MATRICES OVER ORTHOMODULAR LATTICES

by J. H. BEVIS

(Received 27 December, 1967)
In this paper elementary properties are established for matrices whose coordinates are elements of a lattice L. In particular, many of the results of Luce [4] are extended to the case where L is an orthomodular lattice, a lattice with an orthocomplementation denoted by ' in which $a \leqq b \Rightarrow a \vee\left(a^{\prime} \wedge b\right)=b$. Originally, these were called orthocomplemented weakly modular lattices, Foulis [2]. In Theorem 1 a characterization is given of the nucleus with respect to matrix multiplication, which is in general nonassociative. Matrices with $A^{-1}=\operatorname{transpose}(A)$ are characterized in Lemma 8. Theorems 3 and 4 respectively, give partial characterizations of zero divisors and inverses.

1. $\mathscr{A}_{m n}(L)$ and $\mathscr{A}_{n}(L)$ will denote, respectively, the set of all $m \times n$ matrices and the set of all $n \times n$ matrices whose coordinates are elements of L. The argument L will be suppressed when it is not needed. Except for L, capital letters denote matrices. $A_{i j}$ will denote the (i, j)th element of the matrix A. For matrices of suitable size $A \vee B, A \wedge B$, and, if L has a complementation, A^{\prime} are defined coordinatewise. $A \leqq B \Leftrightarrow A_{i j} \leqq B_{i j}$ for all i, j. For conformal matrices define the product by $(A B)_{i j}=\mathrm{V}_{k}\left(A_{i k} \wedge B_{k j}\right)$. We assume that L has a least element o and a greatest element 1. Define $0, I$, and E to be the matrices with $0_{i j}=0$, $I_{i j}=1, E_{i j}=o$ for $i \neq j$, and $E_{i i}=1$, the sizes of these and other matrices being determined by the context, if not otherwise restricted. $\mathscr{A}_{m n}(L)$ is lattice isomorphic to the direct product of L with itself $m n$ times; hence, if L is orthomodular, then so is $\mathscr{A}_{m n}(L)$. The proof of the first lemma is elementary and is therefore omitted.

Lemma 1. For matrices of appropriate size,
(i) $B A \vee C A \leqq(B \vee C) A, A B \vee A C \leqq A(B \vee C), A(B \wedge C) \leqq A B \wedge A C,(B \wedge C) A \leqq B A \wedge C A$,
(ii) $B \leqq C \Rightarrow A B \leqq A C$ and $B A \leqq C A$,
(iii) $0 \wedge A=0 A=A 0=0, E A=A E=A, A \leqq A I \leqq I, A \leqq I A \leqq I$.

In an orthocomplemented lattice we say that a commutes with b and write $a \mathscr{C} b$ if $\left(a \vee b^{\prime}\right) \wedge b=a \wedge b$. The centre of L is defined as $\mathscr{C}(L)=\{a \in L \mid a \mathscr{C} b$ for all $b \in L\}$. Many of the results of Foulis [3] concerning the relation \mathscr{C} will be used without making specific references. In particular, great use will be made of the Foulis-Holland theorem which states that, if L is an orthomodular lattice and two of the three relations $a \mathscr{b} b, a \mathscr{C}, b \& c$ hold, then $(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$ and $(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$. If L is orthocomplemented, then so is $\mathscr{A}_{m n}(L)$, and in this case we have $A \mathscr{C} B \Leftrightarrow A_{i j} \mathscr{C} B_{i j}$ for all i, j and

$$
\mathscr{C}\left(\mathscr{A}_{m n}\right)=\left\{A \in \mathscr{A}_{m n} \mid A_{i j} \in \mathscr{C}(L)\right\} .
$$

These concepts should not be confused with matrix multiplication commuting or the multiplicative centre of \mathscr{A}_{n}. For the remainder of this section we assume that L is orthomodular.

Lemma 2. Given A in $\mathscr{A}_{m n}, A \in \mathscr{C}\left(\mathscr{A}_{m n}\right)$ if and only if any one (and thus all) of the following hold for all B, C in $\mathscr{A}_{p q}$, where p or q is chosen to make the multiplication conformal:

$$
B A \vee C A=(B \vee C) A, B C \vee A C=(B \vee A) C, A B \vee A C=A(B \vee C), B A \vee B C=B(A \vee C)
$$

Proof. If $A \in \mathscr{C}\left(\mathscr{A}_{m n}\right)$ one may easily check the identities. Conversely, choose B to have o entries except for $B_{i i}=b$ and C to have o entries except for $C_{i i}=b^{\prime}$. Then $B A \vee C A=(B \vee C) A$ implies that $\left(b \wedge A_{i j}\right) \vee\left(b^{\prime} \wedge A_{i j}\right)=A_{i j}$. Thus $A_{i j} \in \mathscr{C}(L)$ for all i and j. The other cases are similar.

Corollary. Matrix multiplication is distributive over joins in $\mathscr{A}_{n}(L)$ if and only if L is Boolean.

Proof. This follows from the lemma, since $\mathscr{C}(L)=L \Leftrightarrow L$ is Boolean.
A collection $S=\left\{s_{\alpha} \mid \alpha \in \mathscr{I}\right.$, an indexing set $\}$ with each s_{α} in L, is said to have property \mathscr{D} on \mathscr{M}, if whenever $x \in \mathscr{M}, x \wedge V_{\alpha} x_{\alpha}=V_{\alpha}\left(x \wedge x_{\alpha}\right)$, where $x_{\alpha} \in L\left(o, s_{\alpha}\right)=\left\{s \in L \mid s \leqq s_{\alpha}\right\}$. Note that, if $s_{\alpha}=o$ for all but possibly one α or if $L\left(o, s_{\alpha}\right) \subset \mathscr{C}(L)$ for all α and either \mathscr{I} is finite or L is complete, then S has property \mathscr{D} on L. If S has property \mathscr{D} on L then $L\left(o, s_{\alpha} \wedge s_{\beta}\right)$ is distributive for each pair α, β of distinct indices. We say that a matrix A in $\mathscr{A}_{m n}$ is right \wedge-distributive if $(B \wedge C) A=B A \wedge C A$ for all $B, C \in \mathscr{A}_{p m}$. For conformal matrices (A, B, C) is an associative triple if $A(B C)=(A B) C$. By elementary calculations, (A, B, C) is an associative triple if the entries in two of the three matrices are in $\mathscr{C}(L)$.
T. S. Blyth [1] has characterized \wedge-distributive matrices over a Boolean lattice. Lemma 3 and its corollary are generalizations of one of his results.

Lemma 3. Given A in $\mathscr{A}_{m n}(L)$, for each $j=1, \ldots, n$, define

$$
\mathscr{M}_{j}=\left\{\bigvee_{i} x_{i} \mid x_{i} \in L\left(o, A_{i j}\right), i=1, \ldots, n\right\} .
$$

A is right \wedge-distributive if and only if $A_{i j} \wedge A_{k j}=0$ for all i, j, k with $i \neq k$, and for each j the jth column of A satisfies \mathscr{D} on \mathscr{M}_{j}.

Proof. For sufficiency,

$$
\begin{align*}
(B A \wedge C A)_{i j} & =\left[\mathrm{V}_{k}\left(B_{i k} \wedge A_{k j}\right)\right] \wedge\left[\mathrm{V}_{h}\left(C_{i h} \wedge A_{h j}\right)\right] \tag{1}\\
& =\bigvee_{k}\left[B_{i k} \wedge A_{k j} \wedge \bigvee_{h}\left(C_{i h} \wedge A_{h j}\right)\right] \tag{2}\\
& =\bigvee_{k} \bigvee_{h}\left(B_{i k} \wedge A_{k j} \wedge C_{i h} \wedge A_{h j}\right)=\bigvee_{k}\left(B_{i k} \wedge C_{i k} \wedge A_{k j}\right)=[(B \wedge C) A]_{i j} \tag{3}
\end{align*}
$$

Conversely, set $B=E$ and $C=E^{\prime}$; then $0=\left(E \wedge E^{\prime}\right) A=A \wedge E^{\prime} A$ implies that $A_{i j} \wedge A_{k j}=o$ for all i, j, k with $i \neq k$. If B is chosen so that the join over k has only one term, we obtain $(2)=(3)$ which implies that, for each j, the j th column of A satisfies \mathscr{D} on $\bigcup_{i} L\left(o, A_{i j}\right)$. With this we obtain $(1)=(2)$ for any B in $\mathscr{A}_{p m}$ and the necessity follows.

Corollary. If $B \leqq A$ and A is right \wedge-distributive, then B is right \wedge-distributive.
Similar results are obtained for left \wedge-distributive matrices. For the rest of Section 1 , take $n \geqq 2$.

Lemma 4. Let $A, B, C \in \mathscr{A}_{n}$.
(i) (A, B, C) is an associative triple for all B and C if and only if $A \in \mathscr{C}\left(\mathscr{A}_{n}\right)$ and each row of A satisfies \mathscr{D} on L.
(ii) (B, C, A) is an associative triple for all B and C if and only if $A \in \mathscr{C}\left(\mathscr{A}_{n}\right)$ and each column of A satisfies \mathscr{D} on L.
(iii) (B, A, C) is an associative triple for all B and C if and only if each row and column of A satisfies \mathscr{D} on L.

Proof. For necessity in (i), let B have l's in the j th row and o 's elsewhere. By examining the (i, j)th element of the equation $(A B) C=A(B C)$, we obtain $\mathrm{V}_{h}\left(C_{h k} \wedge A_{i j}\right)=A_{i j} \wedge V_{h} C_{h k}$. Thus C may be chosen to imply that $A_{i j} \in \mathscr{C}(L)$ for any i, j. Now, with A in $\mathscr{C}\left(\mathscr{A}_{n}\right)$, choose C to have o 's except in the h th row, to obtain $\mathrm{V}_{k}\left(A_{i k} \wedge B_{k h} \wedge C_{h j}\right)=C_{h j} \wedge V_{k}\left(A_{i k} \wedge B_{k h}\right)$. This holds for all $B_{k h}$ and $C_{h j}$ if and only if the i th row of A satisfies \mathscr{D} on L. For sufficiency, take the join with respect to h of both sides of the above equation. The other parts of the lemma are obtained in a similar manner.

The nucleus of \mathscr{A}_{n} is $\left\{A \in \mathscr{A}_{n} \mid\right.$ any triple containing A is associative $\}$. If one defines a scalar meet by $(x \wedge A)_{i j}=x \wedge A_{i j}$ for x in L, it may be shown by standard methods that $A B=B A$ for all B in \mathscr{A}_{n} if and only if there is an a in L such that $A=a \wedge E$. The multiplicative centre of \mathscr{A}_{n} is defined as the set of all A in the nucleus of \mathscr{A}_{n} such that $A B=B A$ for all $B \in \mathscr{A}_{n}$. Since each row or column of $a \wedge E$ has only one nonzero element, the rows and columns of $a \wedge E$ satisfy \mathscr{D} on L. We have obtained

Theorem 1. The nucleus of \mathscr{A}_{n} is $\left\{A \in \mathscr{C}\left(\mathscr{A}_{n}\right) \mid\right.$ rows and columns of A satisfy \mathscr{D} on $\left.L\right\}$. The multiplicative centre of \mathscr{A}_{n} is $\{a \wedge E \mid a \in \mathscr{C}(L)\}$.

Corollary. Matrix multiplication is associative in $\mathscr{A}_{n}(L)$ if and only if L is Boolean.
2. The transpose of a matrix A is defined to be A^{2} where $\left(A^{t}\right)_{i j}=A_{j i}$. It follows that $(A \vee B)^{t}=A^{t} \vee B^{t},(A \wedge B)^{t}=A^{t} \wedge B^{t}, A^{t}=A,(A B)^{t}=B^{t} A^{t}$, for A and B of suitable size, and, if L has a complementation, $\left(A^{\prime}\right)^{\prime}=\left(A^{\prime}\right)^{t}$. If L is orthocomplemented, for square matrices we say that A is symmetric if $A^{\prime} \perp A^{\prime}\left(A \perp B \Leftrightarrow A \leqq B^{\prime}\right.$; in this case A and B are said to be orthogonal), and A is skew-symmetric if $A \perp A^{t}$.

Lemma 5. If $A \in \mathscr{A}_{n}(L)$ with L orthocomplemented, then $A^{\prime} \perp A^{t} \Leftrightarrow A=A^{t}$.
Proof. By taking the transpose of $A^{t} \leqq A$, we obtain $A \leqq A^{t}$. Hence

$$
A^{\prime} \perp A^{t} \Leftrightarrow A^{t} \leqq A \Leftrightarrow A=A^{t}
$$

Theorem 2. For A in $\mathscr{A}_{n}(L)$ with L orthomodular, A has an orthogonal decomposition into a symmetric and skew-symmetric matrix (i.e., $A=S \vee Q$ with S symmetric, Q skew-symmetric, and $S_{\perp} Q$) if and only if $A_{\mathscr{C}} A^{\ddagger}$. If the decomposition exists, it is unique.

Proof. Suppose that S and Q exist such that $A=S \vee Q, S_{\perp} Q, S^{\prime} \perp S^{t}$ and $Q \perp Q^{t}$. Thus $A \wedge A^{\prime}=(S \vee Q) \wedge\left(S \vee Q^{\prime}\right)=S \vee\left(Q \wedge Q^{\prime}\right)=S$ and

$$
A \wedge A^{\prime \prime}=(S \vee Q) \wedge\left(S^{\prime} \wedge Q^{\prime \prime}\right)=Q \wedge S^{\prime} \wedge Q^{\prime \prime}=Q
$$

Hence, if the decomposition exists, it is unique. Now $A=\left(A \wedge A^{t}\right) \vee\left(A \wedge A^{\prime \prime}\right)$ implies that
$A \mathscr{C} A^{t}$. If $A \mathscr{C} A^{t}$, then $A=\left(A \wedge A^{t}\right) \vee\left(A \wedge A^{t}\right), A \wedge A^{t} \leqq A^{\prime} \vee A^{t}=\left(A \wedge A^{\prime \prime}\right)^{\prime},\left(A \wedge A^{t}\right)^{t}=A^{t} \wedge A$ and $A \wedge A^{\prime \prime} \leqq A \vee A^{\prime \prime}=\left(A^{t \prime} \wedge A\right)^{t^{\prime \prime}}$. Thus $S=A \wedge A^{t}$, and $Q=A \wedge A^{\prime \prime}$ is the required decomposition.

For A, B in $\mathscr{A}_{n}(L)$ with L orthocomplemented the following results are easily obtained. If A and B are skew-symmetric, then $A \wedge B$ is skew-symmetric. For A and B symmetric we obtain (i) $A \vee B, A \wedge B, A^{t}$ and A^{\prime} are symmetric, (ii) $A B$ is symmetric if and only if $A B=B A$.
3. A is called row (column) consistent if $A I=I(I A=I)$, where the I 's may not have the same size. The proofs of the lemmas of this section are elementary and are therefore omitted.

Lemma 6. The following are equivalent whenever A is of appropriate size:
(i) A is row (column) consistent.
(ii) $\mathrm{V}_{k} A_{i k}=1$ for all $i\left(\mathrm{~V}_{k} A_{k j}=1\right.$ for all $\left.j\right)$.
(iii) $E \leqq A A^{t}\left(E \leqq A^{t} A\right)$.

Lemma 7. If $A B$ is row (column) consistent, then A is row consistent (B is column consistent).
Corollary. If A has a left (right) inverse, then A is column (row) consistent and its left (right) inverse is row (column) consistent.

Let L be the orthocomplemented modular lattice of subspaces of Euclidean 2-space. Let $A, B \in \mathscr{A}_{n}(L)$ be such that $A_{i j}, B_{i j} \neq o$, . If all of the elements of A and B are distinct, then A and B are both row and column consistent, but $A B=0$. Thus the converse of Lemma 7 that Luce [4] proved for L Boolean, does not obtain in general. For L Boolean, Rutherford [5] has shown that, for square matrices, A has a one sided inverse $\Leftrightarrow A$ has a two sided inverse $\Leftrightarrow A^{-1}=A^{t}$; examples similar to the one above show that, if $A \notin \mathscr{C}\left(\mathscr{A}_{n}\right)$, then A may have several one or two sided inverses. However the next lemma, which is due to Luce [4], holds for arbitrary lattices with 0 and 1.

Lemma 8. $A A^{t}=E\left(A^{t} A=E\right)$ if and only if A is row (column) consistent and $A_{i k} \wedge A_{j k}=0$ $\left(A_{k j} \wedge A_{k i}=o\right)$ for all i, j, k with $i \neq j$.
4. In this section we assume that L is orthomodular and that $B \in \mathscr{C}\left(\mathscr{A}_{m n}\right)$. Conditions are given for finding a matrix X satisfying $X A \leqq B$ or $X A \geqq B$. The results can then be applied to the matrix equation $X A=B$. Dual statements are given for results concerning $A X \leqq B$, $A X \geqq B$, and $A X=B$.

Lemma 9. (i) If $X \wedge\left(B^{\prime} A^{t}\right)=0$, then $X A \leqq B$. If $\left(X, A, B^{\prime t}\right)$ is an associative triple, then $X A \leqq B \Rightarrow X \wedge\left(B^{\prime} A^{t}\right)=0$. (Note that A in $\mathscr{A}_{p n}$ implies that $B^{\prime} A^{t}$ and X are in $\mathscr{A}_{m p}$.) (ii) If $X \wedge\left(A^{t} B^{\prime}\right)=0$, then $A X \leqq B$. If $\left(B^{\prime \prime}, A, X\right)$ is an associative triple, then $A X \leqq B \Rightarrow X \wedge\left(A^{t} B^{\prime}\right)=0$. (Note that A in $\mathscr{A}_{m p}$ implies that $A^{\prime} B^{\prime}$ and X are in $\mathscr{A}_{p n}$.)

Proof. By examining the (i, i) th element of the matrix product, one notes that

$$
X Y \leqq E^{\prime} \Leftrightarrow X \wedge Y^{t}=0 \Leftrightarrow Y X \leqq E^{\prime}, \text { for } X, Y^{t} \text { in } \mathscr{A}_{m p}
$$

Now

$$
X \wedge\left(B^{\prime} A^{\prime}\right)=0 \Rightarrow X\left(A B^{\prime \prime}\right) \leqq E^{\prime} \Rightarrow X_{i k} \wedge A_{k j} \wedge B_{i j}^{\prime}=o \quad \text { for all } \quad i, j, k
$$

Since $B \in \mathscr{C}\left(\mathscr{A}_{m n}\right)$, we obtain $X_{i k} \wedge A_{k j} \leqq B_{i j}$ and thus $(X A)_{i j} \leqq B_{i j}$. Conversely, $X A \leqq B$ implies that $o=X_{i k} \wedge A_{k j} \wedge B_{i j}^{\prime}=V_{k}\left(X_{i k} \wedge A_{k j} \wedge B_{i j}^{\prime}\right)=(X A)_{i j} \wedge\left(B^{\prime}\right)_{j i}^{\prime}$, the last step being accomplished since $B_{i j} \in \mathscr{C}(L)$. Taking the join over j, we obtain $E^{\prime} \geqq(X A) B^{\prime \prime}=X\left(A B^{\prime \prime}\right)$. The result follows from the remark at the beginning of the proof.

Theorem 3. If A is not row (column) consistent, then A is a right (left) divisor of zero. If $A \in \mathscr{C}\left(\mathscr{A}_{p n}\right)\left(A \in \mathscr{C}\left(\mathscr{A}_{m p}\right)\right)$ or if $A \in \mathscr{A}_{p 1}\left(A \in \mathscr{A}_{1_{p}}\right)$, then A is a right (left) divisor of zero if and only if A is not row (column) consistent.

Proof. Set $B=0$ in $\mathscr{A}_{m n}$ and $B^{\prime t}=I$ in $\mathscr{A}_{n m}$. If A is not row consistent, then $A I<I$ in $\mathscr{A}_{\text {pm }}$. Thus $0<X \leqq(A I)^{\prime \prime} \Rightarrow X \wedge(A I)^{z}=0 \Rightarrow X A=0 \Rightarrow A$ is a right zero divisor. Now $\mathrm{V}_{h} \mathrm{~V}_{k}\left(X_{i k} \wedge A_{k h}\right)=V_{k}\left(X_{i k} \wedge V_{h} A_{k h}\right)$ and (X, A, I) is an associative triple, if $n=1$ or if $A \in \mathscr{C}\left(\mathscr{A}_{p n}\right)$. Hence in either case $X A=0$ implies that $X \wedge(A I)^{t}=0$. But, if A is row consistent, $(A I)^{t}=I$ in $\mathscr{A}_{m p}$ and $X=X \wedge I=0$.

Lemma 10. If there is a matrix C such that $C \leqq A$ and $B \leqq I C(B \leqq C I)$, then any X such that $X \geqq B C^{\prime}\left(X \geqq C^{\prime} B\right)$ is a solution of $X A \geqq B(A X \geqq B)$.

Proof. If $A, C \in \mathscr{A}_{p n}$, then $X, I \in \mathscr{A}_{m p}$. With $j, k=1, \ldots, n$,

$$
\left[\left(B C^{t}\right) A\right]_{i j}=\mathrm{V}_{h}\left[A_{h j} \wedge \mathrm{~V}_{k}\left(B_{i k} \wedge C_{h k}\right)\right] \geqq \mathrm{V}_{h}\left(A_{h j} \wedge B_{i j} \wedge C_{h j}\right)=B_{i j} \wedge(I C)_{i j}=B_{i j}
$$

Corollary. If $X \geqq I C^{t}\left(X \geqq C^{t} I\right)$, where $C \leqq A$ and C is column (row) consistent, then $X A=I(A X=I)$.

Proof. Set $B=I$ in Lemma 10.
Lemma 11. $X A \geqq E(A X \geqq E)$ has a solution if and only if A is column (row) consistent.
Proof. The result follows from Lemmas 6 and 7.
Theorem 4. For square matrices, if $C^{t} \leqq X \leqq\left(E^{\prime} A^{t}\right)^{\prime}\left(C^{t} \leqq X \leqq\left(A^{t} E^{\prime}\right)^{\prime}\right)$, where $C \leqq A$ and C is column (row) consistent, then X is a left (right) inverse of A.

Proof. The result is obtained by letting $B=E$ in Lemmas 9 and 10 .

REFERENCES

1. T. S. Blyth, \wedge-distributive Boolean matrices, Proc. Glasgow Math. Assoc. 7 (1965), 93-100.
2. D. J. Foulis, Baer *-semigroups, Proc. Amer. Math. Soc. 11 (1960), 648-654.
3. D. J. Foulis, A note on orthomodular lattices, Portugal. Math. 21 (1962), 65-72.
4. R. D. Luce, A note on Boolean matrix theory, Proc. Amer. Math. Soc. 3 (1952), 382-388.
5. D. E. Rutherford, Inverses of Boolean matrices, Proc. Glasgow Math. Assoc. 6 (1963), 49-53.

Virginia Polytechnic Institute

Blacksburg, Virginia

