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Abstract. 'We show that the order of an automorphism of an arithmetic Riemann
surface of genus g is not greater than 2g — 2, provided g is large enough. This bound
is an arithmetic analog of the classical Wiman bound. We prove that it is sharp and
attained for any genus but in contrast to the general case the automorphisms of
maximal order act without fixed points. This allows us to consider the automorphisms
which act on arithmetic Riemann surfaces and have a given number of fixed points.
For these automorphisms we describe the asymptotic behavior of their orders.
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1. Introduction. This paper continues a project on exploration of the connections
between arithmetic and geometric properties of hyperbolic manifolds, especially of
hyperbolic Riemann surfaces, started in [1], [2]. In the first paper the upper bound for
the order of the group of automorphisms of a non-arithmetic Riemann surface was
obtained. This gives a non-arithmetic analog of the classical Hurwitz theorem. The
result of the second paper is an arithmetic analog of Accola-Maclachlan lower bound
for the maximal order of the group of automorphisms of a surface. Now we focus
our attention on the maximal order of a single conformal automorphism acting on a
Riemann surface.

In the classical setting there is a well known result of Wiman [14] that any
automorphism of a Riemann surface of genus g > 2 has order not greater then 4g + 2
and this bound is attained for any g. The automorphism of the maximal order has
always 1 fixed point. In [11] it was shown that any automorphism with 2 fixed points
has order not greater than 4g, and in [6] that any automorphism with k& > 2 fixed points
has order not greater than 2g/(k — 2) + 1. By [5] the later bounds are also attained for
arbitrary g and k for which 2g/(k — 2) is an integer.

We restrict ourselves to the arithmetic Riemann surfaces; that is, the surfaces
uniformized by arithmetic Fuchsian groups. In Section 2 we show that for g > 11,
g # 15, the order of any automorphism of an arithmetic Riemann surface of genus
g is not greater then 2g — 2, this bound is also sharp and attained for any genus. In
contrast to the general case corresponding automorphisms always act without fixed
points unless their order is 2. This does not mean that automorphisms of arithmetic
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Riemann surfaces of order greater then 2 act without fixed points, of course. However,
in Section 3 we prove that for the automorphisms which act on arithmetic surfaces and
have k > 1 fixed points lim,_, o, n(g, k)/g = 0, where n(g, k) denotes the maximal order
of an automorphism acting on a surface of genus g with & fixed points.

For the sake of economy we do not devote separate section for preliminaries. The
principal tool is Borel’s discreteness theorem for the covolumes of arithmetic groups [3].
Our methods are based on the uniformisation theorem, the theory of Fuchsian groups
and known classification results for 2-generator arithmetic Fuchsian groups. Actually,
all the required facts and definitions can be found in [2]. We can also recommend [4] as
a source of information concerning methodology of combinatorial study of Riemann
surfaces and their groups of automorphisms.

2. Arithmetic Analog of Wiman Bound. Here we shall study the bound for the
order of an automorphism of an arithmetic Riemann surface of genus g > 2. The first
theorem shows that the general bound of Wiman fails to be sharp in the case of such
surfaces.

THEOREM 2.1. Given g > 2 there is an arithmetic Riemann surface of genus g
admitting a group of automorphism of order 2(g — 1). Conversely, if g is large enough then
any automorphism of an arithmetic surface of genus g has order not exceeding 2(g — 1).

Proof. We first construct an arithmetic Riemann surface of genus g > 2 with an
automorphism of order n=2(g —1). Let A be an arithmetic group with signature
(1;2,2); eg a subgroup of index 2 of an arithmetic Fuchsian group with signature
(1;2) which exists by [13]. Consider an epimorphism 6 : A= (a, b, x1, x5 | x}, x3,
[a, b]x1x2) = Z, = (x) defined by 8(a) =6(b)=x and 0(x;) =6(x>) =x2~!. Then it is
clearly a surface-kernel epimorphism, which shows that x represents an automorphism
of order 2(g — 1) acting on an arithmetic Riemann surface of genus g in virtue of the
Riemann-Hurwitz formula. This proves the first part of the theorem.

Now assume that an automorphism ¢ of an arithmetic Riemann surface X
has order n. Then (p) = A/T, where A is an arithmetic Fuchsian group say with
signature (y;mj, ..., m,) and I' =TIy is a Fuchsian surface group uniformizing X. By
Riemann-Hurwitz formula n = u(I")/u(A) = 47 (g — 1)/u(A). There is nothing to do
if w(A) > 27w since in this case n <2(g — 1). So assume that u(A) < 2. We shall show
that y > 0 if g is sufficiently large.

Consider set X, = {0;}ic; of all signatures with area smaller than 27 and with
orbit genus 0 which can appear as signatures of arithmetic Fuchsian groups. By
Borel’s discreteness theorem [3] 7 is finite. Let u=Max{u(o;)|i € I}. Now if A; is
a Fuchsian group with signature (0;my,...,m,) from X5, and 6;: A; - Zy, is an
epimorphism then N; < M;=1.c.m.{my, ..., m,}. Let N=Max{M;|i € I} and define
go=[uN/4r]+ 1, where [ ] denotes the integral part.

Coming back to our situation, if y =0 then 4w (g — 1) = u(A)n < uN which means
that g <go. So if g > g¢ then y > 0 indeed. But if y > 1 then u(A) <4sw which gives
n<g-—1. So we are interested in y =1. Let a, b, x,...,x, be a set of canonical
generators for A and let 6 : A —Z,=(p) be surface-kernel epimorphism. Then
6(aba='b~')=1 and therefore r>2. The minimum possible area in this case is 27
that is achieved only for signature (1; 2, 2), which means n <2(g — 1). This completes
the proof.
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In a contrast to the general case, the arithmetic Riemann surfaces of sufficiently
large genus with automorphisms of maximal order are not unique. Indeed, from [13]
follows that there are non-commensurable arithmetic groups of signature (1; 2, 2). So
for any genus g > 2 there exist non-isometric arithmetic surfaces with automorphisms
of order 2(g — 1). Now let us study the gap sequence in Theorem 2.1.

THEOREM 2.2. The values g <11 and g =15 are the only ones that can stand as the
genera of arithmetic Riemann surfaces admitting automorphisms of order greater then

2(g—1).

Proof. To prove this theorem we shall find the signatures that form the set X,
defined in the proof of Theorem 2.1. By Riemann-Hurwitz formula such signatures
are of the form (0;my, ..., m,) with r =3, 4, 5 (for short we shall write (m,, ..., m,)).
To refine X, we shall use known classification results about arithmetic Fuchsian
groups and the criterion of Harvey [7] by which a surface-kernel epimorphism from
such group onto a cyclic group of order # exists if and only if n =lLc.m.{my, ..., m,} =
lLem.my,...,m;,...,m} foranyiinrange 1 <i<r.

Let us start with r= 3. The list of all the arithmetic triangle groups was obtained
by Takeuchi in [12]. By Harvey criterion the only arithmetic triangle groups which
admit surface-kernel epimorphisms onto cyclic groups have signatures (2, 5, 10), (2, 7,
14), (2, 8, 8), (2,9, 18), (2, 12, 12), (2, 15, 30), (3, 4, 12), (3, 6, 6), (3, 8, 24), (3, 10, 30),
(3,12, 12), (4, 8, 8), (4, 16, 16), (5, 5, 5), (5, 10, 10), (6, 12, 12), (6, 24, 24), (7,7, 7), (9,
9,9), (9, 18, 18) and (15, 15, 15). They give actions of automorphisms of orders 10, 14,
8, 18, 12, 30, 12, 6, 24, 30, 12, 8, 16, 5, 10, 12, 24, 7, 9, 18, 15 on surfaces of genera 2,
3,2,4,3,7,3,2,7,9,4,3,6,2,4,5, 10, 3,4, 8, 7, respectively.

The helpful observation to enumerate signatures (m1;, my, ms, my) from X, is that
the signatures are determined by the Fuchsian groups up to an ordering of periods,
i.e. we can assume that m; <my <mj3 <my. Using the mentioned above criterion of
Harvey we find that the quadrangle signatures with u < 27 that admit surface-kernel
epimorphisms onto cyclic groups are: (2, 2, m, m) with m >3, (2, 3, 3, 6), (2, 3, 4, 12),
(2,3,5,30),(3,3,3,3),(3,3,4,4), (3, 3,5, 5). Let us check which of these signatures
can be realized by arithmetic Fuchsian groups. One can see that any group of signature
(2, 2, m, m) is contained as index 2 subgroup in a (2, 2, 2, m)-group. The usual way to
construct normal subgroups of index 7 is to define epimorphisms from a given group
onto finite groups of order n. In the cases we need the corresponding epimorphisms
can be casily obtained and we shall not write them down. All (2, 2, 2, m) signatures
that admit arithmetic groups are known [9], they correspond to m=3, 4, 5, 6, 7, 8,
9, 10, 12, 14, 18, 22. These gives automorphisms of orders 6, 4, 10, 6, 14, 8, 18, 10,
12, 14, 18 and 22 acting respectively on surfaces of genera 2, 2, 4, 3,6,4,8,5,6,7,9
and 11. Arithmetic groups of signature (2, 3, 3, 6) and (3, 3, 4, 4) can be obtained as
subgroups of index 2 in arithmetic triangle groups with signatures (3, 4, 12) and (3, 8,
8), respectively, where the later groups exist by [12]. An arithmetic group with signature
(3, 3, 3, 3) can be choosen as a normal subgroup of index 4 in an arithmetic Fuchsian
group with signature (2, 2, 2, 3) existing by [9]. For the remaining three signatures we
shall apply Singerman’s method [10] which gives necessary and sufficient conditions
for a group A to have a non necesarily normal subgroup A; of index N in terms
of epimorphisms from A onto finite permutation groups transitive on N points. For
signature (2, 3, 4, 12) there exists a group that is contained as a subgroup of index 5 in an
arithmetic triangle group with signature (2, 4, 12) existing by [12]. The corresponding

homomorphism 6 from (xi, x2, x3|x7, x3, x}%, x1x2x3) onto transitive subgroup
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of symmetric group Ss is defined by 6(x;)=(1,2)(3,4)(5), 0(x2)=(1,5,4,2)(3),
0(x3)=(1)(2, 3,4, 5). By [12] there exists an arithmetic group with signature (2, 3,
30), it contains a group with signature (2, 3, 5, 30) as a subgroup of index 7. The
corresponding epimorphism 6 from (xi, x3, X3 |xf,x§,x§0,x1x2X3) onto transitive
subgroup of S7 is defined by 0(x;)=(1, 2)(3, 4)(5, 6)(7), O(x2)=(7, 6,4)(2, 1, 3)(5),
0(x3)=(3,2,4,5,6,7)(1). Finally, by [12] there exists an arithmetic Fuchsian group
with signature (3, 3, 5) and it contains a subgroup with signature (3, 3, 5, 5) defined
by means of epimorphism 6(x;)=(1,2,3)4,5,6)(7), 6(x2)=(1, 3,4)(7,6,5)2),
0(x3)=(1,6,7,4,2)3)(5). Concluding, we obtain automorphisms of orders 6, 12, 30,
3,12, 15 acting on surfaces of genera 3, 6, 15, 2, 6, 8, respectively.

Finally, by Harvey criterion there are no any signatures with r=5 and u < 27 that
admit surface-kernel epimorphisms onto cyclic groups.

From the proof of Theorem 2.2 it follows:

COROLLARY 2.3. All cyclic automorphisms groups of orders exceeding 2(g — 1) which
can act on arithmetic Riemann surfaces of genus g are given in the following table

Genus Cyclic groups of automorphisms
2 Zio, 23, 26, Zs, 24,73
3 24, 212,28,77, Zs
4 713, 212, Zyo, 2y, Zg
5 VAYIVAT
6 Zis, L14, L1z
7 230, 224, L5, 214
8 VATIVAT
9 Z30, Z1g

10 yon
11 Z»
15 Z30

Observe that the above Corollary combined with Theorem 2.1 solves the minimum
genus problem for automorphisms of even order of arithmetic Riemann surfaces.

3. Automorphisms with Fixed Points. A theorem of Macbeath [8] implies that
the automorphisms of arithmetic Riemann surfaces of genus g> 11 and g# 15 of
maximum possible order act without fixed points unless their order is 2. This does
not mean that automorphisms of arithmetic Riemann surfaces of order greater then
2 act without fixed points, of course, but it seems to be rather difficult either to find
the general formulae for the maximal order n(g, k) of an automorphism acting on an
arithmetic Riemann surface of genus g with & fixed points or even to obtain essential
bounds for n(g, k). Instead of, we discovered the following asymptotic behavior of the
orders of such automorphisms:

THEOREM 3.1. Let n(g, k) denote the maximum order of an automorphism acting on
an arithmetic Riemann surface of genus g with k fixed points. Then

lim — 10, fork=>1.

g—>00 g

n(g, k) {2, for k = 0;
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Proof. The formula for k=0 follows immediately from Theorem 2.1. So let
k> 1. Clearly, limg_, o (g, k)/g = limg_. o 1(g, k)/(g — 1). Assume to a contrary that
there are k>0 and Ny such that (g — 1)/n(g, k) < Ny for infinitely many values of
g, say {g;}ien. Let ¢; be an automorphism of order n(g;, k) which acts with k fixed
points on an arithmetic Riemann surface of genus g;. Then (p) = A;/T", where
n(gi, k) =4 (g, — 1)/u(A;) and so u(A)=4m(g — 1)/n(gi, k) <4No. Since by [8]
the fixed points of ¢; are in bijective correspondence with the orders of canonical
generators of A; which are equal to the order of ¢;, arbitrary such A; has signature
(y;n(gi, k), .%. n(gi, k), m1, ..., m,) forsome y > 0and my, ..., m, < n(g;, k).

Let Ay y, denotes the set of signatures (y;n,.%.,n,my,...m,) which admit
arithmetic groups, have periods my, ..., m, < n and area not exceeding 4Nym. Then
Ak n, 1s finite by Borel’s discreteness theorem [3]. Let ny be the maximal period that
appears among the periods of signatures from Ay n,. Then n(g;, k) > ny and so for
gi>nolNo + 1, (g; — 1)/n(g;, k) > ngNoy/ny = Ny which is a contradiction.
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