
JFP 14 (6): 635–646, 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796804005143 Printed in the United Kingdom

635

FUNCTIONAL PEARL

Parsing permutation phrases

ARTHUR I. BAARS, ANDRES LÖH and S. DOAITSE SWIERSTRA

Institute of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands

(e-mail: {arthurb,andres,doaitse}@cs.uu.nl)

Abstract

A permutation phrase is a sequence of elements (possibly of different types) in which each

element occurs exactly once and the order is irrelevant. Some of the permutable elements may

be optional. We show how to extend a parser combinator library with support for parsing

such free-order constructs. A user of the library can easily write parsers for permutation

phrases and does not need to care about checking and reordering the recognized elements.

Applications include the generation of parsers for attributes of XML tags and Haskell’s

record syntax.

1 Introduction

Parser combinator libraries highlight the strengths of functional programming

languages: higher-order functions and the possibility to define new infix operators

allow parsers to be expressed in a concise and natural notation that closely resembles

the syntax of EBNF grammars. At the same time, the user has the full abstraction

power of the underlying programming language at hand. Complex, often recurring

patterns can be expressed by defining new combinators.

A specific parsing problem is the recognition of permutation phrases. A permuta-

tion phrase is a sequence of elements (possibly of different types) in which each

element occurs exactly once and the order is irrelevant. Some of the permutable

elements may be optional. Since permutation phrases are not easily expressed by

a context-free grammar, the usual approach is to tackle this problem in two steps:

first parse a relaxed version of the grammar, then check whether the recognized

elements form a permutation of the expected elements. This method, however, has

a number of disadvantages. Dealing with a permutation of typed values is quite

cumbersome, and the problem is often avoided by encoding the values in a universal

representation, thus adding an extra level of interpretation. Furthermore, because

of the two steps involved, error messages cannot be produced until a larger part of

the input has been consumed, and special care has to be taken to make them point

to the right position in the code.

Permutation phrases have been proposed by Cameron (1993) as an extension

to EBNF grammars, not aiming at greater expressive power, but at more clarity.

Cameron also presents a pseudo-code algorithm to parse permutation phrases with

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

636 A. I. Baars et al.

optional elements efficiently in an imperative setting. It fails, however, to address

the types of the constituents.

We show how to extend any existing parser combinator library with support for

parsing permutations of typed, potentially optional elements.

Possible applications include the implementation of Haskell’s read function where

it is desirable to parse the fields of a data type with labelled fields in any order, and

the parsing of XML tags which have large sets of potentially optional attributes

that may occur in any order. For instance, a parser for the XHTML image tag with

some of its attributes can be written as follows:

imgtag = token "<" ∗> token "img" ∗> attrs ∗< token "/>"

where attrs = permute (Img <$<>> field "src" uri

<> field "alt" string

<> optional (field "longdesc" uri)

<> optional (field "height" int)

<> optional (field "width" int)

)

The combinator <> is used to separate parsers for permutable elements, and <$<>>

can be used to apply a semantic function. Parsers for permutation phrases have to

be enclosed by a call to permute.

Our approach makes use of two features that are not provided by all functional

programming languages: existentially quantified data types are used to encode

reordering information that permutes the recognized elements to a canonical order.

Additionally, we utilize lazy evaluation to make the resulting implementation

efficient. The administrative part of parsing permutation phrases has a quadratic time

complexity in the number of permutable elements. The size of the code, however, is

linear in the number of permutable elements.

We therefore choose Haskell as implementation language. Existential types are

not part of the Haskell 98 standard (Peyton Jones, 2003), but are supported by

several current Haskell implementations.

The paper is organized as follows: section 2 explains the parser combinators we

build upon. Section 3 presents the idea of dealing with permutations in terms of

permutation trees and explains how such trees are built and converted into parsers.

In section 4, we take a brief look at the applications mentioned above: the parsing

of data types with labelled fields and the parsing of XML attribute sets. Section 5

concludes.

2 Parsing using combinator libraries

The use of a combinator library for describing parsers instead of writing them by

hand or generating them from a separate formalism is a well-known technique in

functional programming. As a result, there are several excellent libraries around.

For this reason we just briefly present the interface we will assume in subsequent

sections of this paper, but do not go into the details of the implementation. We

want to stress, however, that our extension is not tied to any specific library.

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

Functional pearl 637

infixl 3 ��
infixl 4 ∗<>
class Parser p where

fail :: p a

succeed :: a → p a

symbol :: Char → p Char

(∗<>) :: p (a → b) → p a → p b

(��) :: p a → p a → p a

Fig. 1. Type class for parser combinators.

infixl 4 $<>, $< , ∗>, ∗<
($<>) :: Parser p ⇒ (a → b) → p a → p b

f $<> p = succeed f ∗<> p

($<) :: Parser p ⇒ a → p b → p a

x $< p = const x $<> p

(∗<) :: Parser p ⇒ p a → p b → p a

p ∗< q = const $<> p ∗<> q

(∗>) :: Parser p ⇒ p a → p b → p b

p ∗> q = flip const $<> p ∗<> q

parens :: Parser p ⇒ p a → p a

parens p = symbol ’(’ ∗> p ∗< symbol ’)’

Fig. 2. Some useful parser combinators.

We make use of a simple interface (Röjemo, 1995; Swierstra & Duponcheel, 1996)

that is parametrized by the result type of the parsers and assumes a list of characters

as input. It can easily be implemented by straightforward list-of-successes parsers

(Fokker, 1995; Wadler, 1985). Our permutation parsers have also been implemented

for more advanced libraries, such as the fast, error-correcting parser combinators of

Swierstra (2001) and the monadic-style (Hutton & Meijer, 1988) combinator library

Parsec (Leijen, 2001).

The parser interface used here is given as a type class declaration in Figure 1.

The function fail represents the parser that always fails, whereas succeed never

consumes any input and always returns the given result value. The parser symbol

accepts solely the given character as input. If this character is encountered, symbol

consumes and returns this character, otherwise it fails. The ∗<> operator denotes the

sequential composition of two parsers, where the result of the first parser is applied

to the result of the second. Finally, the operator �� expresses a choice between two

parsers.

Many useful combinators can be built on top of these basic ones. A small selection

that we use in this paper is presented in Figure 2. The most notable of the derived

combinators is the application operator $<>, a parser transformer that can be used to

apply a semantic function to a parse result. It is defined in terms of succeed and ∗<>.

3 Permutation parsers

We compute the parser for a permutation phrase not directly, but from an

intermediate tree. We first introduce an auxiliary data type to represent such

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

638 A. I. Baars et al.

a

b c

b

c

a

b

a

c

a

c

a

b

b

c

Fig. 3. A permutation tree containing three elements.

permutation trees, and show how they can be converted to parsers. Later, we

introduce special combinators that provide a convenient notation for constructing

permutation trees.

3.1 Permutation trees

A permutation phrase of a set of elements can be expanded into an EBNF definition

by summing up all possible permutations of the elements. Consider for example the

permutation phrase of three elements a, b, and c. Using Cameron’s notation for

permutation phrases, we can write it as:

s ::= 〈〈a || b || c〉〉

Expanding and subsequently left-factorizing this permutation phrase gives us the

following EBNF production rule:

s ::= a b c | a c b

| b a c | b c a

| c a b | c b a

�
s ::= a (b c | c b)

| b (a c | c a)

| c (a b | b a)

The left-factorized production rule can be represented by a tree as illustrated in

Figure 3. Each path from the root to a leaf in the tree represents a particular

permutation. Permutations with a common prefix share the same subtree, hence

the number of choices in each node is limited by the number of permutable

elements. Such a permutation tree is very suitable as intermediate data structure for

a permutation parser. Parsing a permutation phrase boils down to checking whether

the input matches one of the paths in the permutation tree.

If the grammar (and thus the permutation tree) is ambiguous, large parts of

the tree might need to be evaluated before it can be decided which path must be

followed. Therefore, ambiguous grammars should (as always) be avoided. However,

if the ambiguity in the grammar stems from optional elements in the permutation

phrase, the permutation tree can be modified in a simple way to resolve the

ambiguity.

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

Functional pearl 639

In section 3.2, we develop an implementation for permutations without optional

elements, and in section 3.3 extend this solution to cover optionality.

3.2 Permutation trees without optional elements

We introduce a data type Perms for permutation trees, which is parametrized by a

type constructor p (e.g. the parser type) and a result type a .

data Perms p a = Empty a

| Choice [Branch p a]

data Branch p a = ∃ x . Br (p x) (Perms p (x → a))

The Empty constructor represents a leaf of the tree, the Choice constructor stores

a branching node. A single branch is constructed using Br and consists of an

element, represented as a parser, plus a subtree. As the types of the elements may

differ between branches, we hide their types by existentially quantifying the x in

the definition of Br . The subtrees have an element type that is different from the

type of the original tree, making Perms a non-regular data type. Each subtree must

contain information how to construct a value of the result type a from a value of

the element’s type. This is achieved by storing at the end of each path a function

that effectively reorders the elements on the path.

To show that reordering is determined by the type of the components, we will

henceforth write the type (or the element type for type constructors) of a variable

as an index to its name.

The idea that each path in the tree represents the parser for one of the

possible permutations is reflected by the following simple conversion function from

permutation trees to parsers. A leaf, i.e. an Empty , is interpreted as an always

succeeding parser; a Choice constructor is converted into a choice between parsers.

For each branch, we have to supply the value resulting from the parser to the

reordering function resulting from the subtree.

permute :: Parser p ⇒ Perms p a → p a

permute (Empty va) = succeed va

permute (Choice bsa) = choice (map branch bsa)

branch :: Parser p ⇒ Branch p a → p a

branch (Br px tx→a) = (λx f → f x) $<> px ∗<> permute tx→a

choice :: Parser p ⇒ [p a] → p a

choice = foldr (��) fail

Lazy evaluation plays an important role here, in that it ensures that the permuta-

tion tree is never computed completely. In fact, for a permutation of n elements, just

the n tree elements immediately below the root of the tree are required to decide

which subtree will be used to parse the rest of the permutation. From then on, only

that subtree (a permutation tree of size n − 1) is relevant. Iterating this argument

leads to a complexity of only O(n2).

There are two potential problems here. First, the underlying parser combinator

library might try to optimize parsing behaviour by evaluating different possible paths.

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

640 A. I. Baars et al.

b?

b?

b?

b?

b?

c

a

a

b

c

a

c

a

b a

b

a

c

b

c

b

c

c

a

c

a

a

a

c

c

Fig. 4. The ambiguous and the adapted permutation tree for optional b.

This is problematic because permutation trees are so large that the precomputation is

clearly undesireable. If the library has such features, they should be locally disabled

for permutation trees. Second, repeated parsing of different permutations might

cause multiple paths of the tree to be evaluated. In practice, however, the number

of different permutations that actually occur in the input is small compared to the

number of possible permutations.

3.3 Permutation trees with optional elements

Optional elements can be represented by parsers that can recognize the empty string

and return a default value for this element. However, if permute is called on a

permutation tree that contains such parsers, the resulting parser is ambiguous.

Consider the left tree in Figure 4, which contains all permutations of a , an

optional b and c. Suppose we want to recognize ac. This can be done in three

different ways since the empty b can be recognized before a , after a or after c.

The three possible parses are shown as dotted paths in the figure. Fortunately, it

is irrelevant for the result of a parse where exactly the empty b is derived, since

order is not important. This allows us to use a strategy similar to the one proposed

by Cameron (1993): parse nonempty constituents as they are seen and allow the

parser to stop if all remaining elements are optional. When the parser stops the

default values are returned for all optional elements that have not been recognized.

The right tree in Figure 4 depicts this strategy for our three element example. The

additional leaves mark the positions where the parser is allowed to stop. The string

ac can now be parsed in only one way.

To implement this strategy we need to be able to determine whether a parser

can derive the empty string and split it into its default value and its non-empty

part, i.e. a parser that behaves the same except that it does not recognize the empty

string. Both parts are represented as Maybe values: the first component is Nothing

if and only if the parser cannot recognize the empty string. If the second component

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

Functional pearl 641

is Nothing , the parser does not consume any input. Hence, it is either a succeed

(i.e. it just carries semantics) or a fail . The splitting of parsers is represented by the

ParserSplit class that is an extension of the normal Parser class. If the underlying

parser combinator library cannot be easily adapted to cover this extension, one can

alternatively introduce additional combinators, similar to <> and <$<>>, and let the

user mark the optional elements explicitly (Leijen, 2001).

class Parser p ⇒ ParserSplit p where

split :: p a → (Maybe a ,Maybe (p a))

In the solution that does not deal with optional elements a parser for a permutation

follows a path from the root of a permutation tree to a leaf, i.e. an Empty node.

In the presence of optional elements, however, a parser may stop in any node that

stores only optional elements. We adapt the Perms data type to incorporate this

additional information. If all elements stored in a tree are optional then their default

values are stored in defaults , otherwise defaults is Nothing . The parser stored in each

Branch is not allowed to derive the empty string. We can express the former Empty

constructor as a function now.

data Perms p a = Choice {defaults :: (Maybe a), branches :: [Branch p a]}
empty x = Choice (Just x) []

The function permute is straightforwardly adapted to the generalized data type:

permute :: Parser p ⇒ Perms p a → p a

permute (Choice da bsa) = exit da

�� choice (map branch bsa)

exit :: Parser p ⇒ Maybe a → p a

exit (Just va) = succeed va

exit Nothing = fail

Note the similarity to the old definition. The only difference is the possibility to exit

early where a default value is present in the tree.

3.4 Building a permutation tree

Permutation trees are created by adding the elements of the permutation one by one

to an initially empty tree. The function add takes a pair consisting of an optional

default value and a parser that does not recognize the empty string, and adds it to

an existing tree.

add :: (Maybe a , p a) → Perms p (a → b) → Perms p b

add (da , pa) ta→b = case ta→b of

Choice da→b bsa→b →
Choice (ap da→b da)

(Br pa ta→b : map ins bsa→b)

where ins (Br px tx→a→b) = Br px (add (da , pa) (mapPerms flip tx→a→b))

Having a default value means that the parser described by the permutation tree can

accept the empty string. Surely, for the constructed tree, that is only possible if both

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

642 A. I. Baars et al.

the original tree has a default value and da is not Nothing . Then, the new default

value can be built from the two using function application. The function ap does

exactly this – it is function application lifted to Maybe types.

ap :: Maybe (a → b) → Maybe a → Maybe b

ap (Just f) (Just x) = Just (f x)

ap = Nothing

We can add a new element (da , pa) to a permutation tree by inserting it in all possible

positions to every permutation that is already in the tree. The function add explicitly

constructs the tree that represents the permutation in which pa is the top element.

Additionally, for each branch of the original tree, the top element is left unchanged,

and (da , pa) is inserted everywhere (by a recursive call to add) in the subtree. Because

the new element and the top element of the branch are now swapped, the function

resulting from the subtree of the branch gets its arguments passed in the wrong

order, which is repaired by applying flip to that function.

The function mapPerms is a mapping function on permutation trees. In a branch,

fa→b is composed with the function that results from the subtree.

mapPerms :: (a → b) → Perms p a → Perms p b

mapPerms fa→b (Choice da bsa) = Choice (fmap fa→b da)

(map (mapBranch fa→b) bsa)

mapBranch :: (a → b) → Branch p a → Branch p b

mapBranch fa→b (Br px tx→a) = Br px (mapPerms (fa→b◦) tx→a)

We now define two operators for building permutation trees. The first is an

operator that extends a permutation tree with a new element.

(<>) :: ParserSplit p ⇒ Perms p (a → b) → p a → Perms p b

t <> p =

case split p of

(Just e , Just ne) → add (Just e , ne) t -- optional element

(Nothing , Just ne) → add (Nothing , ne) t -- required element

(Just e ,Nothing) → mapPerms (λf → f e) t -- pure semantics

(Nothing ,Nothing) → Choice Nothing [] -- fail

The second provides an empty permutation tree with initial semantics. It has a

similar functionality as the $<> for normal parsers.

(<$<>>) :: ParserSplit p ⇒ (a → b) → p a → Perms p b

f <$<>> p = empty f <> p

An example with three permutable elements, corresponding to the tree in Figure 3,

can now be realized by:

permute ((,,) <$<>> int <> char <> bool)

where int , char , and bool are parsers for literals of type Int , Char , and Bool ,

respectively. Then all permutations of an integer, a character and a boolean are

accepted, and the results of a successful parse are combined using the triple

constructor (,,), thus yielding a value of type (Int ,Char ,Bool).

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

Functional pearl 643

3.5 Separators

Permutable elements are often separated by symbols that do not carry meaning –

typically commas or semicolons. Consider extending the three-element example

to the Haskell tuple syntax: not just the elements, but also the parentheses

and the commas should be parsed. Since there is one separation symbol less than

there are permutable elements, our current variant of permute cannot handle this

problem.

Therefore we define permuteSep as a generalization of permute that accepts an

additional parser for the separator as an argument. The semantics of the separators

are ignored for the result.

permuteSep :: Parser p ⇒ p b → Perms p a → p a

permuteSep s perm = permuteSep ′ (succeed ()) s perm

The function permuteSep ′ now converts a permutation tree into a parser in almost

the same way as the former permute, except that before each permutable element

a separator is parsed. To prevent that a separator is expected before the first

permutable element, we make use of the following simple trick. The permuteSep ′

function expects two extra arguments: the first one will be parsed immediately before

the first element, and the second will be used subsequently. Using succeed () as first

extra argument in permuteSep leads to the desired result.

permuteSep ′ :: Parser p ⇒ p c → p b → Perms p a → p a

permuteSep ′ sf s (Choice da bsa) = exit da

�� sf ∗> choice (map (branchSep s) bsa)

branchSep :: Parser p ⇒ p b → Branch p a → p a

branchSep s (Br px tx→a) = flip ($) $<> px ∗<> permuteSep ′ s s tx→a

The permute function can now be implemented in terms of permuteSep.

permute :: Parser p ⇒ Perms p a → p a

permute = permuteSep (succeed ())

To return to the small example, triples of an integer, a character, and a boolean –

in any order – are parsed by:

parens (permuteSep (symbol ’,’) ((,,) <$<>> int <> char <> bool))

4 Applications

4.1 XML attributes

We now demonstrate the use of the permutation parsers by showing how to parse

XML tags with attributes. For simplicity, we just consider one tag (the img tag

of XHTML) and only deal with a subset of the attributes allowed. In a Haskell

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

644 A. I. Baars et al.

program, this tag might be represented by the following data type.

data XHTML = Img{src :: URI

, alt :: String

, longdesc :: Maybe URI

, height :: Maybe Int

, width :: Maybe Int

}
| . . .

Our variant of the img tag has five attributes of three different types. We use

Haskell’s record syntax to keep track of the names. The first two attributes are

mandatory whereas the others are optional. We choose the Maybe variant of their

types to reflect this optionality. Our parser should be able to parse the attributes in

any order, where any of the optional arguments may be omitted. For the parsing

process, we ignore whitespace and assume that there is a parser

token :: Parser p ⇒ String → p String

that consumes just the given token and fails on any other input.

Using the permute combinator, writing the parser for the img tag is easy:

imgtag :: ParserSplit p ⇒ p XHTML

imgtag = token "<" ∗> token "img" ∗> attrs ∗< token "/>"

where attrs = permute $ Img <$<>> field "src" uri

<> field "alt" string

<> optional (field "longdesc" uri)

<> optional (field "height" int)

<> optional (field "width" int)

optional :: Parser p ⇒ p a → p (Maybe a)

optional p = Just $<> p �� succeed Nothing

The order in which we denote the attributes determines the order in which the

results are returned. Therefore, we can apply the Img constructor to form a value of

the XHTML data type. The helper function field is used to parse a single attribute.

field :: Parser p ⇒ String → p a → p a

field s p = token s ∗> symbol ’=’ ∗> p

4.2 Haskell’s record syntax

Haskell allows data types to contain labelled fields. If one wants to construct a

value of that data type, one can make use of these names. The advantage is that

the user does not need to remember the order in which the fields of the constructor

have been defined. Furthermore, all fields are considered as optional. If a field is not

explicitly set to a value, it is silently assumed to be ⊥.

Whereas compilers support order-free syntax (the record fields in a program can

be ordered arbitrarily), the read function expects the fields in the same order as

in the data type declaration. The resulting asymmetry is unfortunate. Using the

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

Functional pearl 645

permuteSep combinator, it is an easy task to write more flexible parsers for data

types with labelled fields.

justOrNothing :: Parser p ⇒ p a → p (Maybe a)

justOrNothing p = Just $< token "Just" ∗<> p

��Nothing $< token "Nothing"

img :: ParserSplit p ⇒ p XHTML

img = token "Img" ∗> token "{" ∗> fields ∗< token "}"

where fields = permuteSep (symbol ’,’) $

Img <$<>> recordfield "src" uri

<> recordfield "alt" string

<> recordfield "longdesc" (justOrNothing uri)

<> recordfield "height" (justOrNothing int)

<> recordfield "width" (justOrNothing int)

We use recordfield here to parse a single optional record field, returning ⊥ if it is

not present.

recordfield :: Parser p ⇒ String → p a → p a

recordfield f p = field f p �� succeed ⊥

5 Conclusion

We have shown how to extend a parser combinator library with the functionality to

parse free-order constructs. It can be placed on top of any combinator library that

implements the Parser interface. A user of the library can easily write parsers for

free-order constructs and does not need to care about checking and reordering the

parsed elements. Due to the use of existentially quantified types the implementation

of reordering is type safe and hidden from the user.

The underlying parser combinators can be used to handle errors, such as missing

or duplicate elements, since the extension inherits their error-reporting or error-

repairing properties.

We have shown how our extension can be used to parse XML attributes and

Haskell records. Other interesting examples mentioned by Cameron (1993) include

citation fields in BibTEX bibliographies and attribute specifiers in C declarations.

Cameron’s pseudo-code algorithm uses a similar strategy. It does not show, however,

how to maintain type safety by undoing the change in semantics resulting from

reordering, nor can it deal with the presence of separators between free-order

constituents.

References

Cameron, R. D. (1993) Extending context-free grammars with permutation phrases. ACM

Lett. Program. Lang. Syst. 2(4), 85–94.

Fokker, J. (1995) Functional parsers. Advanced Functional Programming, First International

Spring School: LNCS 925, pp. 1–23. Springer-Verlag.

Hutton, G. and Meijer, H. (1988) Monadic parser combinators. J. Funct. Program. 8(4),

437–444.

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

646 A. I. Baars et al.

Leijen, D. (2001) Parsec, a fast combinator parser. http://www.cs.uu.nl/~daan/parsec.

html.

Peyton Jones, S. (2003) Haskell 98 Language and Libraries. Cambridge University Press.

http://www.haskell.org/report.

Röjemo, N. (1995) Garbage collection and memory efficiency in lazy functional languages. PhD

thesis, Chalmers University of Technology.

Swierstra, D. (2001) Combinator parsers: From toys to tools. In: Hutton, G. (editor), Electronic

Notes in Theoretical Computer Science, vol. 41. Elsevier.

Swierstra, D. and Duponcheel, L. (1996) Deterministic, error correcting combinator

parsers. Advanced Functional Programming, Second International Spring School: LNCS 1129,

pp. 184–207. Springer-Verlag.

Wadler, P. (1985) How to replace failure with a list of successes. Functional Programming

Languages and Computer Architecture: LNCS 201, pp. 113–128. Springer-Verlag.

https://doi.org/10.1017/S0956796804005143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005143

