MATRICES OVER ORTHOMODULAR LATTICES

by J. H. BEVIS

(Received 27 December, 1967)

In this paper elementary properties are established for matrices whose coordinates are elements of a lattice L. In particular, many of the results of Luce [4] are extended to the case where L is an orthomodular lattice, a lattice with an orthocomplementation denoted by ' in which $a \leq b \Rightarrow a \lor (a' \land b) = b$. Originally, these were called orthocomplemented weakly modular lattices, Foulis [2]. In Theorem 1 a characterization is given of the nucleus with respect to matrix multiplication, which is in general nonassociative. Matrices with A^{-1} = transpose (A) are characterized in Lemma 8. Theorems 3 and 4 respectively, give partial characterizations of zero divisors and inverses.

1. $\mathscr{A}_{mn}(L)$ and $\mathscr{A}_n(L)$ will denote, respectively, the set of all $m \times n$ matrices and the set of all $n \times n$ matrices whose coordinates are elements of L. The argument L will be suppressed when it is not needed. Except for L, capital letters denote matrices. A_{ij} will denote the (i, j)th element of the matrix A. For matrices of suitable size $A \vee B$, $A \wedge B$, and, if L has a complementation, A' are defined coordinatewise. $A \leq B \Leftrightarrow A_{ij} \leq B_{ij}$ for all i, j. For conformal matrices define the product by $(AB)_{ij} = V_k(A_{ik} \wedge B_{kj})$. We assume that L has a least element o and a greatest element 1. Define 0, I, and E to be the matrices with $0_{ij} = o$, $I_{ij} = 1$, $E_{ij} = o$ for $i \neq j$, and $E_{ii} = 1$, the sizes of these and other matrices being determined by the context, if not otherwise restricted. $\mathscr{A}_{mn}(L)$ is lattice isomorphic to the direct product of L with itself mn times; hence, if L is orthomodular, then so is $\mathscr{A}_{mn}(L)$. The proof of the first lemma is elementary and is therefore omitted.

LEMMA 1. For matrices of appropriate size,

(i) $BA \lor CA \leq (B \lor C)A$, $AB \lor AC \leq A(B \lor C)$, $A(B \land C) \leq AB \land AC$, $(B \land C)A \leq BA \land CA$, (ii) $B \leq C \Rightarrow AB \leq AC$ and $BA \leq CA$, (iii) A = AA = AC and $BA \leq CA$,

(iii) $0 \land A = 0A = A0 = 0$, EA = AE = A, $A \leq AI \leq I$, $A \leq IA \leq I$.

In an orthocomplemented lattice we say that a commutes with b and write a & b if $(a \lor b') \land b = a \land b$. The centre of L is defined as $\mathscr{C}(L) = \{a \in L \mid a & b$ for all $b \in L\}$. Many of the results of Foulis [3] concerning the relation \mathscr{C} will be used without making specific references. In particular, great use will be made of the Foulis-Holland theorem which states that, if L is an orthomodular lattice and two of the three relations a & b, a & c, b & c hold, then $(a \lor b) \land c = (a \land c) \lor (b \land c)$ and $(a \land b) \lor c = (a \lor c) \land (b \lor c)$. If L is orthocomplemented, then so is $\mathscr{A}_{mn}(L)$, and in this case we have $A & \mathcal{C}B \Leftrightarrow A_{ij} & B_{ij}$ for all i, j and

$$\mathscr{C}(\mathscr{A}_{mn}) = \{A \in \mathscr{A}_{mn} \mid A_{ij} \in \mathscr{C}(L)\}.$$

These concepts should not be confused with matrix multiplication commuting or the multiplicative centre of \mathcal{A}_n . For the remainder of this section we assume that L is orthomodular.

LEMMA 2. Given A in \mathscr{A}_{mn} , $A \in \mathscr{C}(\mathscr{A}_{mn})$ if and only if any one (and thus all) of the following hold for all B, C in \mathscr{A}_{pq} , where p or q is chosen to make the multiplication conformal:

 $BA \lor CA = (B \lor C)A, BC \lor AC = (B \lor A)C, AB \lor AC = A(B \lor C), BA \lor BC = B(A \lor C).$

Proof. If $A \in \mathscr{C}(\mathscr{A}_{mn})$ one may easily check the identities. Conversely, choose B to have o entries except for $B_{ii} = b$ and C to have o entries except for $C_{ii} = b'$. Then $BA \vee CA = (B \vee C)A$ implies that $(b \wedge A_{ij}) \vee (b' \wedge A_{ij}) = A_{ij}$. Thus $A_{ij} \in \mathscr{C}(L)$ for all i and j. The other cases are similar.

COROLLARY. Matrix multiplication is distributive over joins in $\mathscr{A}_n(L)$ if and only if L is Boolean.

Proof. This follows from the lemma, since $\mathscr{C}(L) = L \Leftrightarrow L$ is Boolean.

A collection $S = \{s_{\alpha} \mid \alpha \in \mathscr{I}, a \text{ indexing set}\}$ with each s_{α} in L, is said to have property \mathscr{D} on \mathscr{M} , if whenever $x \in \mathscr{M}, x \wedge \bigvee_{\alpha} x_{\alpha} = \bigvee_{\alpha} (x \wedge x_{\alpha})$, where $x_{\alpha} \in L(o, s_{\alpha}) = \{s \in L \mid s \leq s_{\alpha}\}$. Note that, if $s_{\alpha} = o$ for all but possibly one α or if $L(o, s_{\alpha}) \subset \mathscr{C}(L)$ for all α and either \mathscr{I} is finite or Lis complete, then S has property \mathscr{D} on L. If S has property \mathscr{D} on L then $L(o, s_{\alpha} \wedge s_{\beta})$ is distributive for each pair α, β of distinct indices. We say that a matrix A in \mathscr{A}_{mn} is right \wedge -distributive if $(B \wedge C)A = BA \wedge CA$ for all $B, C \in \mathscr{A}_{pm}$. For conformal matrices (A, B, C) is an associative triple if A(BC) = (AB)C. By elementary calculations, (A, B, C) is an associative triple if the entries in two of the three matrices are in $\mathscr{C}(L)$.

T. S. Blyth [1] has characterized \wedge -distributive matrices over a Boolean lattice. Lemma 3 and its corollary are generalizations of one of his results.

LEMMA 3. Given A in $\mathscr{A}_{mn}(L)$, for each j = 1, ..., n, define

 $\mathcal{M}_{i} = \{ \bigvee_{i} x_{i} \mid x_{i} \in L(o, A_{ij}), i = 1, \ldots, n \}.$

A is right \wedge -distributive if and only if $A_{ij} \wedge A_{kj} = o$ for all i, j, k with $i \neq k$, and for each j the jth column of A satisfies \mathcal{D} on \mathcal{M}_j .

Proof. For sufficiency,

$$(BA \wedge CA)_{ij} = \left[\bigvee_{k} (B_{ik} \wedge A_{kj}) \right] \wedge \left[\bigvee_{h} (C_{ih} \wedge A_{hj}) \right]$$
(1)

$$= \bigvee_{k} \left[B_{ik} \wedge A_{kj} \wedge \bigvee_{h} (C_{ih} \wedge A_{hj}) \right]$$
⁽²⁾

$$= \bigvee_{k} \bigvee_{h} (B_{ik} \wedge A_{kj} \wedge C_{ih} \wedge A_{hj}) = \bigvee_{k} (B_{ik} \wedge C_{ik} \wedge A_{kj}) = [(B \wedge C)A]_{ij}.$$
(3)

Conversely, set B = E and C = E'; then $0 = (E \wedge E')A = A \wedge E'A$ implies that $A_{ij} \wedge A_{kj} = o$ for all i, j, k with $i \neq k$. If B is chosen so that the join over k has only one term, we obtain (2) = (3) which implies that, for each j, the jth column of A satisfies \mathcal{D} on $\bigcup_i L(o, A_{ij})$. With this we obtain (1) = (2) for any B in \mathscr{A}_{pm} and the necessity follows.

COROLLARY. If $B \leq A$ and A is right \wedge -distributive, then B is right \wedge -distributive.

Similar results are obtained for left \wedge -distributive matrices. For the rest of Section 1, take $n \geq 2$.

LEMMA 4. Let $A, B, C \in \mathcal{A}_n$.

(i) (A, B, C) is an associative triple for all B and C if and only if $A \in \mathcal{C}(\mathcal{A}_n)$ and each row of A satisfies \mathcal{D} on L.

(ii) (B, C, A) is an associative triple for all B and C if and only if $A \in \mathscr{C}(\mathscr{A}_n)$ and each column of A satisfies \mathcal{D} on L.

(iii) (B, A, C) is an associative triple for all B and C if and only if each row and column of A satisfies \mathcal{D} on L.

Proof. For necessity in (i), let B have 1's in the *j*th row and o's elsewhere. By examining the (i, j)th element of the equation (AB)C = A(BC), we obtain $\bigvee_h(C_{hk} \wedge A_{ij}) = A_{ij} \wedge \bigvee_h C_{hk}$. Thus C may be chosen to imply that $A_{ij} \in \mathscr{C}(L)$ for any *i*, *j*. Now, with A in $\mathscr{C}(\mathscr{A}_n)$, choose C to have o's except in the *h*th row, to obtain $\bigvee_k(A_{ik} \wedge B_{kh} \wedge C_{hj}) = C_{hj} \wedge \bigvee_k(A_{ik} \wedge B_{kh})$. This holds for all B_{kh} and C_{hj} if and only if the *i*th row of A satisfies \mathscr{D} on L. For sufficiency, take the join with respect to h of both sides of the above equation. The other parts of the lemma are obtained in a similar manner.

The nucleus of \mathscr{A}_n is $\{A \in \mathscr{A}_n | \text{any triple containing } A \text{ is associative}\}$. If one defines a scalar meet by $(x \wedge A)_{ij} = x \wedge A_{ij}$ for x in L, it may be shown by standard methods that AB = BA for all B in \mathscr{A}_n if and only if there is an a in L such that $A = a \wedge E$. The multiplicative centre of \mathscr{A}_n is defined as the set of all A in the nucleus of \mathscr{A}_n such that AB = BA for all $B \in \mathscr{A}_n$. Since each row or column of $a \wedge E$ has only one nonzero element, the rows and columns of $a \wedge E$ satisfy \mathscr{D} on L. We have obtained

THEOREM 1. The nucleus of \mathcal{A}_n is $\{A \in \mathcal{C}(\mathcal{A}_n) \mid \text{rows and columns of } A \text{ satisfy } \mathcal{D} \text{ on } L\}$. The multiplicative centre of \mathcal{A}_n is $\{a \wedge E \mid a \in \mathcal{C}(L)\}$.

COROLLARY. Matrix multiplication is associative in $\mathcal{A}_n(L)$ if and only if L is Boolean.

2. The transpose of a matrix A is defined to be A^t where $(A^t)_{ij} = A_{ji}$. It follows that $(A \lor B)^t = A^t \lor B^t$, $(A \land B)^t = A^t \land B^t$, $A^{tt} = A$, $(AB)^t = B^tA^t$, for A and B of suitable size, and, if L has a complementation, $(A^t)' = (A')^t$. If L is orthocomplemented, for square matrices we say that A is symmetric if $A' \perp A^t$ $(A \perp B \Leftrightarrow A \leq B'$; in this case A and B are said to be orthogonal), and A is skew-symmetric if $A \perp A^t$.

LEMMA 5. If $A \in \mathscr{A}_n(L)$ with L orthocomplemented, then $A' \perp A^t \Leftrightarrow A = A^t$.

Proof. By taking the transpose of $A^t \leq A$, we obtain $A \leq A^t$. Hence

$$A' \,{}_{\perp} A^{t} \Leftrightarrow A^{t} \leq A \Leftrightarrow A = A^{t}.$$

THEOREM 2. For A in $\mathscr{A}_n(L)$ with L orthomodular, A has an orthogonal decomposition into a symmetric and skew-symmetric matrix (i.e., $A = S \lor Q$ with S symmetric, Q skew-symmetric, and $S \bot Q$) if and only if $A \mathscr{C} A^t$. If the decomposition exists, it is unique.

Proof. Suppose that S and Q exist such that $A = S \lor Q$, $S \bot Q$, $S' \bot S'$ and $Q \bot Q'$. Thus $A \land A' = (S \lor Q) \land (S \lor Q') = S \lor (Q \land Q') = S$ and

$$A \wedge A^{\prime\prime} = (S \vee Q) \wedge (S' \wedge Q^{\prime\prime}) = Q \wedge S' \wedge Q^{\prime\prime} = Q.$$

Hence, if the decomposition exists, it is unique. Now $A = (A \wedge A') \vee (A \wedge A'')$ implies that

 $A \mathscr{C} A^t$. If $A \mathscr{C} A^t$, then $A = (A \land A^t) \lor (A \land A^t')$, $A \land A^t \leq A' \lor A^t = (A \land A^t')'$, $(A \land A^t)^t = A^t \land A$ and $A \land A^{t'} \leq A \lor A^{t'} = (A^{t'} \land A)^{t'}$. Thus $S = A \land A^t$, and $Q = A \land A^{t'}$ is the required decomposition.

For A, B in $\mathscr{A}_n(L)$ with L orthocomplemented the following results are easily obtained. If A and B are skew-symmetric, then $A \wedge B$ is skew-symmetric. For A and B symmetric we obtain (i) $A \vee B$, $A \wedge B$, A' and A' are symmetric, (ii) AB is symmetric if and only if AB = BA.

3. A is called row (column) consistent if AI = I (IA = I), where the I's may not have the same size. The proofs of the lemmas of this section are elementary and are therefore omitted.

LEMMA 6. The following are equivalent whenever A is of appropriate size:

- (i) A is row (column) consistent.
- (ii) $\bigvee_k A_{ik} = 1$ for all $i (\bigvee_k A_{kj} = 1$ for all j).
- (iii) $E \leq AA^t \ (E \leq A^t A)$.

LEMMA 7. If AB is row (column) consistent, then A is row consistent (B is column consistent).

COROLLARY. If A has a left (right) inverse, then A is column (row) consistent and its left (right) inverse is row (column) consistent.

Let L be the orthocomplemented modular lattice of subspaces of Euclidean 2-space. Let $A, B \in \mathcal{A}_n(L)$ be such that $A_{ij}, B_{ij} \neq o, 1$. If all of the elements of A and B are distinct, then A and B are both row and column consistent, but AB = 0. Thus the converse of Lemma 7 that Luce [4] proved for L Boolean, does not obtain in general. For L Boolean, Rutherford [5] has shown that, for square matrices, A has a one sided inverse $\Rightarrow A$ has a two sided inverse $\Rightarrow A^{-1} = A^t$; examples similar to the one above show that, if $A \notin \mathscr{C}(\mathcal{A}_n)$, then A may have several one or two sided inverses. However the next lemma, which is due to Luce [4], holds for arbitrary lattices with o and 1.

LEMMA 8. $AA^{t} = E(A^{t}A = E)$ if and only if A is row (column) consistent and $A_{ik} \wedge A_{jk} = o$ $(A_{ki} \wedge A_{ki} = o)$ for all i, j, k with $i \neq j$.

4. In this section we assume that L is orthomodular and that $B \in \mathscr{C}(\mathscr{A}_{mn})$. Conditions are given for finding a matrix X satisfying $XA \leq B$ or $XA \geq B$. The results can then be applied to the matrix equation XA = B. Dual statements are given for results concerning $AX \leq B$, $AX \geq B$, and AX = B.

LEMMA 9. (i) If $X \wedge (B'A^t) = 0$, then $XA \leq B$. If (X, A, B'') is an associative triple, then $XA \leq B \Rightarrow X \wedge (B'A^t) = 0$. (Note that A in \mathscr{A}_{pn} implies that $B'A^t$ and X are in \mathscr{A}_{mp} .) (ii) If $X \wedge (A^tB') = 0$, then $AX \leq B$. If (B'', A, X) is an associative triple, then $AX \leq B \Rightarrow X \wedge (A^tB') = 0$. (Note that A in \mathscr{A}_{mp} implies that A^tB' and X are in \mathscr{A}_{pn} .)

Proof. By examining the (i, i)th element of the matrix product, one notes that

$$XY \leq E' \Leftrightarrow X \land Y' = 0 \Leftrightarrow YX \leq E', \text{ for } X, Y' \text{ in } \mathscr{A}_{mp}$$

Now

$$X \wedge (B'A') = 0 \Rightarrow X(AB'') \leq E' \Rightarrow X_{ik} \wedge A_{kj} \wedge B'_{ij} = o \quad \text{for all} \quad i, j, k.$$

Since $B \in \mathscr{C}(\mathscr{A}_{mn})$, we obtain $X_{ik} \wedge A_{kj} \leq B_{ij}$ and thus $(XA)_{ij} \leq B_{ij}$. Conversely, $XA \leq B$ implies that $o = X_{ik} \wedge A_{kj} \wedge B'_{ij} = \bigvee_k (X_{ik} \wedge A_{kj} \wedge B'_{ij}) = (XA)_{ij} \wedge (B')'_{ji}$, the last step being accomplished since $B_{ij} \in \mathscr{C}(L)$. Taking the join over *j*, we obtain $E' \geq (XA)B'' = X(AB'')$. The result follows from the remark at the beginning of the proof.

THEOREM 3. If A is not row (column) consistent, then A is a right (left) divisor of zero. If $A \in \mathcal{C}(\mathcal{A}_{pn})$ ($A \in \mathcal{C}(\mathcal{A}_{mp})$) or if $A \in \mathcal{A}_{p1}$ ($A \in \mathcal{A}_{1p}$), then A is a right (left) divisor of zero if and only if A is not row (column) consistent.

Proof. Set B = 0 in \mathscr{A}_{mn} and $B'^t = I$ in \mathscr{A}_{nm} . If A is not row consistent, then AI < I in \mathscr{A}_{pm} . Thus $0 < X \leq (AI)^t \Rightarrow X \land (AI)^t = 0 \Rightarrow XA = 0 \Rightarrow A$ is a right zero divisor. Now $\bigvee_h \bigvee_k (X_{ik} \land A_{kh}) = \bigvee_k (X_{ik} \land \bigvee_h A_{kh})$ and (X, A, I) is an associative triple, if n = 1 or if $A \in \mathscr{C}(\mathscr{A}_{pn})$. Hence in either case XA = 0 implies that $X \land (AI)^t = 0$. But, if A is row consistent, $(AI)^t = I$ in \mathscr{A}_{mp} and $X = X \land I = 0$.

LEMMA 10. If there is a matrix C such that $C \leq A$ and $B \leq IC$ ($B \leq CI$), then any X such that $X \geq BC'$ ($X \geq C'B$) is a solution of $XA \geq B$ ($AX \geq B$).

Proof. If $A, C \in \mathcal{A}_{pn}$, then $X, I \in \mathcal{A}_{mp}$. With j, k = 1, ..., n,

$$[(BC')A]_{ij} = \bigvee_h [A_{hj} \land \bigvee_k (B_{ik} \land C_{hk})] \ge \bigvee_h (A_{hj} \land B_{ij} \land C_{hj}) = B_{ij} \land (IC)_{ij} = B_{ij}$$

COROLLARY. If $X \ge IC'$ $(X \ge C'I)$, where $C \le A$ and C is column (row) consistent, then XA = I (AX = I).

Proof. Set B = I in Lemma 10.

LEMMA 11. $XA \ge E$ ($AX \ge E$) has a solution if and only if A is column (row) consistent.

Proof. The result follows from Lemmas 6 and 7.

THEOREM 4. For square matrices, if $C' \leq X \leq (E'A')'$ ($C' \leq X \leq (A'E')'$), where $C \leq A$ and C is column (row) consistent, then X is a left (right) inverse of A.

Proof. The result is obtained by letting B = E in Lemmas 9 and 10.

REFERENCES

- 1. T. S. Blyth, A-distributive Boolean matrices, Proc. Glasgow Math. Assoc. 7 (1965), 93-100.
- 2. D. J. Foulis, Baer *-semigroups, Proc. Amer. Math. Soc. 11 (1960), 648-654.
- 3. D. J. Foulis, A note on orthomodular lattices, Portugal. Math. 21 (1962), 65-72.
- 4. R. D. Luce, A note on Boolean matrix theory, Proc. Amer. Math. Soc. 3 (1952), 382-388.

5. D. E. Rutherford, Inverses of Boolean matrices, Proc. Glasgow Math. Assoc. 6 (1963), 49-53.

VIRGINIA POLYTECHNIC INSTITUTE Blacksburg, Virginia