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SOME BOUNDS FOR THE DEGREE OF COMMUTATIVITY
OF A p-GROUP OF MAXIMAL CLASS

ANTONIO VERA-LOPEZ AND GUSTAVO A. FERNANDEZ-ALCOBER

In this paper we obtain several lower bounds for the degree of commutativity of a
p-group of maximal class of order pm. All the bounds known up to now involve
the prime p and are almost useless for small m. We introduce a new invariant 6
which is related with the commutator structure of the group G and get a bound
depending only on 4 and m, not on p. As a consequence, we bound the derived
length of G and the nilpotency class of a certain maximal subgroup in terms of
b. On the other hand, we also generalise some results of Blackburn. Examples are
given in order to check the sharpness of the bounds.

For p a prime number and m ^ 4, a group G of order pm and nilpotency class
rre — 1 is called a p-group of maximal class. Setting G,- = 7«(G) for i ^ 2, we have
Gm-i 7̂  1 and Gi — 1 for i ^ m. We define the characteristic maximal subgroup Gi
by means of

G1/G4 = C7G/G4(G2/G4).

The degree of commutativity c = c(G) of G is then given by

c(G) = max{fc < m - 2 | [Gi,Gj] < Gi+j+k for all i,j > 1}.

It is clear that c(G) ^ 0, and that c(G) — m — 2 if and only if Gi is Abelian. If we
take elements s G G — (Gi U Go(Gm_2)) and si G Gi — G2, we define recursively 8{ =
[si-i,s] for i > 2. Then «j G G{ — Gi+i for 1 ^ z < m — 1, so that Gi — (aj,Gj+i) and,
in particular, G = (s,Si,... , s m _ i ) . Since [si,Sj] G Gi+j+c, we can define a(i,j) G Fp

for i + j < m — c — 1 by the relation

(1) I»i,'i] = »$i2c (mod Gi

We suppose henceforth p ^ 3, the 2-groups of maximal class being well-known (see [2,
III, 11.9]). Then the a(i,j)'s satisfy the following conditions (see [8]):

(Cl) At least one element a(l,j) is non-zero.
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(C2) a(i,j) — —a(j,i) and a(i,i) — 0 whenever defined.
(C3) a(i,j) = a(i + l,j) + a(i,j + 1) for i +j < m - c - 2.
(C4) a(i,j) = a(i+p-l,j) = a(i,j +p-l) for i + j ^ m - c -p.
(C5) For i + j + k < m - 2c - 1,

a(i,j)a(i + j + c,k) + a(j,k)a(j + k + c,i) + a(k,i)a(k + i + c,j) = 0.

We note that (Cl) and (C4) together imply that we cannot have a( l , j) — 0 for p — 1

consecutive values of j .

As formula (1) shows, the commutator relations of G derived from the generators s;

are simpler when c(G) is large. For this reason, it is interesting to obtain general lower

bounds for c(G), which will allow us to simplify calculations when handhng p-groups

of maximal class.

In this sense, the first known results are due to Blackburn [1], who can no doubt

be considered as the pioneer in the study of this class of groups. He proves that

c(G/Z(G)) ^ 1 always holds and gets the bound m ^ p + 1 for the exponent of

\G\ when c(G) = 0. We generalise this last inequality in the following theorem.

THEOREM 1 . Let T be the tamHy at the p-groups of maxima] class such that

c(G) ^ c{G/Z(G)).HG^T then c(G) Zm-p-1.

PROOF: Set G = G/Z(G). If c{G) = m - 2, the theorem is obvious. Otherwise
c(G) < TO - 4 and c(G) ̂  c(G) + 1. Thus, for i + j < m - c - 2 we have [Gj, Gj] <
d+j+c+i whence [Gi,Gj] < Gi+j+c+i and a(i,j) = 0. If c < m — p - 2 then (C4)
implies a(l,m — c — 2) — a(l,m — c — p — 1) = 0. Consequently, a(l,j) — 0 for all j ,

which contradicts (Cl). u

For example, for any group G with c(G) = 2 and c(G) ^ 3 we obtain \G\ < pp+3.

Define a = a(G) by the condition that Ga is the maximal normal Abelian subgroup
of G. Blackburn shows that c(G) ^ m — p— 1 for o = 2 (that is, for G metabelian)
and c(G) ̂  TO — p — la + 4 for a ^ 3. He also indicates that this is probably the
best possible result for a < p. Later, Shepherd [8] and Leedham-Green and McKay [5]
obtained independently the bound c(G) ^ [(TO — 3p + 7)/2] which depends only on m
and p. This bound can be improved to 2c(G) ̂  m—2p+5 when Gi has nilpotency class
2. This was proved by Leedham-Green and McKay [6, Theorem 9.7], as a consequence
of their construction of all p-groups of maximal class with G\ of class 2. They reduce
this problem to the calculation of HomCp (O/ty^1 A O/Vp1'1,0/^m~f) for certain
m and t, where O is the ring of integers in the pth cyclotomic field generated by a
primitive complex pth root 9 of 1, 9p is the ideal generated by K = 9 — 1 and Cp acts
via multiplication by 9. Next, we give a direct proof of this result which just involves
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the basic properties of the a(i,j)'s and the formula [8, Lemma 2.3]

(2) a(i,j) = 2^. (~l)"~l( • ) a( I / i ' / + l) for i + j ^ m — c — 1,

which is easily derived from (C3).

THEOREM 2 . (Leedham-Green, McKay) Let p ^ 5 and suppose G\ has nilpo-

tency class 2. Except for the case when \G\ = 56 and c(G) — 0, we have

2c(G) ^ m - 2p + 5.

PROOF: First of all, we observe that once the above-mentioned case is dropped,
the result is easily checked for p^ m — c — 1. So we can suppose p ^ m — c — 2. Since
d is of class 2, we have [Gi,Gi] = G« with c + 3 < i ^ r o - l and [Gi,Gt] = 1.
From the values of these commutators we deduce that a ( l , j) — 0 for 1 ^ j ^t — c — 2
and, i f f ^ m — c — 2, also for t^j^m — c — 2. (Note that, in this last case, we get
m — c — t — 1 consecutive zero values). Define k as

k - min{j | a ( l , j ) ^ 0}.

Since we cannot have ct(l,j) — 0 for 1 ^ j ^ p— 1, it follows that < —c —1 ̂  k ^ p— 1.

It is clear, by induction on i and using (C3), that a(i,j) = 0 for i + j ^k.

If k ^ p — 5 then i < c + p — 4. On the other hand, m — c — < — l ^ p - 2

(otherwise we would get p — 1 consecutive zeros). Combining these inequalities we

obtain 2c ^ m — 2p + 5 in this case.

Suppose now that p — 4 ^ f c ^ p - l . From (2) we have

[*/2]

If A: is odd then u + (v + 1) < k and a(i/,i/ + l) = 0 for v = 1, . . . ,[Jb/2]. Hence
a(l, fc) = 0, impossible. Consequently k = 21 is even and k = p — 1 or p — 3. Formula
(2) then yields

a(l,ib) = (-1)'"1*, a(l , Jb + 1) = (-1)'"1/*

and, if k = p — 3,

«(1,* + 2) = ( - I ) ' " 1 (Z + X )x+(- l ) 'y , o(l,k + 3) = ( - I ) ' " 1 ^ + 2 )«+(- l ) ' (Z + 1)1/,

where we have put x = a(l,l + 1) and 1/ = a(l + 1,1 + 2). Observe that a{l,k) ^ 0
implies i / O .
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' 1lIf k — p - 1, we derive a ( l , l ) = a(l,p) = (-1)' 1lx ^ 0, a contradiction. If
k — p — 3 we have

0 = a(l,p) = ( - I ) ' " 1 (Z 3 2 ) " + ( - l ) ' ( ' + l)y-

whence y = [(/ + 2)1/6] x. Thus

In this way, we have proved that a(l , j) ^ 0 for p — 3 ^ j ^ p - 1. According to
(C4), there can not exist more than p — 4 consecutive values of j with a( l , j ) = 0.
Consequently m — c — t — 1 ^ p — 4. On the other hand, from t — c — 1 ^ & we get
i ^ c + p - 2 and 2c ^ m - 2p + 5 follows. D

Our main interest in the theory of p-groups of maximal class is the study of their
number of conjugacy classes and the orders of the different centralisers of their elements
(see [9, 10, 11]). We have focused on solving these problems for groups of small order
(|G| ^ p9) but p arbitrary. For this purpose, the aforementioned bounds give little
information about c{G), since p appears affected by a minus sign in all of them. This
fact has led us to search for new lower bounds for c(G) which are independent of p
and good enough for small values ofm. In the following, we expose the results of our
research in this direction.

If G is a p-group of maximal class, we define

b - b(G) = min{fc | [<?,-, G,-] < Gi+j+e+1 for all i,j ^ k}.

It is clear that 6 = 1 if and only if G\ is Abelian, that is, c(G) = m — 2. So we can
restrict our attention to the case 6 ^ 2 . Obviously 6 ^ o and, if t = [{m — c)/2], from
[Gt,Gt] = 1 we derive b ^ t, that is, c(G) < m — 26. In particular, b < m/2 always
holds and the value of b is controlled by m.

Now we can be precise about what kind of bounds we are looking for: bounds for
c(G) of the type

where \,v G N and fi £ Z , which we shall call (m,6)-type bounds, in contrast with

bounds like

r(r\ > m ~ X

which we shall refer to as (m,p)-type bounds.
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From the definition of 6 we have a(i,j) = 0 for i,j ^ b whenever denned. Next,
we see that the rest of the a(i,j)'s can be expressed in terms of the a(k,b)'s with
1 < Jfe s $ 6 - l .

In the remainder, we work with generalised binomial coefficients, that is, for n , k 6

LEMMA 3 . Let 1 < i < 6 - 1 .

Jb=O

(ii) It i < j < b - 1 tiien

j-i-i

PROOF:

(i) We argue by induction on j ^ i . If j = 6 (3) trivially holds. Suppose
j > b. Prom (C3) we have a(i, j) - a(i,j - 1) - a(i + 1, j - 1). Now
the result follows from the inductive hypothesis applied to a(i, j — 1) and
a(i + l,j — 1), except for the case i = b — 1, when a(i + 1, j — 1) = 0.

(ii) It suffices to prove that, for i ^ j ^ b — 1,

^ k{ J
This can be done by backwards induction on j ^ 6 — 1 and, for each fixed
value of j , by applying backwards induction on i ^ j and using (C3).

D
We note that a(6 — l, j) ^ 0 for j — b,... ,m — c — b. Otherwise, since (3) yields

a(b — l , j ) = a(b — 1,6) for 6 < j ^ m — c — 6, we would have a(6 — l,j) = 0 for all
those j . But then [Gb-i,Gj] ^ Gt+j+c for j ^ 6 — 1, contradicting the definition of b.
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LEMMA 4 . If G £ T, then 6 = a and c(G) =m-2b.

PROOF: AS shown in the proof of Theorem 1, a(i,j) = 0 for i + j ^ m — c — 2.
On the other hand, (3) yields

k=o

Suppose c(G) ^ m - 2b - 1. For k = 0 , . . . , b - 2 we have (Jfe + l ) + 6 < m - c - 2 ,
whence a(k + 1,6) = 0 and a ( l , m — c - 2) = 0 . Consequently a(l,j) = 0 for all j ,

impossible. Hence c(G) — m — 26. Since [9, Lemma 1.6] shows that c(G) — m — 2a,

we have b — a. U

T H E O R E M 5 .

(i) Let 1 < i < 6 - 1. If a{i,j) ^Oforb^j^m-c-i-1, then
c(G) ^m-p-b-i + 2.

(ii) lib = 2 then c(G) ^ m - p - 1. Also, c(G) ^ 1 always holds.
(iii) If 6 > 3 tAen c(G) ^ m - p - 26 + 4. Hence c(G) =m-p-2b + k with

4 < Jfc < p .

PROOF:

(i) If c ^ m — p — 6 — i + 1, we have at least p — 1 integers in the interval
[6,T7i — c—i — 1}. Choose j =i (mod p — 1) such that 6 ̂  j ' ^ m — c—i — 1.
Then (C4) implies a(i , j) = ot(i,i) — 0, a contradiction,

(ii) As observed, a(6 — l, j) ^ 0 for 6 < j < m — c — b. From part (i),
c ^ m — p — 26+ 3 for 6 ^ 2 . This proves c > m — p — 1 for 6 = 2.
Besides, if c = 0 then G £ T and Lemma 4 provides m = 4, impossible
since [GUG2] < G4.

(iii) Suppose c(G) = m — p — 26+3. On the one hand we have

a(b - 2,m - c - 6 + 1) = a(6 - 2,m - c - 6 - p + 2) = a(6 - 2,6 - 1) = a(6 - 2,6)

and, from (3),

a(6 - 2,m - c - 6 + 1) = a(6 - 2,6) - (m - c - 26+ l)a(6 - 1,6)

= a(6 - 2,6) - (p - 2)a(6 - 1,6).

It follows that a(6 — 1,6) = 0 in Fp , impossible.

D
Par ts (ii) and (iii) in the last theorem show that we can replace a by 6 in Black-

burn 's bounds. We observe that the inequality c(G) ^ m — p — 26 + 3 for 6 ^ 2 is also

https://doi.org/10.1017/S0004972700014180 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014180


[7] A p-group of maximal class 359

proved, arguing in a different way, in [8, Lemma 1.21]. The bound in (ii) can not be
improved, since Miech [7] proves that, for p ^ 3 and m > p + 1, there exist metabelian
p-groups of maximal class of order p m and degree of commutativity c(G) = m — p — 1.
Nevertheless, the question of whether the bound in (iii) is best possible still remains.

COROLLARY 6 . Suppose 6 ^ 2 . Tien, a - b = 2 or a E [b,b + ( p - 5 ) / 2 ] ,

according as p = 3 or p ^ 5.

PROOF: Suppose c = m-2a. If a(a - l ,o) = 0 then [G o - i ,G o - i ] = [Ga-i,Ga] <
Gia+c — 1, impossible. Hence a(a — l ,a) ^ 0 and b — a in this case. On the other
hand, if c ^ m — 2a, [9, Lemma 1.6] yields c ^ m — 2a — 1. Since c ^ m — p — 26 + 3
for 6 ̂  2, we get 2a < p + 26 — 4 and a ^ 6 + (p — 5)/2. Thus p ^ 5 in this last case.
So p = 3 implies c — m — 2a and we deduce that a = b = 2 from the bound c ^ m — 4
(see [1, Theorem 3.13]). D

EXAMPLE. Let p ^ 7 be a prime number and 3 ^ a ^ (p — l ) / 2 . Then, for every
77i ^ 4a — 2 there exists a p-group of maximal class G of order p m with b(G) — 2

and a(G) — a. Hence the bounds for a in the previous corollary can not be improved
for 6 = 2. (Note that the existence of groups with 6 = a = 2 is assured by Miech's
construction of the metabelian p-groups of maximal class.)

The groups of our example can be presented as G — (s, s< | i ^ 1), subject to the
relations:

(Rl) aP = l;

(R2) ' n ^ + r ^ l . fori^l;
(R3) Si = l, for i > m ;

(R4) [ai,s]=»i+lt fort^l;

... .i . - - ° ~ 1 a n d
(R6)

1, otherwise.

In (R5) the value of c is taken to be m — 2a — 1. This will be the degree of
commutativity of the group in question.

The explicit construction of this group can be performed in the following steps:

(1) Define Ga = (si \i ^ a), with the corresponding relations among those above.
This group is Abelian and has order pm~°.

(2) Construct Gi — (ai | i ^ 2) as an Abelian extension of Ga (for the theory of
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Abelian extensions, see [12, III, Section 8]). We have that \G2\ = pm~2 •
(3) Get Gi = (a,- |» > 1) as a cyclic extension of G2. Then |Gi| = p"1"1.

(4) Finally, consider the automorphism 8 of G\ defined by a' = «,•«<+1 for i ^ 1.
Then, o(a) = p and G = Hoi (Gi, (a)) is the group desired.

Shepherd constructs in [8, Example 3.26], a metabelian p-group of maximal class
of order p*"1"2 with c(G) = 1. This shows that, for 6 = 2, there exist no (m,6)-type
bounds. But, according to the following theorem, they do exist for 6 ^ 3 .

THEOREM 7 . Ub^Z then c{G) > (m - 36 + 3)/2.

PROOF: Assume, on the contrary, that 2c < m-36 + 2. Then TO-2c-1^ 36-3
and we can apply (C5) to the triple (6 — 2,6 — 1,6) getting

a(b - 2,6 - l)a(26 + c - 3,6) + a(6 - 1,6)a(26 + c - 1,6 - 2)

+ a(b, b - 2)a(26 + c - 2,6 - 1) = 0.

Since a(26 + c -3 ,6 ) = 0 and o(6 - 1 ,26+c-2) = a ( 6 - l , 6 ) ^ 0, we derive

a(6 - 2, b) = a(b - 2,26 + c - 1) = a(b - 2,6) - (6 + c - l)a(6 -1 ,6) ,

by making use of (3). Thus 6 + c — 1 = 0 (mod p) and b + c — 1 ^ p. On the other
hand, from Theorem 5 we have p ^ m — c — 26 + 4. Consequently 2c ^ m — 36 + 5, a
contradiction. 0

From this (m, 6)-type bound we can derive several results about the nilpotency
class of Gi and the derived length of G, similar to those obtained in [8] and [5] from
the (m,p)-type bound 2c ^ m — 3p + 6, but with 6 playing the role of p.

In the following, we denote the nilpotency class of a nilpotent group K by cl K
and its derived length by dlK. Also, for x G R, let [x]» denote the smallest integer
greater than or equal to x.

COROLLARY 8 . Suppose 6 ^ 3 . T i e following assertions hold:

(i) Ifc(G) ^ 1 tien clGi s* 6. If c(G) = 1 then e l d ^ [3(6- l) /2]. .
(ii) If TO ̂ 9 6 - 1 9 tien e l d < 3 .

PROOF:

(i) If c(G) = 0, we have TO = 26 from Lemma 4. Now, Corollary 1.15 of
[8] yields clGi ^ m/2 = b. Suppose c(G) ^ 1. An easy induction gives
H+i(Gi) ^ Gi(c+i)+2 for i ^ 1. So i(c + 1) + 2 ^ TO proves that cl Gi <
i. If c ^ 2 then (6 - 2)c ^ 26-5 , that is, 6(c+l) + 2 ^2c + 3 6 - 3 ^ m ,
by using Theorem 7. Consequently cl G\ ^ 6 in this case. Analogously,
for c = 1 it suffices to show that 36—1 ̂  TO, which is again a consequence
of Theorem 7.
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(ii) We have 74(Gi) ^ GSc+5 and

3c + 5 ̂  l(m - 3 6 + 3) + 5 + m ~ 96 + 19

since TO ̂  96 -19 .

D

We note that for 6 = 2 there is no possible bound for cl G\ of the kind of the preced-
ing corollary, since the group in the aforementioned example of Shepherd is metabelian
and clGx = (p + l ) /2 .

COROLLARY 9 .

(i) dlG^[log2(2a + 2)].

Moreover, if 6 ̂  3 we iave:

(ii) dlG^[log 236].
(iii) If TO ̂  2o + 36 - 13 or m ^ 96 - 31 then dl G ^ 3.

PROOF: First of all, we note that G >̂ < Gt with t = 3.2'"1 + c(2i"1 - l) - 1 is
easily proved by induction on j ^ 1.

(i) Let i Z 2. If G ^ ± 1 then Go_i ̂  G^"1). Since c(G/Z(G)) ^ 1, it follows
in any case that G( i - 1 ) < G« with t = 3.21-2 + (2''~2 - l) - 1 = 2* - 2. Consequently,
2I+1 < 2a + 2 and i + 1 < log2 (2a + 2). Thus dl G ^ [log2 (2a + 2)], as required.

(ii) If c(G) = 0 then a = b and (i) yields dlG ^ [log2 (26 + 2)]. Hence we suppose
c ( G ) > l . If G ^ ^ l then

3.2i-1 + c(2'"1 - 1) - 1 s$ m - 1 «J 2c + 36 - 4,

since 6 ^ 3 . Consequently,

o < _ 1 ^ 3 c + 3 6 - 3 36-12 36-12 36
2 ^ c + 3 " 3 + "cT3"^3 + ^ T " - T '

whence 2 i + 1 ^ 36 and i + 1 ^ log2 36. Thus dl G ^ [log2 36].

(iii) If TO ̂  2a + 36 - 13 then

TO - 36 + 3 TO - 36 + 13
c + 5 ^ 1- 5 = ^ a,

whence G" < Go and dl G < 3. On the other hand, if TO > 96 - 31 then

nm-3b + 3 , , TO-96+ 31
3c + 11 ^ 3 „ + 11 = TO + — - — ̂  TO
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and G'" = 1. D

For p ^ 5 and 3 ^ m ^ p, Kovacs and Leedham-Green construct a p-group
of maximal class of order pm and derived length [log2 (TO + 1)] (see [3]). For these
groups we have a = [(TO — l)/2] and, consequently, dlG = [log2 (2a + 2)]. (Note that
[log2 (m + 1)] = [log2 TO] when TO is even.) Hence, for any a ^ 2 and any prime
p ^ 2a + 1, there exists a p-group of maximal class G with dl G — [log2 (2a + 2)].

From Theorem 7 we can also derive that the bound c ^ m — p — 26 + 4 in Theorem
5 (iii) can be improved for certain values of m.

COROLLARY 1 0 . Supposethat b^ 3 andiet 4 ^ k < p . Ifm ^ 2 ( p - Jfe) + 6 + 4
then c ^ m — p — 2b + k.

PROOF: If c < m - p - 2 6 + f c - l then TO-36+3 ^ 2c implies m > 2(p-fc) + 6+5,
impossible. Q

The bound in Theorem 7 is the best possible for 6 = 3 or 4, as the following
examples show.

EXAMPLE. Let p ^ 11 be a prime number and m an odd integer such that 11 ^ m ^ p.
Then, there exists a p-group of maximal class G of order pm with c(G) = (rn — 9)/2
and b(G) = a(G) = 4.

This group can be obtained by means of the Campbell-Hausdorff formula (see [4])
from the Lie algebra L over Fp with basis (eo,ei,.. . ,em_i) in which the Lie product
is defined as follows:

[e,-, a] = 0, for i ^ 0;

[ei,e0] = -[eo,ej] = e i +i , for i ^ 1;

[*, ej] - -[e,-, ti] = { 'j: (-l)k-i(j-kri
l)Xk}ei+j+t, for 1 < i < j .

Here, ê  = 0 for i ^ m, < = (TO - 9)/2, A,- = 0 for i > 4, A3 = 1, A2 = (t + 2)/2 and

Xi = (3t + 4)(< + 2)/4(< + 1). (Note that t + 1 ̂  0 (mod p).)

It can be checked, with the help of the theorem given in the Appendix, that these

relations indeed yield a Lie algebra.

In the particular case when TO = 11, we obtain for every p ^ 11 a p-group of

maximal class for which c(G) = 1 and clGi = 5 = [3(6 - l) /2], > 6.

We can derive in a similar way the group in the next example.

EXAMPLE. Let p ^ 11 be a prime number and 8 ^ TO ^ p an even integer. Then,
there exists a p-group of maximal class G of order pm such that c(G) = (TO — 6)/2
and 6(G) = a(G) = 3 .

Nevertheless, the bound c > (TO — 36 + 3)/2 can be improved for 6 > 5, as we see
in the next theorem.
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THEOREM 1 1 . If 6 ^ 5 then c(G) ^ ( m - 3 6 + 4)/2. Moreover, unless 6 = 5,
c = 1 and m = p = 13, we have c(G) ^ (m - 36 + 5)/2.

PROOF: First of all, Corollary 6 implies that p ^ 5. Suppose that 2c ^ m - 3 6 + 4 .
Then m - 2 c - 1 ^ 3 6 - 5 and from (C5) we have

(5) a(b - 4,6 - 3)a(c + 26 - 7,6) + a{b - 3,6)a(c + 26 - 3,6 - 4)

+ a(6,6 - 4)a(c + 26 - 4,6 - 3) = 0,

(6) a(b - 4,6 - 2)a(c + 26 - 6,6) + a(6 - 2,6)a(c + 26 - 2,6 - 4)

+ a(b, 6 - 4)a(c + 26 - 4,6 - 2) = 0,

(7) a(6 - 4,6 - l)a(c + 26 - 5,6) + a(6 - 1,6)a(c + 26 - 1,6 - 4)

+ a(6,6-4)a(c + 26 - 4 , 6 - 1 ) = 0,

(8) a(6 - 3,6 - 2)a(c + 26 - 5,6) + a(b - 2,6)a(c + 26 - 2,6 - 3)

+ a(6,6 - 3)a(c + 26 - 3,6 - 2) = 0.

If c = 0 then m ^ 36 - 4. On the other hand, ( ? G f and m = 26. So 26 > 36 - 4
and 6 ^ 4 , impossible. Thus c ^ 1 and c + 26 — 6 ^ 6, whence a(c + 26 — 6,6) =
a(c + 26 -5 ,6) = 0 .

Taking into account formula (3), from (8) we derive

(9) (c + 6 - 3)a(6 - 3,6)a(6 - 1,6) - (c + 6 - 2)a(6 - 2, bf

and, from (7),

Ifc + 6 - l = 0 (mod p) then c + 6 - l ^ p > m - c - 2 6 + 4 and 2c ^ m - 36 + 5, a
contradiction. Hence

(10) a (6-3,6) =

By substituting this value into (9), we obtain

a(b - 2,6)2 - (c + 6 - 3)a(6 - 2,6)a(6 -1 ,6 )+ (c + t
g~3) a ( b _ 1? 6)> = 0 .

Defining tt G Fp by the condition

(11) a(6-2 ,6)=«(c + 6 -3)a (6- l ,6 ) ,
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it follows that 6w2-6u+l = 0. (Note that u is well-defined, since (c + b- 3)a(6 - 1 , 6 ) ^
0.) Moreover, from (10) we have

(12) «(6 - 3, b) = ( 3 . - l ) ( c + f r - 2 )
6

( c + 6 - 3 ) a ( 6 - 1,6).

Now, equation (6) yields

(c + b- 4)a(6 - 4, b)a(b -l,b) = (c+b- 2)a(b - 3, b)a(b - 2, b)

and, taking into account (11) and (12),

(13) a(6-4,6)^(2,-l)(c

If either c ̂  2 or b ̂  6, we have a(c + 2b - 7, b) - 0. So (5) reduces to

a(b - 4,c + 26 - 3)a(b - 3,b) = a(b - 4,b)a(b -3,c + 2b- 4).

We can use (3) to express this equality in terms of the a(i,b) with 6 — 4 ^ t ^ 6 — 1.
Then (11), (12) and (13) give, bearing in mind that a(b - 1,6) ^ 0,

(24u2 - 24M + 5)c = -(246 - 72)u2 + (246 - 72)u - (56 - 13).

Since 6u2 - 6u + 1 = 0, it follows that c = -(6 - 1) in Fp , that is, c + 6 - 1 = 0
(mod p), which is impossible as we know.

So necessarily 6 = 5 and c — 1. Condition (5) is now expressed as

a( l , 8)a(2,5) = a ( l , S)a(2,7) + a( l , 2)o(4,5).

From (3), (4), (11), (12) and (13) it follows that 72u2 - 30u + 6 = 0. This, together
with 6tt2 — 6u + 1 = 0 , implies p = 13 and u = 2. If now 2c = m — 36 + 3, we can
apply (C5) to the triple (2,4,5) getting

a(2,4)a(7,5) + a(4,5)a(10,2) + a(5,2)a(8,4) = 0,

whence
a(2,5) = a(2,10) = a(2,5) - 5a(3,5) + 10a(4,5)

and a(3,5) = 2a(4,5). But we also have a(3,5) = 3wa(4,5) = 6a(4,5) and a(4,5) ^
0, impossible. Hence 2c = m — 36 + 4 and m = 13 in this case.
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Consequently, in the rest of the cases we have 2c ̂  m — 36 + 5, which completes
the proof. U

There is no problem in constructing a p-group of maximal class G of order 1313

with b(G) — 5 and c(G) = 1. To do this, consider the Lie algebra L over Fi3 with

basis (eo, e i , . . . , e^) and denned by the products

[ei,ei] = 0, for t ^ 0;

[ei,e0] = -[eo,e,-] = e<+i, for t ^ 1;

[*,e,-] = -[e,-,*] - { I) ( - l ) ' " ^ ' . ; 1 ) ^ } ^ ! . for 1 < i < j.

Here, e< = 0 for i ^ 13, A< = 0 for i ^ 5, A4 = 1, A3 = 6, A2 = 3 and Ai = 4.

It would be desirable to obtain an (TO, 6)-type bound for c(G) which is attained
for all values of 6. In order to do this, one should develop a systematic method of
handling the equations which arise from applying Shepherd's product formula (C5) to
the different triples (i,j,k).

APPENDIX: T H E CONSTRUCTION OF THE LIE ALGEBRAS

The construction of the Lie algebras in the examples after Corollary 10 and Theo-
rem 11 is based on the following result.

THEOREM. Let K be a field and L a Unite dimensional algebra over K, with
TO = dimL ^ 4 . Let (eo ,e i , . . . , e m _i ) be a basis of L and define ej = 0 for i^m.

Denote the multiplication in L by [ , ] and set

for i,j,k ^ 0. (We are adopting the convention that [x,y,z] — [[x,y],z].) Suppose

there exist integers a and c, with 0 ̂  c ^ TO — 2 and 1 ̂  o ^ (TO — c)/2, such that

[ , ] satisfies the following conditions:

(i) [ei,ei] = 0, fori^O.

(ii) [e,-, ej] = - [e;-, e<], forO^»<j.

(iii) [ej, e0] = e j + i , for i ^ 1.
(iv) [e,-, ej] e {ei+j+c), for 1 < i < a - 1 and i < j .
W [e,-,e,-] = 0, forij^a.

(vi) J(0,i,j) = 0, for 1 ̂  i < j .

(vii) J(i,j,k) = Q, for 1 < t < j < o - l , j < k and i + j + k = m-2c-l.

Then, L is a nilpotent Lie algebra of maximal class.

PROOF: Since (i) and (ii) hold, in order to prove that £ is a Lie algebra, it suffices
to see that J(i,j,k) = 0 for i < j < k.
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From (i), (ii) and (vi) it follows that J(0,i,j) = 0 for i,j ^ 0 and, since [ , ] is
bilinear,

[eo,x,y] + [x,y,eo) + [y,eo,x] =0 , for any x,y 6 L.

In particular,

[eo,[ej,ej],e*.] + [ei,ej,ek,e0] + [ek,e0, [ei,ej]] =0 , tor i,j,k ^ 1.

On the other hand, from (i) and (ii) we derive that [x,y] = — [y,x] for all x,y G L.
Hence

[ejb,eo,[ej,e,]] = [e*+i,[ej,e,-]] - -[ei,ej,ek+i\.

Also,

[eo,[ei,ej],ek] = -[ei,ej,eo,ek] = [ej,eo,ei,ek]

Consequently,

[ei,ej,ek,e0] = [e,+1,e,-,

From this relation we deduce that

[J(i, 3, k), co] = [ei,ej, ek,e0] + [e,-, ek, e,-, e0] + [ek, euej, e0]

= [ei+i,ej,ek] + [eitej+1,ek]

(14)

= J(i + l,j,k) + J(i,j• + l,k) + J(i,j,k + 1).

Let us now prove that J(i,j,k) = 0 for i < j < k. According to (vi), we can
suppose i ^ 1. If j ^ a then (iv) and (v) directly yield J{i,j,k) = 0. Suppose
then l^i<j^a — 1. I f i + j + fc^m — 2c, the result is again immediate. When
i +j+k 4: rn—1c—1 we argue by backwards induction on i+j+k. It i+j + k = m—2c—1
then J(i,j, k) — 0 by (vii). I f i + j + A:<7n — 2c — 1, the induction hypothesis gives

J(i + l,j,k) - J(i,j + l,k) = J{i,j,k + 1) = 0

and, by (14), [J(i,j,k),e0] = 0. Now, from (iv) and (v) there exists A 6 K such that
J(iJ,k) - Aej+,+jt+2c, whence [J(i,j,k),e0] = Xei+i+k+2C+1. Since i+j+k+2c+l <
m, it follows that A = 0 and J(i,j,k) — 0.

Finally, it is clear from the values of [ , ] given in the statement that, for i ^ 2,
Lx = (ek | k ^ i) and, consequently, L is nilpotent of class m — 1. D

This theorem tells us that, under the special conditions (iii), (iv) and (v) for the
basic Lie products, we need not check the Jacobi identity for all the range of values
i < j < k ^m-1, but only for i = 0 and 1 < j < k, and for 1 < i < j < a — 1, j < k
and i+j + k = m — 1c— 1.
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