and either .# is finite or L
is complete, then S has property £ on L. If S has property 2 on L then L(o, s, A 5p) is distri-
butive for each pair «, § of distinct indices. We say that a matrix 4 in &/, is right A -distri-
butive if (BAC)A = BAACA for all B,Cesf,,. For conformal matrices (4, B, C) is an
associative triple if A(BC) =(AB)C. By elementary calculations, (4, B, C) is an associative
triple if the entries in two of the three matrices are in €(L).

T. S. Blyth {1] has characterized A -distributive matrices over a Boolean lattice. Lemma
3 and its corollary are generalizations of one of his results.

LeMMA 3. Given A in &,,(L), for eachj=1,...,n, define
./llj = {Vnglx;GL(O, AU)’ i= 1, .o .,n}.

A is right A -distributive if and only if A;; A A,; = o for all i,], k with i # k, and for each j the
Jth column of A satisfies 9 on H ;.

Proof. For sufficiency,
(BAA CA)ij = [Vk(Bik A Akj)] A [Vh(Cih A Ahj)] 1)
= Vk[Bik AAgA Vi(CuA Ahj)] )
=V, Vh(Bik AAiACy A Ahj) = Vk(Bik ACyA Akj) = [(B A C)A]lj . (3)

Conversely, set B= E and C = E’; then 0 = (EAE')A = AAE'A implies that A;;A4,; =0
for all 7,j,k with i # k. If B is chosen so that the join over k has only one term, we obtain
(2) = (3) which implies that, for each j, the jth column of 4 satisfies 2 on | J; L(o, 4,;). With
this we obtain (1) = (2) for any B in &/, and the necessity follows.

COROLLARY. If B< A and A is right A-distributive, then B is right A-distributive.
Similar results are obtained for left A -distributive matrices. For the rest of Section 1, take
nz2,
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LEMMA 4, Let A,B,Ce,.
(i) (4, B, C) is an associative triple for all B and C if and only if Ae¥(,) and each row of
A satisfies D on L.
(i1) (B, C, A) is an associative triple for all B and C if and only if Ae¥€(H,) and each
column of A satisfies 9 on L,
(iii) (B, 4, C) is an associative triple for all B and C if and only if each row and column of A
satisfies @ on L.

Proof. For necessity in (i), let B have 1’s in the jth row and o’s elsewhere. By examining
the (i, j)th element of the equation (AB)C = A(BC), we obtain V,(Cy, AA4;;) = A4;; A V, Cp.
Thus C may be chosen to imply that 4;;€ ¢(L) for any i, j. Now, with 4 in ¢(«,), choose C
to have o’s except in the hth row, to obtain V(A A By A Cy) = Cp; A V(A A By). This
holds for all B,, and C,; if and only if the ith row of A4 satisfies 2 on L. For sufficiency, take
the join with respect to /4 of both sides of the above equation. The other parts of the lemma
are obtained in a similar manner.

The nucleus of o, is {4 e&l,,[any triple containing A is associative}. If one defines a
scalar meet by (x A A);; = x A A;; for x in L, it may be shown by standard methods that
AB = BAforall Bin o, if and only if there is an a in L such that 4 = a A E. The multiplicative
centre of &, is defined as the set of all 4 in the nucleus of &/, such that 4B = BA for all Be«/,.
Since each row or column of a A E has only one nonzero element, the rows and columns of
a A E satisfy @ on L. We have obtained

THEOREM 1. The nucleus of o, is {Ae¥(,) | rows and columns of A satisfy 2 on L}.
The multiplicative centre of o/, is {anE | aeb(L)}.

COROLLARY. Matrix multiplication is associative in o (L) if and only if L is Boolean.

2. The transpose of a matrix A4 is defined to be A* where (4°),; = A;. It follows that
(AvBY=A'vB', (AAB) =A'AB, A" = A, (AB) = B'A’, for A and B of suitable size,
and, if L has a complementation, (4*)’ = (4’)*. If Lis orthocomplemented, for square matrices
we say that A is symmetric if A’1A' (ALt B<> A < B’; in this case 4 and B are said to be
orthogonal), and A is skew-symmetric if 41 A'.

LEMMA 5. If Aesf (L) with L orthocomplemented, then A’ LA' <> A = A'.
Proof. By taking the transpose of A" £ A, we obtain 4 < A'. Hence
A LA <AL A<>A= 4"

THEOREM 2. For A in o, (L) with L orthomodular, A has an orthogonal decomposition into
a symmetric and skew-symmetric matrix (i.e., A = S v Q with S symmetric, Q skew-symmetric,
and S1Q) if and only if AGA". If the decomposition exists, it is unique.

Proof. Suppose that S and Q exist such that A=SvQ, S$1Q, S'15 and 0. Q. Thus
AnA' =S vOASVvE)=Sv(@AaQ@)=Sand

ANA" =(SVO)A(S'AQ)=0AS AQ" =0.

Hence, if the decomposition exists, it is unique. Now 4 = (4 A 4") v (4 A A") implies that
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AGA. AGA then A= (AANAYVAANAANA S A VA =(AANAY, (ArNAY=A"AA
and AAA"SAvAY=(A"AA)". Thus S=AAA4", and Q=A4AA" is the required
decomposition.

For A, B in & (L) with L orthocomplemented the following results are easily obtained.
If 4 and B are skew-symmetric, then 4 A B is skew-symmetric. For 4 and B symmetric we
obtain (i) 4 v B, AA B, A' and 4’ are symmetric, (ii) AB is symmetric if and only if AB = BA.

3. A is called row (column) consistent if AI = I (IA = I), where the I's may not have the
same size. The proofs of the lemmas of this section are elementary and are therefore omitted.

LEMMA 6. The following are equivalent whenever A is of appropriate size:
(i) A is row (column) consistent.

(i) Vidy =1 foralli (V,A,; =1 for allj).

(i) E< AA' (E £ A'A).

LEMMA 7. If AB is row (column) consistent, then A is row consistent (B is column consistent).

COROLLARY. If A has a left (right) inverse, then A is column (row) consistent and its left
(right) inverse is row (column) consistent.

Let L be the orthocomplemented modular lattice of subspaces of Euclidean 2-space. Let
A,Be st (L) be such that 4;;, B,; # o,1. If all of the elements of A and B are distinct, then A
and B are both row and column consistent, but AB=0. Thus the converse of Lemma 7
that Luce [4] proved for L Boolean, does not obtain in general. For L Boolean, Rutherford
[5] has shown that, for square matrices, A has a one sided inverse <>4 has a two sided inverse
<A~ 1= A*; examples similar to the one above show that, if 4¢%(+,), then A may have
several one or two sided inverses. However the next lemma, which is due to Luce [4], holds
for arbitrary lattices with o and 1.

LemMA 8. 4A' = E(A'A = E)if and only if A is row (column) consistent and Ay A A = o
(Ayj A Ay = 0) for all i, j, k with i # j.

4. In this section we assume that L is orthomodular and that Be¥(«#,,). Conditions
are given for finding a matrix X satisfying X4 < B or X4 = B. The results can then be applied
to the matrix equation X4 = B. Dual statements are given for results concerning AX < B,
AX 2 B, and AX = B.

LEMMA 9. (i) If X A(B'A") =0, then XA £ B. If (X, A, B") is an associative triple, then
XA S B=XA(B'A")=0. (Note that A in sf,, implies that B'A* and X are in o/,,.) (ii) If
XA(A'B)=0,then AX £ B. If(B", A, X)isanassociative triple, then AX < B=> X A(A'B')=0.
(Note that A in of,,, implies that A'B" and X are in o/ ,,.)

Progf. By examining the (i, /)th element of the matrix product, one notes that
XYSE <« XAY =0«YXZE, for X,Y' in o,,.
Now

XA(BA)Y=0=>X(AB")SE' =X AA;jAB;;=0 forall ij,k.
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Since Be¥#(o,,,), we obtain X; AA4,; < B;; and thus (XA);; < B;;. Conversely, XA < B
implies that o= X; Ad,; ABj; = V(X /\AkJ ABj)) = (XA);; A(B")j;, the last step being
accomplished since B;;e@(L). Takmg the join over j, we obtain E’' 2 (XA)B" = X(AB").
The result follows from the remark at the beginning of the proof.

THEOREM 3. If A is not row (column) consistent, then A is a right (left) divisor of zero. If
Aeb(A ) (AeC(A ) or if Aesd, (Aedd ), then A is a right (left) divisor of zero if and
only if A is not row (column) consistent.

Proof. Set B=0in &, and B" =1in &,,. 1If A is not row consistent, then A7 < Iin
A e Thus 0 < X = (A1) =>XA(AI)‘ 0=>XA=0=4 is a right zero divisor. Now
Vi VX A 4 = V(X A V, 4,,) and (X, 4, ) is an associative triple, ifn = 1 orif 4 € €( ).
Hence in either case XA = 0 implies that X A (4) = 0. But, if 4 is row consistent, (A1) =1
ins/,,and X =XAI=0.

LEMMA 10. If there is a matrix C such that C £ A and B £ IC (B £ CI), then any X such
that X =2 BC' (X = C'B) is a solution of XA = B (AX = B).

Proof. 1f A,Ceo,,, then X,Ieof,,,. Withjk=1,...,n,
[(BCHA); = Vh[Ahj A Vk(Bik ACI = Vh(Ahj AB;; A C)) = B;; AIC);; = B;;.
COROLLARY. If X 2 IC' (X = C'I), where C £ A and C is column (row) consistent, then
XA=I(AX=1).
Proof. Set B=1Iin Lemma 10.
LemMMA 11. XA 2 E (AX 2 E) has a solution if and only if A is column (row) consistent.
Proof. The result follows from Lemmas 6 and 7.

THEOREM 4. For square matrices, if C' S X S(E'AY) (C*'S XS (A'E")"), where CZ A
and C is column (row) consistent, then X is a left (right) inverse of A.

Proof. The result is obtained by letting B = E in Lemmas 9 and 10,
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