
MATRICES OVER ORTHOMODULAR LATTICES
by J. H. BEVIS

(Received 27 December, 1967)

In this paper elementary properties are established for matrices whose coordinates are
elements of a lattice L. In particular, many of the results of Luce [4] are extended to the case
where L is an orthomodular lattice, a lattice with an orthocomplementation denoted by ' in
which a £b=>av(a' Ab) = b. Originally, these were called orthocomplemented weakly
modular lattices, Foulis [2]. In Theorem 1 a characterization is given of the nucleus with
respect to matrix multiplication, which is in general nonassociative. Matrices with
A'1 = transpose (A) are characterized in Lemma 8. Theorems 3 and 4 respectively, give
partial characterizations of zero divisors and inverses.

1. sfmn(L) and sfn(L) will denote, respectively, the set of all m x n matrices and the set of
all n x n matrices whose coordinates are elements of L. The argument L will be suppressed
when it is not needed. Except for L, capital letters denote matrices. AtJ will denote the
(i,j)th element of the matrix A. For matrices of suitable size As/ B, A AB, and, if L has a
complementation, A' are defined coordinatewise. A^BoAu^ Btj for all i,j. For con-
formal matrices define the product by (AB)i} = \/k(Aik ABkj). We assume that L has a
least element o and a greatest element 1. Define 0, /, and E to be the matrices with 0,y = o,
Iij = I, Eij = o for H=j, and Eu = 1, the sizes of these and other matrices being determined
by the context, if not otherwise restricted. sfmn(L) is lattice isomorphic to the direct product
of L with itself mn times; hence, if L is orthomodular, then so is s£mn(L). The proof of the
first lemma is elementary and is therefore omitted.

LEMMA 1. For matrices of appropriate size,

(i) BA v CA ^ (BvQA, ABvACg. A(B v C), A{B A C) ^ AB A AC, (B A C)A ^BAA CA,
(ii) B ^ C=>AB S AC and BA g CA,
(iii) 0 A A = 0/i = .40 = 0, EA = AE = A, A ^ AI ^ /, A g I A g /.

In an orthocomplemented lattice we say that a commutes with b and write aMb if
(avb')Ab = aAb. The centre of L is defined as #(L) = {asL|a^b for all beL}. Many
of the results of Foulis [3] concerning the relation %> will be used without making specific
references. In particular, great use will be made of the Foulis-Holland theorem which states
that, if L is an orthomodular lattice and two of the three relations a^b, a%c, b^c hold, then
(a v b) A c = (a A C) V (b A C) and (a A b) v c = (a v c) A (b v c). If L is orthocomplemented,
then so is stmn{L), and in this case we have A^B^A^B^ for all i,j and

These concepts should not be confused with matrix multiplication commuting or the multi-
plicative centre of s4n. For the remainder of this section we assume that L is orthomodular.
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LEMMA 2. Given A in s/mn, /4 e#(j /m n) if and only if any one (and thus all) of the following
hold for all B, C in sipq, where p or q is chosen to make the multiplication conformal:

BAMCA = (B\tC)A, BCVAC = (BVA)C, ABVAC = A(BVC), BAVBC = B(A VC).

Proof. If A e^(s/mn) one may easily check the identities. Conversely, choose B to have
o entries except for Bit = b and C to have o entries except for Cu = b'. Then
BAvCA = (Bv C)A implies that (b A A (J) v (b' A Ati) = A ,j. Thus A,j e #(£) for all i and j .
The other cases are similar.

COROLLARY. Matrix multiplication is distributive over joins in s/n(L) if and only if L is
Boolean.

Proof. This follows from the lemma, since #(£,) = LoL is Boolean.
A collection S = {sa \ a.sJ, an indexing set} with each sx in L, is said to have property 3i

on Jt, if whenever xeJt, x A\fxxx = Va(x Axa) , where xaeL(o, sx) = {seL|s ^ sa}. Note
that, if sa = o for all but possibly one a. or if L(o, sa) c 'g'(L) for all a and either J is finite or L
is complete, then S has property £2 on L. If S has property ® o n £ then L(o, sa A J^) is distri-
butive for each pair a, /? of distinct indices. We say that a matrix A in $$mn is right A -distri-
butive if (5 A C)A = BAACA for all B, C£$tpm. For conformal matrices (A, B, C) is an
associative triple if A(BC) — (AB)C. By elementary calculations, (A, B, C) is an associative
triple if the entries in two of the three matrices are in <tf(L).

T. S. Blyth [1] has characterized A-distributive matrices over a Boolean lattice. Lemma
3 and its corollary are generalizations of one of his results.

LEMMA 3. Given A in sfmn(L), for each j = \,...,n, define

Jlj = {Vf xt | x,eL(o, A,j), i = 1, . . . .«}.

A is right A-distributive if and only if AtiAAkj = o for all i,j,k with i ^ k, and for each j the
jth column of A satisfies 3) on Jt j .

Proof. For sufficiency,

(BA A CA)U = [Vk(Bik A AkJ)-] A [V»(Ctt A Ahj)-] (1)

= \/k[BikAAkJAVh(CihAAhjy] (2)

= V, Vh(Bik A AkJ A Cih A Ahj) = \/k(Bik A Cik A AkJ) = [(B A C M ] y . (3)

Conversely, set B = E and C = E'; then 0 = (EAE')A = AAE'A implies that Ai3 AAkJ = o
for all i,j, k with / ^ k. If B is chosen so that the join over k has only one term, we obtain
(2) = (3) which implies that, for eachy, theyth column of A satisfies Q> on \){L(o, Ai}). With
this we obtain (1) = (2) for any B in s/pm and the necessity follows.

COROLLARY. IfB^LA and A is right A-distributive, then B is right A-distributive.
Similar results are obtained for left A -distributive matrices. For the rest of Section 1, take
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LEMMA 4. Let A,B,Cesfn.
(i) (A, B, C) is an associative triple for all B and C if and only if A e ̂ (s^n) and each row of

A satisfies 3) on L.
(ii) (B, C, A) is an associative triple for all B and C if and only if Ae t?(jfn) and each

column of A satisfies 3) on L.
(iii) (B, A, C) is an associative triple for all B and C if and only if each row and column of A

satisfies 3) on L.

Proof. For necessity in (i), let B have l's in theyth row and o's elsewhere. By examining
the (i,j)th element of the equation (AB)C = A(BC), we obtain \/h(Chk A Ai}) - Au A Vh Chk.
Thus C may be chosen to imply that A^^iTO) for any i,j. Now, with A in <&(£#„), choose C
to have o's except in the hth row, to obtain \Jk(A ik A Bkh A ChJ) = ChJ A \lk(Aik ABkh). This
holds for all Bkh and ChJ if and only if the ith row of A satisfies 3> on L. For sufficiency, take
the join with respect to h of both sides of the above equation. The other parts of the lemma
are obtained in a similar manner.

The nucleus of $4n is {Aes?n\any triple containing A is associative}. If one defines a
scalar meet by (x AA)^ = x KA^ for x in L, it may be shown by standard methods that
AB = BA for all B in s4n if and only if there is an a in L such that A = ai\E. The multiplicative
centre ofs/n is defined as the set of all A in the nucleus of s/n such that AB = BA for all Bt$4n.
Since each row or column of a A £ has only one nonzero element, the rows and columns of
a AE satisfy 3) on L. We have obtained

THEOREM 1. The nucleus of s/n is {Ae^(s/n)\rows and columns of A satisfy 3) on L}.
The multiplicative centre ofs/n is {a AE\aec£(L)).

COROLLARY. Matrix multiplication is associative in sin{L) if and only if L is Boolean.

2. The transpose of a matrix A is defined to be A' where (/4%- = A}i. It follows that
{A v BJ = A'v B', (A A B)' = A' A B', A" = A, (AB)' = B'A', for A and B of suitable size,
and, if £ has a complementation, (A1)' — (A')'. If L is orthocomplemented, for square matrices
we say that A is symmetric if A'±A' (AiBoAf^B1; in this case A and B are said to be
orthogonal), and A is skew-symmetric if A i A'.

LEMMA 5. If Aes/n(L) with L orthocomplemented, then A'±A'oA = A'.

Proof. By taking the transpose of A' ^ A, we obtain A ^ A'. Hence

THEOREM 2. For A in sfn(L) with L orthomodular, A has an orthogonal decomposition into
a symmetric and skew-symmetric matrix (i.e., A = S v Q with S symmetric, Q skew-symmetric,
and SiQ) if and only if At?A'. If the decomposition exists, it is unique.

Proof. Suppose that S and Q exist such that A = S v Q, Si Q, S' i S' and Qi Q'. Thus

= (SVQ)A (S' A Q") = QAS'AQ" = Q.

Hence, if the decomposition exists, it is unique. Now A— (A AAX)M(A A A") implies that
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AVA1. If AW A', then A = (A A A1) v {A A A"), AAA'^A'VA' = (A A A")', (A AA')'=A' A A
and A A A" ^ A v A" = {A" A A)". Thus S = A A A', and Q = A A A" is the required
decomposition.

For A,B in sfn(L) with L orthocomplemented the following results are easily obtained.
If A and B are skew-symmetric, then A A B is skew-symmetric. For A and B symmetric we
obtain (i) A v B, A A B, A' and A' are symmetric, (ii) AB is symmetric if and only if AB = BA.

3. A is called row (column) consistent if AI= I (IA = I), where the / 's may not have the
same size. The proofs of the lemmas of this section are elementary and are therefore omitted.

LEMMA 6. The following are equivalent whenever A is of appropriate size:
(i) A is row (column) consistent.

(ii) V, Aik=\ for all i (V* AkJ=\ for allj).
(iii) E ^ AA' (E ^ A'A).

LEMMA 7. If AB is row (column) consistent, then A is row consistent (B is column consistent).

COROLLARY. If A has a left (right) inverse, then A is column (row) consistent and its left
(right) inverse is row (column) consistent.

Let L be the orthocomplemented modular lattice of subspaces of Euclidean 2-space. Let
A,Besdn(L) be such that A xi, Btj # o, 1. If all of the elements of A and B are distinct, then A
and B are both row and column consistent, but AB = 0. Thus the converse of Lemma 7
that Luce [4] proved for L Boolean, does not obtain in general. For L Boolean, Rutherford
[5] has shown that, for square matrices, A has a one sided inverse oA has a two sided inverse
oA~l = A'; examples similar to the one above show that, if A^^(s/n), then A may have
several one or two sided inverses. However the next lemma, which is due to Luce [4], holds
for arbitrary lattices with o and 1.

LEMMA 8. A A' = E (A'A = E) if and only if A is row (column) consistent and Aik A Ajk = o
(Akj AAki = o)for all i,j,k with i j= j .

4. In this section we assume that L is orthomodular and that Be<^(s^mn). Conditions
are given for finding a matrix X satisfying XA ^ B or XA ^ B. The results can then be applied
to the matrix equation XA = B. Dual statements are given for results concerning AX ^ B,

LEMMA 9. (i) IfXA(B'A') = 0, then XA ^ B. If(X,A,B") is an associative triple, then
XA-^B^XA(B'A') = 0. (Note that A in sfpn implies that B'A' and Xare in si/mp.) (ii) / /
X A (A'B1) = 0, then AX ^ B. If(B", A, X) is an associative triple, then AX£B=>XA (A'B1)=0.
(Note that A in stfmp implies that A'B' and X are in s/pn.)

Proof. By examining the (i, i)th element of the matrix product, one notes that

E', for X, Y' in stmp.

Now

X A (B'A") = 0 => X(AB") £ E' => Xik A Akj A B'U = o for all i,j, k.
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Since Be<&(sfmn), we obtain Xik A AkJ ^ Btj and thus (XA)ij^BiJ. Conversely, XA ^ B
implies that o = Xik A AkJ A B'i} = \Jk(Xtk A y4tj. A B\j) = (A^),,- A (5')},, the last step being
accomplished since B^eWL). Taking the join over j , we obtain E' ^ (XA)B" = A"^-8")-
The result follows from the remark at the beginning of the proof.

THEOREM 3. If A is not row (column) consistent, then A is a right (left) divisor of zero. If
Ae^is/pn) (Aet>(s/mp)) or if Aes/pl (Aes/lp), then A is a right (left) divisor of zero if and
only if A is not row (column) consistent.

Proof. Set B = 0 in s/mn and B" = I in s/nm. If A is not row consistent, then AI < I in
s/pm. Thus 0<X^(AI)"=>XA(AI)' = 0^>XA = 0=>A is a right zero divisor. Now
V \/p

\/k(Xik AAkh) = \/k(Xik A Vft Akh) and (X, A,I)is an associative triple, if n = 1 or if A e
Hence in either case XA = 0 implies that X A (AI)' = 0. But, if A is row consistent, (AI)' = /
in s/mp and X= XAI=0.

LEMMA 10. If there is a matrix C such that C £ A and B ^ IC (B g CI), then any X such
that X ^ BC (X ^ C'B) is a solution ofXA^B (AX ̂  B).

Proof. If A, Ces/pn, then X, Iesfmp. With j,k=l,...,n,

[(BOA],j = Vh[AhJ A V»(*tt A CM)] £ V*04w A 5,, A ChJ) = Sy A (/C)u = Bu.

COROLLARY. If X^ IC (X^ CI), where C ̂  A and C is column (row) consistent, then
XA = I(AX=I).

Proof. Set B = I in Lemma 10.

LEMMA 11. XA ^ £ (AX ̂  E) has a solution if and only if A is column (row) consistent.

Proof. The result follows from Lemmas 6 and 7.

THEOREM 4. For square matrices, ifC'^X^ (E'A')' (C'^X^ (A'E1)'), where C^A
and C is column (row) consistent, then X is a left (right) inverse of A.

Proof. The result is obtained by letting B = E in Lemmas 9 and 10.
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